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Abstract 

Background: Smallholder dairy farming in much of the developing world is based on the use of crossbred cows that 

combine local adaptation traits of indigenous breeds with high milk yield potential of exotic dairy breeds. Pedigree 

recording is rare in such systems which means that it is impossible to make informed breeding decisions. High-

density single nucleotide polymorphism (SNP) assays allow accurate estimation of breed composition and parentage 

assignment but are too expensive for routine application. Our aim was to determine the level of accuracy achieved 

with low-density SNP assays.

Methods: We constructed subsets of 100 to 1500 SNPs from the 735k-SNP Illumina panel by selecting: (a) on 

high minor allele frequencies (MAF) in a crossbred population; (b) on large differences in allele frequency between 

ancestral breeds; (c) at random; or (d) with a differential evolution algorithm. These panels were tested on a dataset of 

1933 crossbred dairy cattle from Kenya/Uganda and on crossbred populations from Ethiopia (N = 545) and Tanzania 

(N = 462). Dairy breed proportions were estimated by using the ADMIXTURE program, a regression approach, and 

SNP-best linear unbiased prediction, and tested against estimates obtained by ADMIXTURE based on the 735k-SNP 

panel. Performance for parentage assignment was based on opposing homozygotes which were used to calculate 

the separation value (sv) between true and false assignments.

Results: Panels of SNPs based on the largest differences in allele frequency between European dairy breeds and a 

combined Nelore/N’Dama population gave the best predictions of dairy breed proportion  (r2 = 0.962 to 0.994 for 

100 to 1500 SNPs) with an average absolute bias of 0.026. Panels of SNPs based on the highest MAF in the crossbred 

population (Kenya/Uganda) gave the most accurate parentage assignments (sv = −1 to 15 for 100 to 1500 SNPs).

Conclusions: Due to the different required properties of SNPs, panels that did well for breed composition did 

poorly for parentage assignment and vice versa. A combined panel of 400 SNPs was not able to assign parentages 

correctly, thus we recommend the use of 200 SNPs either for breed proportion prediction or parentage assignment, 

independently.
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Background
Based on bovine remains and terracotta figurines, it 

is assumed that the first domesticated cattle in Africa, 

around 5000  years ago, were humpless (Bos taurus) [1, 

2]. Nowadays, the West African N’Dama cattle (Bos tau-

rus) and closely related populations in West Africa are 

believed to be the only surviving population from the 

originally domesticated African cattle. Humped Zebu 

cattle (Bos indicus) were introduced to Africa with trad-

ers from Arabia 2000 to 3000 years ago [2, 3]. Crossbreed-

ing of local African taurine with introduced indicine 

cattle created a variety of new populations that make up 

most of the native cattle of Africa today [4–6]. Based on 
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analyses of karyotypes and genetic markers, Frisch et al. 

[7] inferred that East African Zebu breeds are a mixture 

of Bos indicus and Bos taurus, and that Sanga breeds are 

Bos taurus. Subsequent studies using microsatellites and 

then single nucleotide polymorphisms (SNPs) confirmed 

the mixed ancestry of East African Zebu breeds but iden-

tified that the Bos taurus component is primarily African 

rather than European Bos taurus [8]. Hanotte et  al. [8] 

also found that the ancestry of the tested Sanga breeds 

was also mixed but with substantially higher proportions 

of African Bos taurus than Zebu breeds.

During the second half of the twentieth century, glo-

balization and an increasing demand for milk fostered 

a new wave of crossbreeding in some parts of Africa. 

Northern American and European Bos taurus dairy 

breeds, known for their high production levels, were 

imported and crossed to native breeds in an attempt to 

improve the level of milk production. For example, in 

Kenya, Ayrshire, Jersey, and Guernsey cattle were origi-

nally imported, then Friesian and later Holstein domi-

nated bovine imports. In Uganda, imports of Friesian and 

later Holstein cattle dominated [9]. �e rapid and large-

scale expansion of the East African highland dairy small-

holders indicates that, under appropriate conditions, 

crossbreeding and the use of crossbred cattle can yield 

significant increases in smallholder income.

Knowledge of breed composition is required to deter-

mine which crossbreeds perform best under the wide 

variety of smallholder dairy systems, and also, to make 

breeding decisions for producing progeny of the desired 

breed composition. Because of the lack of pedigree 

records, the breed composition of most animals is not 

known [10]. Furthermore, the lack of knowledge about 

breed proportions and about the relationships within 

and between populations may lead to the loss of native 

genetic resources and may build-up inbreeding depres-

sion [11, 12].

High-density (HD) SNPs can be used to assess the lev-

els of genetic diversity between individuals [13], to deter-

mine coefficients of kinship between pairs of individuals 

allowing for parentage exclusion [14], to obtain accurate 

estimates of breed proportions in crossbred animals [15], 

and to trace animal products to their source [16]. �e HD 

SNP panels are too expensive for routine use in small-

holder systems. Genotyping a few hundred SNPs can be 

relatively inexpensive but how accurate are the estimates 

of breed composition or parentage assignment when 

using such small numbers of SNPs in crossbred dairy 

populations is not known.

�e aim of this study was to determine the accuracy 

and bias when using small subsets of SNPs from a com-

mercially available 735k-SNP panel to estimate breed 

proportion and parentage assignment in crossbred dairy 

cattle populations in East Africa. We used a variety of 

methods to select the SNPs for reaching the highest pos-

sible accuracy  (r2) of estimated breed proportions and 

parentage assignment. Based on the history of cross-

breeding in Africa, we included as baseline information 

the genotype frequencies in pure breeds such as the 

N’Dama (reference for African Bos taurus), Nelore (ref-

erence for pure Bos indicus), and several European and 

North American dairy breeds, which collectively repre-

sent the ancient and more recent ancestral gene pool of 

the crossbred dairy animals.

Methods
Animals

In total, 1933 crossbred dairy cows and local indigenous 

breeds of Ankole (n = 43), Nganda (n = 17), and Small 

East African Zebu (Zebu; n = 58) were sampled from 845 

households that are distributed at five sites in Kenya and 

two sites in Uganda (Dairy Genetics East Africa, DGEA1, 

project). In addition, genotype datasets for N’Dama (as 

the reference African Bos taurus breed; n = 20), Nelore 

(as the reference Bos indicus breed; n  =  20), Guernsey 

(n  =  20), Holstein (n  =  20), and Jersey (n  =  20) were 

sourced from the International Bovine HapMap consor-

tium. Furthermore, British Friesian (n  =  25) from the 

SRUC in Scotland and Canadian Ayrshire (n = 20) from 

the Canadian Dairy Network (CDN) were used as refer-

ence breeds.

An independent population of 545 crossbred animals 

from Ethiopia (DGEA2 project) was sampled from 400 

households at nine sites. Instead of the Kenyan and Ugan-

dan indigenous breeds, we included the Ethiopian Begait 

Barka (n = 30), Danakil Harar (n = 30), Fogera (n = 29), 

and Boran (n = 30) in the analyses of breed composition. 

An independent Tanzanian dataset (DGEA2 project) 

consisted of 462 crossbred animals sampled from 326 

households at three sites. Tanzanian indigenous breeds 

for the analysis of breed composition included Iringa Red 

(n = 13), Singida White (n = 22), and Tanzanian Boran 

(n = 20).

Genotype data

All animals were genotyped with the 777k-SNP 

BovineHD Beadchip (Illumina Inc., San Diego). In 

order to keep potentially interesting SNPs that could 

be excluded due to population stratification, criteria 

for genotype data filtering were applied per breed and 

focused on genotyping quality. Genotypes of the DGEA1 

and 2 and SRUC data were filtered using ‘SNPQC’ an R 

pipeline for quality control of Illumina SNP genotyping 

array data described in [17] to eliminate SNPs that had a 

median GC score lower than 0.6 and a sample-wise call 

rate lower than 90%. Only the SNPs on the 29 autosomal 



Page 3 of 18Strucken et al. Genet Sel Evol  (2017) 49:67 

bovine chromosomes were included in the analysis. 

