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What are the genetic and neural components that support adap-
tive learning from positive and negative outcomes? Here, we show
with genetic analyses that three independent dopaminergic mech-
anisms contribute to reward and avoidance learning in humans. A
polymorphism in the DARPP-32 gene, associated with striatal
dopamine function, predicted relatively better probabilistic reward
learning. Conversely, the C957T polymorphism of the DRD2 gene,
associated with striatal D2 receptor function, predicted the degree
to which participants learned to avoid choices that had been
probabilistically associated with negative outcomes. The Val/Met
polymorphism of the COMT gene, associated with prefrontal
cortical dopamine function, predicted participants’ ability to rap-
idly adapt behavior on a trial-to-trial basis. These findings support
a neurocomputational dissociation between striatal and prefrontal
dopaminergic mechanisms in reinforcement learning. Computa-
tional maximum likelihood analyses reveal independent gene
effects on three reinforcement learning parameters that can ex-
plain the observed dissociations.

basal ganglia � prefrontal cortex � computational model

A wealth of evidence points to a key role for the neurotrans-
mitter dopamine (DA) in reinforcement learning (1–4). Tran-

sient bursts of DA firing are observed after unexpected rewards
(1–3). These signals are thought to enhance learning through DA
effects on corticostriatal plasticity so that rewarding actions are
more likely to be selected in the future. Similarly, DA firing ‘‘dips’’
below baseline when rewards are expected but not received (1–3).
Nevertheless, whether DA plays a functional role in the opposite
kind of learning, that is, in avoiding nonrewarding or aversive
actions, is controversial (2, 5).

Neural network models of the basal ganglia show how DA bursts
and dips, by facilitating synaptic plasticity in separate neuronal
populations, can support ‘‘Go’’ learning to make good choices and
‘‘NoGo’’ learning to avoid those that are less adaptive in the long
run (4, 6, 7). Supporting this account, monkey studies reveal
separate neural populations in the striatum coding for actions that
are probabilistically associated with positive and negative outcomes
(8). In the models, DA bursts support positive (Go) reinforcement
learning by modulating striatal plasticity through D1 receptors,
whereas DA dips support avoidance (NoGo) learning through D2
receptors. Several convergent lines of research support this overall
functionality. Physiologically, D1 and D2 pharmacological agonists/
antagonists differentially modulate activity and gene expression in
separate Go and NoGo striatal populations (9). Behaviorally,
striatal D1 receptor blockade prevents the speeding of responses to
obtain large rewards (impaired Go learning), whereas striatal D2
blockade slows responding to obtain small rewards (enhanced
NoGo learning) (10). In humans, DA medications modulate be-
havioral Go and NoGo learning in opposite directions (4, 11, 12).
Nevertheless, it has not been demonstrated whether naturally
occurring individual differences in this learning arise from dopa-
minergic mechanisms. Below, we show that genetic polymorphisms
associated with striatal D1 and D2 function are directly predictive
of Go and NoGo learning.

In addition to the basal ganglia, other brain regions contribute to
reinforcement learning and action selection. Recent computational
models explore how the prefrontal cortex (PFC), and local DA
signals therein, can complement functions of the striatum (13, 14).
In these models, the striatal system continues to integrate the
long-term probability of positive and negative outcomes through
incremental changes in synaptic plasticity, as described above. This
idea is consistent with a striatal role in slow habitual learning (15,
16). In contrast, prefrontal cortical regions contribute to learning
on a shorter time scale by actively maintaining recent reinforcement
experiences in a working memory-like state (13). These PFC
representations are stabilized by frontal DA levels (17, 18) and are
used to modify ongoing behavior by top-down influences on
subcortical structures (19). According to this scheme, tonically
elevated DA levels in PFC, particularly during negative events (20,
21), can be beneficial for a form of avoidance learning. That is,
PFC–DA-dependent mechanisms support robust maintenance of
recent reinforcement outcomes so as to rapidly adapt behavior on
a trial-to-trial basis (13). Supporting this account, increased pre-
frontal DA levels in rats predicted enhanced ability to shift from
one rule to another (22, 23).