Genotypes provided by the Bovine HapMap consortium 

and the Canadian Dairy Network were already quality-

controlled. �e cleaned population datasets were merged 

and included 735,293 SNPs. SNPs that were excluded 

after quality control in one breed but not in another 

breed were set to “not available” (NA) in the breed for 

which they were excluded.

We checked the relationships between animals based 

on the genomic relationship matrix [18], with miss-

ing genotypes being replaced by the average genotype 

(encoded as 0, 1, 2) across all animals:

where Z is the centered genotype matrix and p is the allele 

frequency at locus l . Matrix Z was constructed by sub-

tracting from the genotype matrix M the P matrix, which 

equaled 2*(p − 0.5). �e centering of Z was achieved by 

subtracting −1 from M.

Inbreeding coefficients (FIS) were calculated per breed 

according to Weir and Cockerham [19].

Observed breed compositions

Breed proportions of crossbred animals from both 

crossbred populations were estimated by using the full 

quality-controlled data in the ADMIXTURE 1.23 pro-

gram [20]. Analyses were performed by assuming that 

N’Dama, Nelore, Ayrshire, Friesian, Guernsey, Holstein, 

and Jersey represented ancestral populations. We used 

all 735k SNPs to estimate breed proportions to create a 

baseline for comparison with the estimates using sub-

sets of SNPs. Dairy proportion was defined as the sum of 

breed proportions across all European dairy breeds that 

was estimated in the crossbred populations. �e Kenyan/

Ugandan dataset also included the local pure breeds of 

Ankole, Nganda, and Zebu whereas the Ethiopian dataset 

included Begait Barka, Danakil Harar, Fogera, and Ethio-

pian Boran, and the Tanzanian dataset included Iringa 

Red, Singida White, and Tanzanian Boran.

Observed pedigree

�e pedigrees of the crossbred animals from Kenya/

Uganda, Ethiopia, and Tanzania were reconstructed 

based on the presence or absence of opposing homozy-

gotes [21, 22]. Opposing homozygotes (opH) occur if at 

the same SNP, two individuals carry opposite homozy-

gous genotypes [21]. �e more opH are found between 

two individuals, the less likely are these individuals 

related. Except for genotyping errors and mutations, a 

parent and offspring cannot display opH. �e distribu-

tion of opH that are associated with parent–offspring or 

other relationships is specific to the allele frequencies of 

GRM = ZZ
′/2 ∗

∑

pl ∗

(

1 − pl
)

,

the population and the number of SNPs used; however, 

with several tens of thousands SNPs or more, parent–off-

spring relationships can always be clearly separated from 

other relationships. By applying the approach of Strucken 

et  al. [23] if there are less than 1000 opH, it is possible 

to unambiguously distinguish between parent–offspring 

and unrelated individual pairs in the DGEA1 and 2 cross-

bred populations.

�e Kenyan/Ugandan crossbred population contained 

171 cows with 189 offspring, of which 15 cows had two 

offspring and one cow had three offspring. �e relation-

ship between two parent individuals was similar to that 

between half-sibs. �e Ethiopian dataset included 38 

cows that each had one offspring, and the Tanzanian 

dataset included 31 cows and 34 offspring with three of 

these cows having two offspring.

Selection of subsets of SNPs

From the 735k SNPs in the Kenyan/Ugandan dataset, 

subsets of 100, 200, 300, 400, 500, 1000, and 1500 SNPs 

were chosen based on several selection criteria that are 

described below, resulting in SNPs located on all chro-

mosomes except for the smaller panels with less than 200 

SNPs; the number of SNPs was smaller on short than on 

long chromosomes. To minimize linkage disequilibrium, 

SNPs had to be at least one megabase (Mb) pair apart. 

Some of the methods to select SNPs were carried out 

within the crossbred population under investigation (e.g. 

with the highest minor allele frequency (MAF)), which 

implies that they should, ideally, be repeated when mov-

ing to a different population. However, the selected SNP 

panels were validated in independent crossbred popula-

tions to assess the potential for a wider application of our 

SNP panels. SNP panels were selected based on the crite-

ria described in the following paragraphs.

Highest minor allele frequency

Allele frequencies were calculated for the crossbred 

animals. SNPs were sorted by MAF and subsets were 

selected based on the highest MAF in the crossbred 

animals. �ese subsets are not independent since 

larger subsets always included SNPs in the smaller sub-

sets. �e average distance between SNPs in the small-

est and largest panels were 19.4 Mb [standard deviation 

(SD) = 16.2 Mb] and 1.7 Mb (SD = 0.7 Mb), respectively.

Di�erences in absolute frequency

Allele frequencies were calculated for the ancestral 

breeds. �e weighted average allele frequency across 

breeds was calculated based on the number of animals 

in each breed sample. Weighted averages were calculated 

across the Nelore and N’Dama populations (NelNd) and 

across all European dairy breeds (EU). �e differences in 
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absolute frequencies were determined between Nelore 

and EU (NelEU), N’Dama and EU (NdEU), and NelNd 

and EU (NelNdEU). SNPs were sorted according to dif-

ferences in absolute frequencies and subsets that had the 

largest differences were selected. As above, these sub-

sets are not independent because larger subsets include 

all the SNPs in the smaller subsets. �e average distance 

between SNPs per chromosome for the 100-SNP panel 

was 17.6 Mb (SD = 14.4 Mb), 17.4 Mb (SD = 16.3 Mb), 

and 15.6  Mb (SD  =  14.2  Mb) for NelEU, NdEU, and 

NelNdEU, respectively. For the 1500-SNP panel, the 

average distance between SNPs per chromosome was 

1.7  Mb (SD  =  0.7  Mb), 1.7  Mb (SD 0.7  =  Mb), and 

1.7 Mb (SD = 0.6 Mb) for NelEU, NdEU, and NelNdEU, 

respectively.

Random selection

We selected 10 random samples for each subset and 

results were averaged across these random samples. 

�ese random panels were not restricted by SNP spac-

ing (i.e. the 1  Mb pair restriction). �e average dis-

tance between SNPs per chromosome ranged from 

20.4 Mb (SD = 16 Mb) for the 100-SNP panel to 1.7 Mb 

(SD = 1.6 Mb) for the 1500-SNP panel.

ISAG panel and 50k-SNP chip

�e official International Society for Animal Genetics 

(ISAG) panel for parentage assignment [24] consists of 

100 core SNPs, which are mostly derived from European 

breeds, plus an additional 100 SNPs from Bos indicus ani-

mals. We also tested 47,810 SNPs from the Illumina 50k-

SNP bovine chip v2 (San Diego, CA, USA).

Di�erential evolution (DE) algorithm

�e differential evolution (DE) algorithm is based on 

Storn and Price [25] and ranks SNPs according to a ran-

dom key (vector of real values; [26]). �is key evolves to a 

higher rank as the SNP is more suited to solve a particu-

lar problem (e.g. estimation of breed proportion or par-

entage assignment [27, 28]).

In our study, the “all animals” set (including pure 

and crossbred animals) was split into a training and a 

test population. �e DE algorithm was initiated in the 

training population with 100 random samples of SNPs 

(‘parental sets’) for each panel size (i.e. 100, 200, 300, 400, 

500, 1000, 1500 SNPs). From these 100 parental sets, two 

sets were randomly selected to create an ‘offspring set’ 

consisting of 50% randomly sampled SNPs from each 

parental set. If this offspring set performed better than 

the initial 100 parental sets (according to a fitness func-

tion), then this offspring set was retained and the worst 

parental set was discarded. �e dairy proportions were 

estimated internally with a SNP-best linear unbiased pre-

diction (BLUP) approach (see below), whereas the par-

entage test was based on number of opH.

�e fitness function used to optimize prediction of 

dairy breed proportions was the coefficient of determina-

tion  (r2) between the subsets of SNPs and the dairy breed 

proportions predicted with the 735k SNPs in ADMIX-

TURE. To optimize parentage assignments, the fitness 

function was the percentage of correctly assigned parent-

ages according to the reconstructed pedigree. �is pro-

cess was run for 2000 iterations/generations. No spacing 

restriction between SNPs was applied since the DE algo-

rithm should select best SNPs by default.

�e average distance between SNPs per chromo-

some for the panels to estimate breed proportions 

ranged from 23.6  Mb (SD =  12.8  Mb) for the 100-SNP 

panel to 1.6 Mb (SD = 1.6 Mb) for the 1500-SNP panel 

and for the panels to assign parentage, it ranged from 

19.7 Mb (SD = 11.2 Mb) for the 100-SNP panel to 1.7 Mb 

(SD = 1.6 Mb) for the 1500-SNP panel.

Accuracy and bias of breed proportion prediction

Total dairy proportion for an animal was the sum of 

the estimated individual breed proportions for Ayr-

shire, Guernsey, Jersey, Holstein, and Friesian. Accuracy 

of the prediction of dairy proportions for all subsets of 

SNPs was assessed by the coefficient of determination 

 (r2) between observed (based on all 735k SNPs) and pre-

dicted (based on subsets of SNPs) dairy proportions of 

the 1933 crossbred animals. �e linear bias of breed pro-

portions estimated from subsets of SNPs was assessed as 

the average deviation or average absolute difference esti-

mated minus the observed (735k SNPs) values.

Parentage assignment

�e opH matrices were calculated for each subset of 

SNPs in the crossbred population. Subsequently, the sep-

aration value (sv) was used to quantify and visualize the 

performance of each SNP subset and was calculated as:

where FR is the number of opposing homozygotes in false 

parent–offspring relationships according to the recon-

structed pedigree information; and TR is the number of 

opposing homozygotes in true parent–offspring relation-

ships [23, 29].

Regression and SNP-BLUP

Prediction of breed proportions was also made with 

a regression model and a SNP-BLUP approach to 

test the ability of the SNP panels to perform outside 

ADMIXTURE.

(1)sv = min(FR)−max(TR),
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�e regression method was based on Kuehn et al. [30] 

and described in Dodds et al. [31] for prediction of breed 

proportions:

where y are the proportions of the designated allele in the 

genotypes for each SNP of each animal (encoded as allele 

counts 0, 0.5, 1); X is a matrix of allele frequencies in 

each reference breed (ADMIXTURE P-file output); b̂ are 

the breed proportions of each animal for each reference 

breed (to be estimated); and e are the residual errors. 

Coefficients of determination were calculated between 

predictions of breed proportions in the ADMIXTURE 

analysis (735k SNPs) and predictions of the regres-

sion method. In addition, the ADMIXTURE P-file was 

replaced by observed allele frequencies in the ancestral 

populations.

�e SNP-BLUP approach required the replacement 

of missing genotypes (NA) with the average allele count 

across all animals. Only SNPs with a call rate higher than 

95% were used in this analysis to limit potential bias due 

to SNPs with only a few recorded genotypes. SNP-BLUP 

was performed as follows:

where ĝ is the effect of the SNPs to be estimated; y is a 

vector of dairy proportions (ADMIXTURE output for 

735k SNPs) scaled with a mean = 0 and SD = 1; Z is a 

design matrix allocating SNP genotypes (multiplied by 

their allele frequencies) to records; I is an identity matrix 

and � defines the contribution of genomic relationships. 

� was set to � =

(

1 − h
2
)

/(h2/d) with the heritability 

assumed to be h2 = 0.99 and d representing the average 

heterozygosity of the panel.

SNP effects (ĝ) were subsequently multiplied by Z to 

obtain estimates of dairy proportions (i.e. GEBV) for each 

panel. �e estimated dairy proportions had to be rescaled 

(reversing the scaling of y) to be correctly interpreted. 

�is approach was also used within the DE algorithm.

Validation

When SNPs are selected based on information that is 

independent of the test dataset, there is no ascertain-

ment bias. Selection of SNPs based on MAF in the cross-

bred population is subject to trivial ascertainment bias 

due to binomial sampling variance of allele frequencies 

(approximately ± 0.01).

�e linear regression and SNP-BLUP estimates of 

breed proportions are subject to ascertainment bias and 

thus require validation. Validation was achieved by using 

the SNP effects that were estimated in the Kenyan/Ugan-

dan dataset to predict dairy proportions in the Ethiopian 

(2)y = Xb̂ + e,

(3)
[

ZZ′
+ I�

]

∗ ĝ = [Zy],

and Tanzanian dataset and vice versa. To determine 

whether population structure or random sampling 

caused bias in the estimates, we applied the SNP-BLUP 

approach to predict breed proportions for 50% of the ani-

mals in the Kenyan/Ugandan dataset by randomly select-

ing 50% of the animals in each breed (training dataset). 

�en, cross-validation of the estimates was performed on 

the other half of the Kenyan/Ugandan population as well 

as on the Ethiopian and Tanzanian crossbred animals 

(test datasets).

We further validated our sets of SNPs in independent 

crossbred populations. �e subsets of SNPs that were 

selected from the Kenyan/Ugandan dataset were used to 

predict breed proportions and parentage assignment in 

the Ethiopian and Tanzanian datasets. �e coefficient of 

determination and the absolute linear bias between the 

full dataset and the subsets within the Ethiopian and Tan-

zanian datasets were used to determine the performance 

of each subset of SNPs to accurately assign dairy propor-

tions, and the sv was used for parentage assignment.

Results and discussion
Description of data

After merging the quality-controlled datasets for each 

breed, 4.8, 5.1, and 5.8% of genotypes were missing in the 

entire Kenyan/Ugandan, Ethiopian, and Tanzanian data-

sets, respectively. Within the crossbred animals, 4.9, 5.5, 

and 4.8% of genotypes were missing in the Kenyan/Ugan-

dan, Ethiopian, and Tanzanian datasets, respectively. 

�ere was no general pattern of where the missing geno-

types occurred along the genome.

�e average inbreeding coefficient (FIS) did not show 

any substantial average inbreeding in any of the breeds; 

however, the SD was very large (Table  1). �e genomic 

relationship matrix (GRM) showed that the cross-

bred animals were mostly unrelated with no detect-

able inbreeding (Table 1). �e assumed ancestral breeds 

included related individuals within the range of half-sib 

relations. Exceptions were the N’Dama and Nelore popu-

lations in which individuals appeared to be highly related 

and inbred, with Nelore showing an average diagonal ele-

ment of 1.82 (Table 1). �e high values of the GRM for 

the Nelore population can be explained by ascertainment 

bias [32] combined with how the GRM is calculated. 

Nelore is a pure Bos indicus breed and N’Dama repre-

sents a unique African Bos taurus breed. �e largest pro-

portion of SNPs on the 735k-Illumina chip was chosen 

based on high information content (high MAF) within 

non-African Bos taurus populations.