Together, the combined striatal/prefrontal models predict three
distinct DA-related contributions to reinforcement learning. Stri-
atal DA efficacy, by modulating incremental changes in synaptic
plasticity, should modulate Go and NoGo learning to choose and
avoid actions that are probabilistically associated with positive and
negative outcomes, through D1 and D2 receptors, respectively. In
contrast, tonically elevated prefrontal DA levels should support
trial-to-trial adjustments that depend on maintaining recent nega-
tive outcomes in working memory. Thus, this predicted dissociation
suggests multiple independent forms of learning, each of which may
be linked with individual differences in genetic variation. The aim
of the present study was to test these hypotheses by using both
behavioral and computational methods.

Behavioral Results
We collected DNA from 69 healthy humans performing comput-
erized learning tasks and analyzed three genes that have been
clearly linked to striatal and prefrontal DA measures. We hypoth-
esized that genetic differences in striatal DA efficacy would account
for variability in probabilistic reward learning, and that genetic
differences in striatal D2 receptor function would be associated
with probabilistic avoidance learning. To test for striatal DA–
reward learning associations, we analyzed a SNP in the gene coding
for the DARPP-32 protein (24, 25). DARPP-32 potently modulates
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dopamine D1-dependent synaptic plasticity, is activated by D1
receptor stimulation, and is by far most abundant in the striatum
(26–28). [Theoretically, a SNP in the D1 receptor itself could be
examined, but D1 receptors are also prevalent in frontal cortex,
whereas DARPP-32 protein is far more abundant in striatum (25,
26), making this SNP a better candidate to test specific striatal-D1
receptor predictions.] The particular genetic polymorphism that we
examined (rs907094) was recently shown to strongly modulate
striatal activity and function, with no direct effect of this gene on any
other brain region (25). We hypothesized that this genetic marker
of striatal DA would predict the extent to which participants learn
to make decisions that had been probabilistically associated with
positive outcomes. We also analyzed the C957T polymorphism
within the DRD2 gene, which affects D2 mRNA translation and
stability (29), and postsynaptic D2 receptor density in the striatum
(30), without affecting presynaptic DA function (31). [This distinc-
tion may be critical: genetic modulation of presynaptic D2 function
would presumably affect Go/reward learning during DA bursts
(11), consistent with effects of another D2 polymorphism on
reward-related brain activity (32).] We hypothesized that this
genetic marker of postsynaptic striatal D2 function would predict
the extent to which participants learn to avoid decisions that had
been probabilistically associated with negative outcomes. Finally,
we analyzed the functional Val158Met polymorphism within the
COMT gene. This polymorphism is associated with individual
difference in prefrontal DA, such that Met allele carriers have lower
COMT enzyme activity and higher DA (23, 25, 33). We hypothe-
sized that this genetic marker of prefrontal DA function would
predict the extent to which participants maintain negative outcomes
in working memory to quickly adjust their behavior on a trial-to-
trial basis.

We administered a probabilistic selection task (4) that enables
examination of all these behavioral measures within a single task.
Three different stimulus pairs (AB, CD, and EF) are presented in
random order, and participants have to learn to choose one of the
two stimuli (Fig. 1). Feedback follows the choice to indicate whether
it was correct or incorrect, but this feedback is probabilistic. In AB
trials, a choice of stimulus A leads to correct (positive) feedback in
80% of AB trials, whereas a B choice leads to incorrect (negative)
feedback in these trials (and vice versa for the remaining 20% of
trials). CD and EF pairs are less reliable: stimulus C is correct in
70% of CD trials, E is correct in 60% of EF trials. Learning to
choose A over B could be accomplished either by learning that A

leads to positive feedback, or that B leads to negative feedback (or
both). To evaluate the degree to which participants learned about
the probabilistic outcomes of their decisions (both positive and
negative), we subsequently tested them with novel combinations of
stimulus pairs involving either an A or a B (each paired with a more
neutral stimulus; no feedback was provided) (4). Positive-feedback
learning is indicated by reliable choice of stimulus A in all test pairs
in which it is present. Conversely, negative-feedback learning is
indicated by reliable avoidance of stimulus B.