Figure 1 shows MAF and absolute allele frequencies for 

the various populations in our analyses and clearly illus-

trates the bias that is due to the criteria applied for select-

ing SNPs in the assay. �e method of constructing the 



Page 6 of 18Strucken et al. Genet Sel Evol  (2017) 49:67 

GRM across multiple breeds [18] centers the matrix by 

using most of the animals in the dataset. �us, the level of 

inbreeding appears to be high in the N’Dama and Nelore 

populations, which represent a small number of animals 

and they have MAF that clearly differ from those of other 

groups. When the GRM was constructed by using only 

the Nelore animals (n = 20), the average of the diagonal 

elements was equal to 0.975, which is consistent with the 

diagonal elements of the GRM for Nelore reported by 

Zavarez et al. [33].

�e allele frequencies for the three crossbred popula-

tions showed a narrower inter-quartile range compared 

to the assumed ancestral populations (Fig. 1). Compared 

to the other breeds, more than twice the number of SNPs 

were not in Hardy–Weinberg equilibrium (the null-

hypothesis was rejected) in the crossbred populations 

Table 1 Average diagonal and o�-diagonal elements of the GRM [18] and inbreeding coe�cient (F
IS

) ± SD (SE) in cattle

a XBred, Kenya/Uganda; E XBred, Ethiopia; T XBred, Tanzania

Diag O�-Diag FIS

Ayrshire 1.11 ± 0.044 (0.01) 0.34 ± 0.089 (0.02) −0.024 ± 0.206 (0.05)

Friesian 1.01 ± 0.025 (0.005) 0.18 ± 0.05 (0.01) −0.005 ± 0.191 (0.04)

Guernsey 1.16 ± 0.036 (0.008) 0.37 ± 0.089 (0.02) 0.018 ± 0.218 (0.05)

Holstein 1.11 ± 0.036 (0.008) 0.29 ± 0.089 (0.02) −0.021 ± 0.210 (0.05)

Jersey 1.21 ± 0.040 (0.009) 0.48 ± 0.134 (0.03) −0.0003 ± 0.218 (0.05)

N’Dama 1.28 ± 0.022 (0.005) 0.65 ± 0.027 (0.009) 0.013 ± 0.215 (0.05)

Nelore 1.82 ± 0.036 (0.008) 1.22 ± 0.045 (0.01) 0.003 ± 0.209 (0.05)

XBreda 0.98 ± 0.044 (0.001) 0.0004 ± 0.044 (0.001) 0.024 ± 0.037 (0.0008)

E  XBreda 0.95 ± 0.070 (0.003) 0.01 ± 0.070 (0.003) 0.015 ± 0.050 (0.002)

T  XBreda 0.954 ± 0.003 (0.0001) 0.004 ± 0.002 (0.0001) 0.032 ± 0.06 (0.003)

Fig. 1 Allele frequencies and minor allele frequencies for seven ancestral and three crossbred (XBred) cattle breeds. Bold horizontal lines indicate the 

median and plus symbol indicates the mean; the box for each population indicates the interquartile range, and the outermost bars for each popula-

tion indicate the most extreme observations. XBred= Kenya/Uganda; E XBred= Ethiopia; T XBred= Tanzania
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(151,486 SNPs for the Kenyan/Ugandan, 58,493 for the 

Ethiopian, and 91,460 for the Tanzanian datasets), which 

is likely due to a proportion of the crossbred animals 

originating from the first generation progeny of crosses 

with pure dairy or indigenous breeds.

A principal component (PC) analysis based on the GRM 

for the combined Kenyan and Ugandan dataset separated 

the European dairy breeds from the Nelore breed and then 

from the African pure breeds and the first PC explained 

86.91% of the genetic variation. �e second PC clearly sep-

arated the Nelore and N’Dama breeds from the European 

breeds and crossbreds, with the East African indigenous 

breeds being intermediate; it explained 1.75% of the genetic 

variation (Fig.  2a). �e second PC also separated Kenyan 

and Ugandan crossbred animals, which spread between 

their respective indigenous breeds (Ankole and Nganda 

in Uganda and Zebu in Kenya) and European ancestral 

breeds. Although the indigenous samples were collected 

from animals that phenotypically appeared as pure indig-

enous, they clearly included animals that were admixed 

with European Bos taurus genes. When considering only 

the clusters of apparently pure indigenous animals, the 

variation between these three indigenous breeds was sub-

stantially larger in both dimensions (PC1 and PC2) than the 

difference between the European Bos taurus dairy breeds.

�e first two PC in the Ethiopian dataset explained 

90.92 and 1.71% of the variation, respectively (Fig.  2b), 

and in the Tanzanian dataset, they explained 85.19 and 

3.23% of the variation, respectively (Fig.  2c). Most of 

the Ethiopian crossbreds aligned with their respective 

indigenous breeds and with the Friesian and Holstein 

breeds; however, some animals were positioned between 

an unknown indigenous population and the Ayrshire 

population. �e Tanzanian crossbred animals were posi-

tioned between their indigenous breeds and the Holstein 

and Ayrshire breeds. However, when all the data from 

DGEA1 and 2 were analyzed simultaneously and the 

results were plotted to show the third PC, the Tanzanian 

crossbred animals were closer to the Friesian breed 

(see Additional file  1: Figure S1). Similar to the Ethio-

pian crossbreds, some Tanzanian crossbreds seemed to 

align with an unknown indigenous breed (Fig.  2c). �e 

three-dimension PCA plot for the analysis that included 

indigenous breeds from all countries, showed that the 

Ethiopian and Tanzanian crossbred animals that were 

not aligned to a local indigenous breed, aligned with 

an unknown breed(s) between the East African Zebu 

and the Nganda breed (see Additional file 1: Figure S1). 

Crossbred animals from Tanzania that did not align 

with a local breed in the analysis were sampled from the 

Southern Highlands, whereas those from Ethiopia came 

from various locations across the country.

Description of the SNP panels

As expected given the sampling procedure applied, panels 

of SNPs that were selected on their highest MAF showed 

almost no variation in allele frequencies for the Kenya/

Uganda crossbred animals with median and mean allele 

frequencies at 0.5. �e panel that showed the next to low-

est variation was the combined NdEU panel for which the 

interquartile range was between 0.35 and 0.6 (Fig. 3).

All other selection methods resulted in relatively large 

interquartile ranges. Deviation in mean and median 

allele frequency was largest for the NelEU panels (Fig. 3). 

Examination of these allele frequencies within the Nelore 

and EU breeds revealed that the shift in frequencies was 

very similar but in opposite directions for the European 

breeds versus the Nelore breed for all SNP panels (see 

Additional file 2: Figure S2). �e observed frequency for 

the NelEU SNP panel in the crossbred animals (Fig.  3) 

most likely reflects that the average crossbred animal in 

this population was 69.7% (SD  =  21.1%) European Bos 

taurus. A similar but less extreme effect was found for 

the NdEU SNP panel (see Additional file 2: Figure S2).

�e ISAG SNP panel showed a narrow inter-quar-

tile range with a mean and median at 0.5, and the 

Fig. 2 Principal components for exotic and indigenous cattle populations a Kenya/Uganda, b Ethiopia, and c Tanzania. PC1 separates European 

from African breeds. PC2 separates Nelore and N’Dama breeds and African and European breeds
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inter-quartile range of the 50k-SNP panel was similar to 

that of the full 735k-SNP panel although the mean and 

median frequencies deviated more from 0.5 (Fig. 3).

�e distributions of allele frequencies in the Ethiopian 

and Tanzanian crossbred animals were similar to that in 

the Kenya/Uganda crossbred animals, but with a wider 

Fig. 3 Allele frequencies for SNP panels in a crossbred cattle population (Kenya/Uganda). Bold horizontal lines indicate the median and plus symbol 

indicates the mean; MAF, highest minor allele frequencies; DE, differential evolution algorithm; Nel/ND versus EU, Nelore versus EU; N’Dama versus 

EU, highest absolute allele frequency difference
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range of frequencies for all SNP panels (see Additional 

file 3: Figure S3, Additional file 4: Figure S4).

Estimation of breed proportions

Proportions of dairy breed in the crossbred animals were 

on average equal to 0.70 (SD  =  0.21), 0.78 (SD  =  0.20), 

and 0.78 (SD = 0.18) for the Kenyan/Ugandan, Ethiopian, 

and Tanzanian datasets, respectively. �is proportion was 

highest for Ayrshire in Kenyan crossbred animals and for 

Friesian in Ugandan crossbred animals, which was con-

sistent with the PCA results (Fig. 4). Based on a study of 

smallholder cattle that were sampled from mostly peri-

urban areas in Kenya, Gorbach et al. [12] reported that the 

crossbred cattle had very high dairy breed proportions, 

which reflected the fact that their samples originated from 

a much smaller, more intensive and older dairy produc-

tion area than in our study. �ey found that the main dairy 

breeds present in the crossbred individuals were Holstein 

and Jersey/Guernsey, the latter two being indistinguish-

able. However, their analysis did not include Ayrshire as a 

reference breed and Weerasinghe [15] showed that when 

Ayrshire was excluded from the ADMIXTURE analysis, 

most of the Ayrshire signal appeared as Guernsey or Jersey.

In Ethiopian crossbred animals, proportions of dairy 

breeds were highest for Holstein and Friesian (Fig.  4), 

which was consistent with the PCA analyses and the doc-

umented history of the country’s specific cattle imports 

[15]. In Tanzanian crossbred animals, the Friesian breed 

Fig. 4 Breed proportions of crossbred dairy cattle a Kenya/Uganda, b Ethiopia, and c Tanzania. Supervised ADMIXTURE analysis with seven fixed 

ancestral breeds: a 1 Ayrshire, 2 Guernsey, 3 Jersey, 4 Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Ankole, 9 Nganda, 10 Zebu. b 1 Ayrshire, 2 Guernsey, 

3 Jersey, 4 Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Begait Barka, 9 Danakil Harar, 10 Ethiopian Boran, 11 Fogera. c 1 Ayrshire, 2 Guernsey, 3 Jersey, 4 

Holstein, 5 Friesian, 6 N’Dama, 7 Nelore, 8 Iringa Red, 9 Singida White, 10 Tanzanian Boran
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proportion was highest, which differed from the results 

of the PCA in which they aligned more closely with the 

Holstein and Ayrshire breeds (Fig.  4). Dairy breed pro-

portions were highest in crossbred animals from the 

Southern Highland sampling site (0.84, SD = 0.12) com-

pared to the other Tanzanian crossbreds, which was con-

sistent with the PCA.

We selected three SNP panels (NelEU, NdEU, and 

NelNdEU) based on the largest differences in allele fre-

quency between ancestral breeds. Our hypothesis was 

that SNPs that display the largest difference in allele fre-

quency between the indigenous ancestral breeds and the 

dairy breeds will provide the most accurate estimates 

of total dairy breed proportion. Total dairy breed pro-

portion was defined as the sum of breed proportions 

across Ayrshire, Guernsey, Jersey, Holstein, and Friesian 

breeds. Panels of SNPs that were selected by applying 

other methods were included to investigate the factors 

that determine accuracy of prediction and whether it was 

possible to develop SNP panels that could estimate both 

breed proportion and parentage assignment.

�e various panels used in this study predicted dairy 

breed proportions in the Kenyan/Ugandan cross-

breds with an  r2 of 0.725  to  0.963 (SE  =  0.004–0.012) 

for the smallest subsets of 100 SNPs, and 0.977–0.994 

(SE =  0.002–0.003) for the largest subsets of 1500 SNPs 

(Fig.  5a). As hypothesized, the NelNdEU SNP panel 

achieved the best results for all panel sizes, with an  r2 

of 0.974 (SE =  0.004) with just 200 SNPs. �e next best 

panel was the NdEU for all panel sizes except 100 SNPs, 

for which the DE algorithm performed slightly better 

(Fig.  5a). Surprisingly, the NelEU SNP panel performed 

worse compared to the other panels selected for larg-

est differences in allele frequency, with an  r2 of 0.852 

(SE = 0.009) and 0.898 (SE = 0.007) for 100 and 200 SNPs, 

respectively, because as shown by Table 2 NelEU SNPs are 

efficient for distinguishing Bos taurus from Bos indicus 

but not for separating African from European Bos taurus. 

�e performance of the panels selected with the DE 

algorithm did not improve much as the number of SNPs 

increased, and hence were outperformed by the NelNdEU 

and NdEU panels for more than 100 SNPs. �e DE algorithm 

was designed to optimize a panel for the prediction of the 

735k ADMIXTURE estimates of dairy proportions. How-

ever, SNP-BLUP was used to estimate dairy proportions, 

rather than ADMIXTURE as for all other panels. In addition, 

when we predicted dairy proportions by using a SNP-BLUP 

approach independently of the DE algorithm (see next sec-

tion), the DE-based panels continued to perform less well 

than the NelNdEU and NdEU panels, which indicated that 

the DE algorithm failed to find the optimal solution with the 

number of iterations performed. Esquivelzeta-Rabell et  al. 

[28] used the DE algorithm to predict Korean Hanwoo pro-

portions in a Chinese Yeonbyun population and reported  r2 

of 0.69 and 0.88 for 100 and 1000 SNPs, respectively. �ese 

coefficients of determination are lower than those obtained 

by using the same number of SNPs and the DE algorithm but 

the genetic differences between Yeonbyun and Hanwoo are 

much smaller than those between indigenous and European 

dairy breeds in our study.

Figure  5d shows the relationship between bias and 

accuracy for all methods of SNP selection and size of 

Fig. 5 Accuracy  (r2) of dairy proportion estimates (a–c) and accuracy versus bias (d–f) for different panel sizes. d–f large symbols show average lin-

ear bias across all panel sizes. Standard errors of accuracy ranged on average from 0.008 for 100 SNPs to 0.003 for 1500 SNPs (Kenya/Uganda), 0.015 

to 0.005 (Ethiopia), and 0.02 to 0.008 (Tanzania)
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SNP panels in each of the three populations. �e aver-

age absolute linear bias was smallest for the NelNdEU 

panel (0.026, SD = 0.009) followed by the NdEU (0.035, 

SD = 0.01), and the DE panel (0.036, SD = 0.009).

When regressing 735k SNP predictions on either the 

200 or 400 SNP predictions (see Additional file  5: Fig-

ure S5, Additional file  6: Figure S6) for the best panel 

(NelNd:EU), the slope was greater than 1.0, with the 

highest bias obtained for low dairy breed proportions. 

ADMIXTURE forces estimates of breed proportions to 

be between 0 and 1, which might lead to an inherent bias 

at either end of the range of breed proportion estimates. 

To assess whether the linear bias stemmed intrinsically 

from this constraint on the ADMIXTURE estimates and 

whether a correction factor could be introduced, for the 

200 and 400 NelNdEU SNP panels, we truncated the 

range of dairy proportion estimates from the 735k-SNP 

panel to between 0.1 and 0.9 or between 0.2 and 0.8. 

Absolute biases were not much affected by truncation of 

the data; they increased slightly at high dairy breed pro-

portions and decreased slightly at low proportions (see 

Additional file 5: Figure S5, Additional file 6: Figure S6).