Prior studies revealed that Parkinson’s patients, who have low
striatal DA levels, were better at avoid-B than choose-A; DA
medications reversed this bias as predicted by the models (4). In
healthy participants, individual differences in positive and negative
learning were accounted for by reinforcement-related brain activity
thought to be linked to DA signals (34). We hypothesized that good
choose-A performance would be associated with enhanced striatal
DA/D1 efficacy, as reflected by the DARPP-32 gene. We further
predicted that better avoid-B performance would be associated
with striatal D2 receptor density, as indexed by the DRD2 gene (30).

Results supported these predictions. Overall, participants were
equally successful at choose-A and avoid-B pairs [F(1,68) � 0.9].
Nevertheless, there was an interaction between test pair condition
and DARPP-32 genotype [F(1,67) � 4.1, P � 0.048], such that A/A
homozygotes performed relatively better than G carriers at
choose-A compared with avoid-B trials (Fig. 2A, Cohen’s d � 0.5).
The DRD2 gene also predicted relative choose-A versus avoid-B
test performance, but in the opposite direction [F(1,67) � 7.6, P �
0.008, Cohen’s d � 0.53]. In this case, T/T homozygotes, who have
the highest D2 receptor availability (30), performed selectively
better at avoid-B pairs (Fig. 2B; Cohen’s d � 0.55). This effect was
particularly evident by a gene–dose analysis (Fig. 4A), in which
increasing numbers of T alleles were associated with better avoid-B
performance [F(1,67) � 4.8, P � 0.03], with no effect on choose-A
(P � 0.1). This DRD2/NoGo learning effect was further demon-
strated at the level of reaction times [Fig. 4A and supporting
information (SI) Table 1]. Both DARPP-32 and D2 genetic effects
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Fig. 1. Probabilistic selection task. Example stimulus pairs, which minimize
explicit verbal encoding by using Japanese Hiragana characters. Each pair is
presented separately in different trials. Three different pairs are presented in
random order; correct choices are determined probabilistically (percent positive/
negative feedback shown in parentheses for each stimulus). A test (transfer)
phase ensues in which stimuli A and B are repaired with all other more neutral
stimuli; no feedback is provided in this test phase. Positive-reinforcement learn-
ing is assessed by choose-A accuracy; avoidance learning is assessed by avoid-B (4).
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Fig. 2. Go/NoGo generalizations. (A) DARPP32 gene. A/A homozygotes were
relatively better than G carriers at choose-A relative to avoid-B performance.
(B) DRD2 gene. T/T homozygotes were selectively better C carriers at avoiding
the most negative stimulus B, with no DRD2 effect on choose-A. (C) COMT
gene. No significant effects were observed. (D) Summary of within-subject
positive–negative learning biases. COMT � Met carriers � Val/Val; DARPP-
32 � A/A � G carriers; DRD2 � T/T � C carriers. Asterisks indicate significant
(P � 0.05) effects of each gene on relative positive to negative learning. Error
bars reflect standard error.
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on Go and NoGo learning were found despite no effects on
accuracy during the training phase (P � 0.25).

In contrast to these striatal DA-related genes, the COMT gene
(number of Met alleles) was not predictive of either choose-A or
avoid-B performance (Fig. 2C), or their relative reaction times (all
P � 0.25). Motivated by the neurocomputational models described
above, we predicted that the COMT gene should instead be
associated with trial-to-trial adaptation after negative outcomes. To
test this idea, we analyzed performance during the training phase
of the task. We kept track of trials in which participants selected a
particular stimulus (e.g., E in an EF trial), got negative feedback,
and used this feedback to avoid selecting the same stimulus in the
next trial in which it appeared (Fig. 3A). Note that this ability
requires holding the negative outcome experience in mind over the
course of multiple intervening trials (e.g., AB and CD) that could
occur before the next EF occurrence. Thus our assessment of
trial-to-trial negative feedback switching depends on robust main-
tenance of reinforcement values in working memory in the face of
ongoing processing, a function widely thought to be modulated by
PFC DA (17, 18).