�e estimates of dairy proportions were slightly 

more accurate and less biased for the Kenyan cross-

bred animals  (r2  =  0.972, SE  =  0.005; average absolute 

bias  =  0.028 SD  =  0.022) than for the Ugandan cross-

bred animals  (r2  =  0.963, SE  =  0.008; average absolute 

bias  =  0.04, SD  =  0.03). Kenyan crossbred animals are 

the result of crosses between European dairy breeds and 

Zebu whereas Ugandan crossbreds are crosses between 

European dairy breeds and Ankole and Nganda, which 

have much higher proportions of African Bos taurus 

ancestry than Zebu. �is suggests that the bias observed 

for the crossbreds in these two countries is predomi-

nantly due to a tendency to over-predict the African Bos 

taurus proportion and under-predict the European Bos 

taurus proportion.

Validation of SNP panels in the Ethiopian and Tan-

zanian crossbred animals resulted in a similar ranking 

with the NelNdEU panel performing best for all panel 

sizes, and resulting in  r2 of 0.966, 0.980, and 0.993 in 

Ethiopian crossbreds, and 0.958, 0.974, and 0.994 in Tan-

zanian crossbreds for 100, 200, and 1500 SNPs, respec-

tively (Fig. 5b, c). �e worse performance was observed 

for the random panel closely followed by the MAF 

panel with  r2 of 0.745 and 0.699 (SE = 0.022 and 0.026) 

in Ethiopian and Tanzanian crossbreds for 100 SNPs, 

respectively, compared to an  r2 of 0.783 (SE = 0.012) in 

the Kenyan/Ugandan population. Average absolute bias 

was smallest for the NelNdEU panel in both datasets 

(0.024, SD =  0.003 for the Ethiopian dataset and 0.026, 

SD =  0.002 for the Tanzanian dataset), followed by the 

NdEU panel (0.033, SD =  0.009 for the Ethiopian data-

set and 0.041, SD = 0.009 for the Tanzanian dataset). In 

both countries, panels under-predicted dairy proportions 

except for some NelEU panel sizes in Tanzania (Fig. 5e, 

f ).

�e full ISAG panel of 200 SNPs predicted dairy pro-

portions with  r2 of 0.831 (SE = 0.009), 0.830 (SE = 0.018), 

and 0.768 (SE  =  0.022) in the Kenyan/Ugandan, Ethio-

pian, and Tanzanian datasets. Average absolute bias of 

the ISAG panel was among the highest values for the 

200-SNP panels, i.e. 0.069, 0.067, and 0.076 in the Ken-

yan/Ugandan, Ethiopian, and Tanzanian datasets, respec-

tively. �is poor performance is not unexpected since the 

ISAG panel was selected for parentage assignment, pre-

dominantly in Bos taurus populations. SNPs on the 50k-

SNP v2 Illumina chip predicted dairy proportions with  r2 

of 0.9987 (SE = 0.0008), 0.9989 (SE = 0.001), and 0.9985 

(SE  =  0.002) in the Kenyan/Ugandan, Ethiopian, and 

Tanzanian datasets, respectively. Absolute bias of pre-

dicted dairy proportions was equal to 0.006, 0.005, and 

0.009 for the Kenyan/Ugandan, Ethiopian, and Tanzanian 

datasets, respectively.

Table 2 Accuracies  (r2) of  individual breed proportions in crossbred dairy cattle (Kenya/Uganda) for 200 SNPs selected 

by di�erent methods

Standard errors of breed-wise accuracies ranged from 0.017 to 0.02

a Excluding dairy

Dairy Ayrshire Friesian Guernsey Holstein Jersey N’Dama Nelore Mean ± SDa

MAF 0.870 0.486 0.312 0.375 0.483 0.165 0.397 0.874 0.442 ± 0.22

NelEU 0.898 0.120 0.140 0.056 0.198 0.034 0.484 0.944 0.282 ± 0.33

NdEU 0.934 0.373 0.263 0.265 0.437 0.141 0.538 0.867 0.412 ± 0.24

NelNdEU 0.974 0.075 0.132 0.013 0.007 0.004 0.511 0.190 0.133 ± 0.18

Random 0.845 0.405 0.243 0.276 0.414 0.133 0.373 0.874 0.388 ± 0.24

DE 0.922 0.421 0.049 0.281 0.402 0.141 0.427 0.925 0.378 ± 0.28

ISAG 0.831 0.452 0.197 0.270 0.306 0.127 0.482 0.759 0.378 ± 0.21

Mean ± SD 0.896 ± 0.05 0.333 ± 0.17 0.197 ± 0.09 0.219 ± 0.13 0.321 ± 0.17 0.107 ± 0.06 0.459 ± 0.06 0.776 ± 0.27
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When predicting the proportions of each of the seven 

ancestral breeds based on the various 200-SNP panels 

(Table  2), average accuracies across ancestral breeds were 

highest for selection of SNPs based on MAF  (r2  =  0.442, 

SE = 0.017) followed by the NdEU SNP selection  (r2 = 0.412, 

SE  =  0.017). �e panels based on maximizing indigenous 

versus dairy allele frequencies including the Nelore breed 

(NelNdEU, NelEU) gave very poor predictions of individual 

dairy breed proportions. �is is due to the selection method 

that preferentially selects alleles at extreme frequencies 

between Bos taurus and Bos indicus breeds and hence results 

in low variance between dairy breeds.

With subsets of 200 SNPs, individual breed propor-

tions were on average best predicted for the Nelore breed 

 (r2  =  0.776, SE  =  0.009) followed by the N’Dama breed 

 (r2  =  0.459, SE  =  0.017). Jersey breed proportions were 

poorly predicted with on average an  r2 of 0.107 (SE = 0.021, 

Table 2). �e accuracy of individual breed proportion pre-

dictions is strongly influenced by two factors: (1) breeds 

that exhibit little variation in breed proportions in the 

crossbred animals (such as Jersey) will have their propor-

tions predicted with lower  r2 since the residual errors 

account for a higher proportion of the total variation accu-

racy; and (2) breeds that are most genetically distant from 

the others (such as the Nelore breed) are more likely to dis-

play allele frequencies that differ from those of other breeds 

with most methods used to select SNP panels.

�e NelEU panel performed well for the prediction 

of Nelore proportion, with an  r2 of 0.944 (SE =  0.005), 

but gave poorer predictions of total dairy proportion 

 (r2 = 0.484, SE = 0.016) because of its poor prediction of 

N’Dama (African Bos taurus) versus European Bos tau-

rus proportions. Although this panel was not as good at 

predicting total dairy proportion in these African cross-

bred populations, it should perform better in populations 

in which the indigenous population is pure Bos indicus, 

as is the case in much of India.

Separating the crossbred animals according to their 

country of origin (Kenya vs. Uganda) improved the pre-

diction of Nelore proportion in the Kenyan crossbred 

animals and of breed proportion for Holstein, Jersey, and 

N’Dama in the Ugandan crossbred animals with most 

panels. Ayrshire and Guernsey predictions were less 

accurate with most panels in both Kenyan and Ugandan 

crossbred animals.

Regression and SNP-BLUP

�e regression method using all 735k SNPs predicted 

dairy proportions from a 735  k ADMIXTURE analysis 

with an  r2 of 0.9914 (SE = 0.002) and an absolute bias of 

0.014 (SD  =  0.018). However, the selected SNP panels 

gave poor predictions when using the regression method 

(Fig. 6a). Using 50k SNPs to predict breed proportions in 

sheep, Dodds et al. [31] reported accuracies of  r2 = 0.941. 

Frkonja et al. [34] used different prediction methods and 

compared the results to pedigree-based admixture esti-

mates. All methods resulted in fairly low  r2 values (0.872–

0.953) with 40,000 SNPs, with a partial least square 

regression approach performing best. Frkonja et  al. 

[34] also reported no substantial loss in accuracy when 

the number of SNPs dropped to 4000  (r2 =  0.949), but 

observed a significant loss in accuracy when it dropped 

to 400  (r2 = 0.912). Our results show that the regression 

approach performs much worse than ADMIXTURE even 

with 1500 SNPs (Fig. 6a).

We tested the NelNdEU and NdEU panels to deter-

mine whether the use of true allele frequencies improved 

prediction of breed proportions compared to that of 

ADMIXTURE estimates, and found that prediction accu-

racy  (r2) decreased substantially (Fig. 6b).

When we applied the SNP-BLUP approach with each 

of the SNP panels and using all the data from each of the 

three populations, estimates of dairy proportions were 

more accurate than those obtained by ADMIXTURE 

Fig. 6 Accuracy  (r2) of dairy proportion estimates for different panel sizes using a regression approach. a ADMIXTURE allele frequencies (P-file). b 

Observed allele frequencies. Standard errors of accuracy ranged on average from 0.02 for 100 SNPs to 0.01 for 1500 SNPs
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except for the NdEU panel, and even much more than 

those obtained by the regression approach, as shown by 

the comparison of Fig. 7a–c with Fig. 5a–c. For example, 

in the Kenyan/Ugandan dataset (Fig. 7a), the NelNdEU 

panel achieved on average 0.008 higher  r2 values and 

the MAF panel 0.026 higher  r2 values with SNP-BLUP 

estimates compared to ADMIXTURE estimates. Esti-

mates obtained by using ADMIXTURE are unbiased, 

because estimates for each SNP panel are obtained inde-

pendently of the estimates using the 735k SNPs, against 

which they are tested. In contrast, the accuracies of 

SNP-BLUP estimates are subject to ascertainment bias 

that leads to overestimated accuracies. When the predic-

tion equations obtained with SNP-BLUP for the Kenyan/

Ugandan dataset were validated by applying them to the 

Ethiopian and Tanzanian datasets (Fig. 7d, e), accuracies 

of all panels were substantially lower and always higher 

with ADMIXTURE. A cross-validation within the Ken-

yan/Ugandan dataset resulted in similarly lower accura-

cies, which indicates that dairy proportions are generally 

overestimated due to ascertainment bias with the SNP-

BLUP approach.

Fig. 7 Accuracy  (r2) and validation of dairy proportion estimates using a SNP-BLUP approach. a–c Discovery of SNP effects in three independent 

populations. d, e Validation of SNP effects estimated in the Kenyan/Ugandan dataset for two independent populations. Standard errors of accuracy 

ranged on average from 0.006 for 100 SNPs to 0.001 for 1500 SNPs in the Kenyan/Ugandan dataset
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To assess whether this ascertainment bias results from 

random sampling or population structure, we used the 

NelNdEU panels and split the Kenyan/Ugandan dataset 

randomly into two equally-sized subsets. �e numbers of 

animals from Kenya and Uganda were relatively evenly dis-

tributed between the two subsets. Accuracies of the pre-

dictions of dairy proportions obtained with SNP-BLUP 

on the first half of the dataset were very similar to those 

obtained using the full dataset. When SNP-BLUP equa-

tions were validated on the second half of the dataset, 

accuracies dropped and biases increased substantially. 

Using the effects of SNPs that were predicted with the 

first half of the Kenyan/Ugandan dataset to predict dairy 

proportions in the second half of the dataset (within-

population validation) led to decreased accuracy [aver-

age reduction in  r2 = −0.012, SD = 0.004; (see Additional 

file  7: Figure S7a)] and increased bias. When these pre-

diction equations were used on the Ethiopian and Tanza-

nian datasets, accuracies were lower (average  r2 =  0.417, 

SE = 0.02 for the Ethiopian dataset and average  r2 = 0.485, 

SE  =  0.019 for the Tanzanian dataset) (see Additional 

file 7: Figure S7b). �e reduction in accuracy in the within-

population validation reflects ascertainment bias due to 

random sampling. However, reduction in accuracy was 

even larger in the cross-population validation, which indi-

cates that population structure has a stronger impact on 

ascertainment bias. Since the SNP-BLUP approach incor-

porates the allele frequencies of the fitted dataset, predic-

tions of dairy proportions will be less accurate and more 

biased if the validation dataset includes populations with 

different allele frequencies (population structure). On 

average, absolute differences in allele frequency were equal 

to 0.048 (SD  =  0.039) and 0.031 (SD  =  0.025) between 

Kenyan/Ugandan and Ethiopian, and Kenyan/Ugandan 

and Tanzanian datasets, respectively.

�e poor performance of the estimates obtained with 

the panels that were optimized by using the DE algorithm 

indicates that either it did not properly search the param-

eter space to find the optimum panel, or that the number 

of iterations was insufficient to evolve to the optimum. 

Figure S8 (see Additional file  8: Figure S8) shows that 

accuracy continued to increase slowly after 10,000 itera-

tions of the DE algorithm. �e curve was too flat to make 

any prediction about what the asymptotic accuracy might 

be if a much larger number of iterations was run. How-

ever, given the substantial drops in accuracy seen in the 

validation datasets, there is no reason to believe that the 

DE algorithm would eventually produce more accurate 

estimates after validation than ADMIXTURE estimates.

Parentage assignment

�e separation value (sv) provides a measure of the dif-

ference in opH in true parent–offspring relationships and 

other forms of relationships and in unrelated individuals. 

A sv lower than 0 indicates that the panel cannot reliably 

separate parent–offspring status from other relationships. 

SNPs with a high MAF have the highest probability of 

having opH between two unrelated individuals within a 

population under Hardy–Weinberg equilibrium. �us, 

panels of SNPs that were selected for a high MAF in the 

crossbred population should perform best in assigning 

parentage using opH criteria. Our hypothesis was con-

firmed since SNP panels based on MAF achieved the high-

est sv in the Kenyan/Ugandan, Ethiopian, and Tanzanian 

datasets (Fig. 8a–c). However, none of the 100-SNP pan-

els had a sv higher than 0. With 200 SNPs, only the panel 

of MAF-based SNPs had a positive sv in all three popula-

tions. As the number of SNPs in the panel increased, all 

methods used to select SNPs eventually achieved positive 

sv. Although the panel of MAF-based SNPs was based on 

allele frequencies in the Kenyan/Ugandan population, it 

performed well in all three crossbred populations.

�e panel derived by the DE algorithm performed 

erratically and did not achieve positive sv in all three 

populations with less than 400 SNPs. Gondro et al. [27] 

reported positive sv for a 100-SNP panel derived by the 

DE algorithm in a Hanwoo cattle population. However, 

the Hanwoo cattle population was relatively small and all 

animals were part of parent–offspring pairs, which will 

tend to lead to higher sv than the much larger popula-

tion of largely unrelated animals in which we tested the 

DE algorithm. For a larger crossbred sheep population, at 

least 400 SNPs were required to achieve a positive sv in 

both the discovery and validation dataset [27], which is 

consistent with our results.

Since sv is an integer variable it can be difficult for a DE 

algorithm to evolve to a higher sv once the panels of SNPs 

being evaluated by the algorithm all achieve the same sv 

and this may limit the ability of DE to find an optimum 

solution. �e DE algorithm might perform better if it is 

initiated with prior knowledge on suitable SNP panels 

(e.g. panels of MAF-based SNPs, or SNP spacing restric-

tions) but it would still likely generate spuriously high sv 

values due to ascertainment bias.

�e ISAG panel and the 50k-SNP chip yielded sv of 1 

and 170, respectively, in the Kenyan/Ugandan dataset, 3 

and 944, respectively, in the Ethiopian dataset, and 5 and 

796, respectively, in the Tanzanian dataset.

�e average sv of the randomly selected panels indi-

cated that at least 300 SNPs are required to achieve a 

positive sv, which is in concordance with the findings 

of Strucken et al. [23], who reported that 340 randomly 

selected SNPs were needed for a positive sv in a compos-

ite cattle population.