Overall accuracy in the training phase did not differ across
COMT genotypes [F(1,66) � 0.1]. Nevertheless, Val/Val homozy-
gotes, who have the lowest PFC DA (33), were less likely than Met
carriers to switch responses after negative outcomes on a trial-to-
trial basis [lose–shift; F(1,66) � 5.2, P � 0.026, Cohen’s d � 0.6];
there was no COMT effect on win-stay performance [F(1,66) � 1.5,
not significant]. The condition by genotype interaction was signif-
icant [F(1,66) � 4.6, P � 0.037]. There was also a gene–dose effect
such that increasing Met allele expression was associated with
enhanced lose–shift performance [Fig. 4B; F(1,66) � 7.0, P � 0.01],
again with no effect on win–stay [F(1,66 � 0.7]. These COMT
differences were significant even in the very first 5 training trials of

each type [15 trials total, F(1,66) � 4.6, P � 0.03; Fig. 3D] and
reduced as training progressed, as indicated by a marginal genotype
by training trial interaction [F(1,66) � 3.5, P � 0.067]. This latter
effect was due to a decrease in lose–shift behavior with increasing
trials as individual negative feedback experiences became less
informative (SI Fig. 6). These COMT effects were also observed at
the level of reaction times: Met carriers were more likely to slow
responses after negative feedback [lose–slow; Fig. 4B; F(1,66) �
4.2, P � 0.04]. Finally, there was no effect of DRD2 or DARPP-32
genotypes on trial-to-trial switching or slowing (Fig. 3 B and C;
P � 0.2).

Computational Model
We further investigated the above genetic effects using computa-
tional reinforcement ‘‘Q-learning’’ algorithms (35) (see SI Text for
detailed methods). These simulations attempt to embody some of
the core computational principles derived from the biological
neural network implementations (6, 13) by using more analytically
tractable equations and a minimal number of parameters. More-
over, unlike neural network models (which have many more
parameters), these algorithms can quantitatively fit individual sub-
jects’ trial-to-trial data by generating parameters that are not
directly observable in the behavioral data (36). Individual differ-
ences in these learning parameters have thus far been considered
nuisance variables; here, we investigate whether these differences
can be accounted for in a principled way by genetic mutations.

Because our neural models suggest separate mechanisms for
positive- and negative-feedback learning, we fit behavioral data
using separate learning-rate parameters �G and �L for gains and
losses (see ref. 37 for related methods). Specifically, we compute a
Q value for selecting each stimulus i during trial t, such that the value
of the chosen stimulus is modified by reinforcement feedback:

Qi� t � 1� � Q i� t� � �G�r� t� � Q i� t��	 � �L�r� t� � Q i� t���,

[1]

where r(t) � 1 for positive and 0 for negative feedback, and the
learning rate applied is either �G or �L depending on whether the
outcome is better or worse than expected, respectively. Choice
behavior was then modeled by using a ‘‘softmax’’ logistic function
(35), with inverse gain parameter �, such that the probability of
choosing one stimulus over another (e.g., A over B) was com-
puted as:
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Fig. 3. Trial-to-trial adjustments. (A) Illustration of trial-to-trial switching
assessment for an example stimulus train. Brown circles indicate the selected
stimulus; check marks and cross-out symbols represent the feedback (positive
or negative) received. In the example shown, lose–shift performance would
involve a switch from selecting E in the first EF trial to F in the second EF trial
and similarly for CD. Note that this shifting depends on maintaining the
negative outcome value of a particular stimulus context (e.g., EF) in the face
of intervening trials (AB and CD). Win–stay performance is assessed similarly
(repeated choice of the A stimulus in the next AB trial; not shown). (B)
DARPP32 effects on win–stay and lose–shift performance. (C) DRD2 effects. (D)
COMT effects. Val/Val homozygotes were significantly less likely than others
to switch their responses after negative feedback (lose–shift). Results are
shown in early training trials (first 5 trials of each type, 15 trials total), when
negative feedback is maximally informative.
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Fig. 4. Gene–dose effects on two forms of avoidance learning. (A) Avoid-B
performance, DRD2 gene–dose effect. Individuals with more T alleles per-
formed better, and were relatively faster, at avoid-B test pairs. RTs are assessed
on correct trials, and slowing is measured by subtracting choose-A from
avoid-B RTs. (B) Trial-to-trial switching, COMT gene–dose effect. Individuals
with more met alleles showed a greater propensity to switch after negative
feedback (particularly in early training trials, shown here). These subjects also
showed more slowing of reaction times in these trials (previous trial positive-
feedback subtracted from previous trial negative-feedback RTs). Error bars
reflect standard error.
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. [2]

The same equation applies for other trial-types, replacing A and B
with C, D, E, or F, as appropriate. Each participant‘s trial-by-trial
choices were fit with three free parameters, �G, �L, and �, which
were selected to maximize fit (likelihood) of each participant’s
trial-by-trial sequence of choices in the training phase of the task (SI
Text, Eq. 7, and SI Tables 2–5).

We reasoned that the best fitting parameters to participants’
training data would be forced to accommodate rapid adaptations in
response to recent reinforcement experiences. If the COMT gene
modulates the ability to rapidly adjust behavior as a function of
working memory for recent losses, then this gene should predict
individual differences in �L values. Indeed, there was a gene–dose
effect of COMT, such that increasing Met allele expression was
associated with higher �L values [F(1,66) � 4.6, P � 0.035; Fig. 5C
and SI Fig. 7], and relatively higher �L than �G [F(1,66) � 4.1, P �
0.047]. There was no effect of the D2 or DARPP-32 genes on these
measures (P � 0.2).

Prior work suggests that basal ganglia (BG) and PFC systems
learn in parallel and that the two systems can both cooperate and
compete for behavioral control (13, 14). Whereas the PFC guides
rapid behavioral adjustments during training, we hypothesized that
the BG system may be more adept at discriminating between subtly
different probabilistic reinforcement values at test (participants
were told to use ‘‘gut-level intuition’’ for these test choices). If this
is the case, the learning rates found by fitting participants’ trial-to-
trial training choices may reflect rapid adaptation to changing
outcomes, but would conceal the learning rates of the BG system
(which would observably affect behavior at test). To address this
issue, we ran a parallel Q-learning simulation, in an attempt to
uncover the learning rates of a second Q
 system that learns during
training but exerts control over behavior during the test phase. The
Q
 value updating equation is similar to that above:

Q
i� t � 1� � Q
i� t� � �
G�r� t� � Q
i� t��	 � �
L�r� t� � Q
i� t��� .

[3]

Rather than trying to fit trial-by-trial sequential data, we instead
optimized �
G and �
L values to select those that produce final Q

values (i.e., at the end of training), which correspond best to

participants’ subsequent test choices. Thus, the goal was to estimate
the learning rates of the system that had integrated reinforcement
probabilities during training and could then discriminate between
them at test. Furthermore, because there was no feedback during
the test phase, there were no trial-to-trial adjustments that would
otherwise be captured by these simulations (see SI Text for addi-
tional justification and alternative models). To compute the prob-
ability of choosing a given stimulus in the test phase, we modify Eq.
2 to reflect a softmax comparison of final accumulated Q
 values,
and assume that these Q
 values do not change across the test phase
(given the lack of feedback). For example, if the subject chose
stimulus A in test pair AC, we compute the probability that the
model would make that same choice, given final Q
 values:

PA
test �

e
Q 
Afinal

�


e
Q 
Afinal

�
 � e
Q
Cfinal

�


. [4]

To find each subject’s best fitting �
G and �
L parameters, we
applied Eq. 3 repeatedly for different parameter combinations
and selected those producing final Q
 values that maximize fit to
their test phase choices. We then examined whether the param-
eters of this Q
 system could predict choose-A and avoid-B test
choices. Indeed, we found that increasing choose-A performance
was associated with smaller �
G values [F(1,66) � 8.3, P � 0.005],
whereas increasing avoid-B performance was associated with
smaller �
L [F(1,66) � 4.4, P � 0.04]. There was no relationship
between �
G and avoid-B performance or �
L and choose-A
(P � 0.15).