We investigated whether the accuracy of the MAF-based 

panel was affected by breed composition. When using all 
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735k SNPs, dairy proportions of the animals in parent–off-

spring pairs ranged from 11 to 99%. Average opH counts 

for parent–offspring pairs with dairy proportions higher 

than 0.5 and those with dairy proportions lower than 0.5 

were equal to 293 (SD = 93) and 420 (SD = 84), respec-

tively. Although statistically highly significant (P < 0.0001), 

this difference is small since only a proportion of SNPs 

were tested with the SNP panels. MAF for animals with 

dairy proportions lower than 0.5 versus higher than 0.5 

were virtually identical (0.2738 vs. 0.2734), and when using 

the MAF-based panel with either 200 or 400 SNPs, there 

was no significant correlation between opH and dairy 

proportion. �erefore, parentage assignment of the MAF 

panel is not expected to be affected by dairy proportion.

Applications in the �eld

�e NelNdEU panel was superior for the prediction of 

dairy proportions in all three populations: Kenyan/Ugan-

dan, Ethiopian and Tanzanian. �is panel was chosen 

based on allele frequencies in reference samples of Nelore, 

N’Dama, and Bos taurus dairy breeds, and no informa-

tion from crossbred animals was used to select the SNPs. 

�us, there is no ascertainment bias in the estimated 

accuracies with the NelNdEU panels using ADMIXTURE 

Fig. 8 Parentage assignment for different panel sizes in three independent crossbred cattle populations (a) Kenya/Uganda, (b) Ethiopia, (c) Tanza-

nia

Fig. 9 Accuracy  (r2) of dairy proportion estimates and parentage assignment (sv) for combined panels. The X-axis shows the total number of SNPs 

in the panel and in brackets the percentage of the best SNPs chosen from each 200-SNP panel (NelNdEU:MAF). Symbols for MAF and NelNdEU 

show  r2 and separation value (sv) for panels in separate evaluations
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in our datasets. �e 200-SNP panel provides a good com-

promise between a small number of SNPs while achiev-

ing high accuracy and the lowest absolute bias  (r2 = 0.974 

SE =  0.004; absolute bias =  0.031 using ADMIXTURE). 

In practice, not all of the 200 SNPs are available due to 

genotyping errors or to failure of some SNPs to work on 

a given assay platform. �erefore, we randomly selected 

75 to 95% of the SNPs by simulating a genotyping failure 

of 5  to  25%. Accuracies of predicted dairy proportions 

remained high with an  r2 of 0.965 and 0.975 when 75 and 

95% of the genotypes were available, respectively. �us, 

the NelNdEU 200-SNP panel should perform well in the 

field for the prediction of dairy proportions.

�e MAF-based panel performed best for parent-

age assignment and achieved a positive sv of 1 with 200 

SNPs. Similarly, we calculated the sv assuming a random 

genotyping failure of 5 to 25%. �e sv was positive with 1 

opH between true and false parentages. �us, the MAF-

based 200-SNP panel should perform well in the field for 

parentage assignment.

�e NelNdEU panel performed poorly for parentage 

assignment whereas the MAF-based panel performed 

poorly for the prediction of breed composition. We 

explored the possibility of having a single, combined 

panel that performed well for both prediction of breed 

composition and parentage assignment. We tested 

panel sizes from 100 to 400 SNPs, and different com-

binations of SNPs from the NelNdEU and MAF-based 

panels. In each case, the best SNPs for each selection 

criterion (i.e. large allele frequency difference between 

NelNd and EU or highest MAF) were chosen from each 

panel. Using all 200 SNPs from each panel (i.e. 400 

SNPs) resulted in an  r2 of 0.978 (SE =  0.003; absolute 

bias  =  0.027) for the prediction of breed proportion 

and a sv of −1. �ese results are slightly less good than 

those achieved by the NelNDEU and MAF-based 400-

SNP panels (Fig. 9).

�e combined panels performed relatively well for 

prediction of breed proportions, especially if more than 

50% of SNPs were chosen from the NelNdEU panel. 

�e combined panels did not achieve a positive sv, even 

if the majority of SNPs were chosen from the MAF 

panel. �is is due to  the fact that the 200-SNP panel 

chosen for high MAF is not performing well enough, 

i.e. the positive sv is not sufficiently high, to counteract 

the negative sv value of the NelNdEU panel. �e 300 or 

400 SNPs from the NelNdEU and MAF panels resulted 

in positive sv values. However, combining these to cre-

ate a panel of 600 or 800 SNPs means doubling the 

number of SNPs. �erefore, we recommend using the 

200 SNPs of the NelNdEU panel for prediction of breed 

proportions or the 200 SNPs of the MAF panel for par-

entage assignment.

�e 1500 SNPs in the NelNdEU and MAF panels are 

provided in rank order of selection in Table S1 [see Addi-

tional file  9: Table S1], from which all the panels with 

smaller numbers of SNPs described in this paper can be 

reconstructed.

Conclusions
For East African crossbred dairy cattle populations, it is 

possible to create SNP panels with as few as 200 SNPs 

that will result in accurate estimates of dairy propor-

tions and panels of similar size but with different SNPs 

to assign parentage accurately. A single combined panel 

of 400 SNPs achieved sufficient accuracies for breed pro-

portion prediction but was not able to assign parentages 

correctly. Results of the 200-SNP panels chosen indepen-

dently for breed proportion prediction and parentage 

assignment indicate that these panels should be reliable 

for animals that are crossbred to a wide range of African 

indigenous breeds. However, they are not expected to 

perform well outside of Africa where indigenous breeds 

do not originate from ancient crosses between Afri-

can Bos taurus and Bos indicus populations. Alternative 

panels based on SNPs that differentiate Bos indicus from 

European Bos taurus should perform well in countries 

where the indigenous base population is Bos indicus, 

such as in south Asia, but this needs to be tested.

Additional �les

Additional �le 1: Figure S1. 3D-plots of principal components for 

reference, indigenous, and crossbred populations from Kenya/Uganda, 

Ethiopia, and Tanzania.

Additional �le 2: Figure S2. Allele frequencies for SNP panels selected 

for the largest allele frequency differences of ancestral breeds, i.e. between 

Nelore or N’Dama and a weighted EU average in Nelore, N’Dama, or 

European populations.

Additional �le 3: Figure S3. Allele frequencies for SNP panels in a 

crossbred cattle population (Ethiopia). Bold horizontal lines indicate the 

median and + indicates the mean.

Additional �le 4: Figure S4. Allele frequencies for SNP panels in a 

crossbred cattle population (Tanzania). Bold horizontal lines indicate the 

median and + indicates the mean.

Additional �le 5: Figure S5. Regression of estimates of dairy propor-

tions (735k) on predictions of the NelNdEU 200-SNP panel.

Additional �le 6: Figure S6. Regression of estimates of dairy propor-

tions (735k) on predictions of the NelNdEU 400-SNP panel.

Additional �le 7: Figure S7. Validation of dairy proportion estimates 

from one half of the Kenyan/Ugandan crossbreds (NelNdEU panel). (a) 

Validated in the other half of the Kenya/Uganda dataset. (b) Validated in 

independent populations from Ethiopia and Tanzania plus the second half 

of the Kenyan/Ugandan dataset.

Additional �le 8: Figure S8. Accuracy  (r2) of dairy proportion estimates 

and parentage assignment with increasing number of iterations.

Additional �le 9: Table S1. Best 1500 SNPs for breed proportion estima-

tion (NelNdEU) and parentage assignment (MAF). They are presented in 

rank order, from best to worst SNP.
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