The negative relationship among �
G, �
L, and probabilistic test
performance suggests that the ability to discriminate between subtly
different probabilistic values requires a low learning rate, as op-
posed to the above-described effects of �L, where increasing values
were associated with rapid adaptations. This fundamental tradeoff
between working memory recency and probabilistic integration is
shown by Q learning simulations (Fig. 5B). Larger learning rates
lead to high sensitivity to recent outcomes, whereas lower learning
rates support integration over multiple trials (37) (see also ref. 38
for a similar tradeoff in the episodic memory domain). Thus, the
system in control over behavior at test is better off having had a
lower learning rate during training, so that it is not overly influenced
by just the most recent reinforcement experiences.
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L. Asterisks indicate P �.05; error
bars reflect standard error. Raw parameters for each group (and associated gene–dose effects) are shown in SI Fig. 7.
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Having shown that lower �
G and �
L are associated with better test
phase generalization, we hypothesized that these learning rate
differences would be accounted for by the striatal genes. Notably,
both DARPP-32 and D2 genes modulated these �
 parameters. For
DARPP-32, A/A homozygotes had substantially lower �
G param-
eters than the other groups [F(1,67) � 12.1, P � 0.001; Fig. 5C];
there was no effect of this gene on �
L [F(1,67) � 0.04]. This effect
was selective to slow reward integration and not trial-by-trial
adaptation, as revealed by a significant interaction between
DARPP-32 genotype and �
G vs. �G [F(1,67) � 3.9, P � 0.05]. For
DRD2, there was a gene–dose effect of increasing T allele expres-
sion, leading to relatively smaller �
L than �L values [F(1,67) � 5.7,
P � 0.02; Fig. 5D and SI Fig. 7]. Again, this D2 gene effect was
selective; it was not observed for �
G (by itself or relative to �G), and
there were no COMT effects on any of these measures (all P �
0.15). Finally, there was no effect of any gene on � or �
 (P � 0.1).
(All of the reported effects held regardless of whether we fit a new
�
 parameter for each subject in the Q
 simulations, or whether we
fixed it to be the same as � found in the training simulations. Thus
the computational findings are robust.) In sum, smaller �
G values
in DARPP-32 A/A homozygotes, and smaller �
L values in D2 T/T
homozygotes, demonstrate that these genes modulate slow inte-
gration of positive and negative outcomes.

Discussion
These collective findings provide evidence for three distinct dopa-
minergic mechanisms in reinforcement learning. Each of the gene/
behavior effects were accounted for by independent genetic mod-
ulation of reinforcement learning parameters in a computational
model. First, the DARPP-32 gene predicted the ability to choose
stimuli that had been probabilistically associated with positive
feedback [Go learning (4, 6)]. Computational analyses show that
this gene modulates the learning rate that enables discrimination
between probabilistic reward values (Fig. 5C and SI Fig. 8).

In contrast, enhanced DRD2 genetic function predicted the
ability to avoid the probabilistically most negative stimuli, accom-
panied by associated changes in �
L values. This finding confirms a
specific neurocomputational prediction that postsynaptic striatal
D2 receptors are critical for integrating and learning from low DA
levels during negative outcomes (4, 6, 7). Neural evidence for this
claim comes from studies showing that postsynaptic D2 receptor
blockade (simulating the lack of DA during dips) enhances corti-
costriatal long-term potentiation (39), associated with NoGo learn-
ing in the models (6). Nevertheless, this claim is controversial.
Several theorists argue that although DA bursts support positive-
reinforcement learning, the firing rate changes associated with DA
dips do not have sufficient dynamic range to be functionally
effective (2, 40). The present findings suggest that striatal D2
receptors are indeed effective in avoidance learning, potentially
because of their enhanced sensitivity to low DA levels and their
potent role in synaptic plasticity (11, 41, 42). This function seems to
depend highly on DRD2 genotype and associated striatal D2
receptor density.

Overall, the finding that lower �
G and �
L values were associated
with better test phase performance supports the notion that slow
feedback integration is necessary for generalization of probabilistic
positive and negative reinforcement values. We posit that this slow
integration is performed by the ‘‘habit-learning’’ BG system (15),
consistent with the observed striatal genetic effects. However, these
findings raise the question of how enhanced DARPP-32 or D2
function might lower learning rates, mechanistically. We offer two
possible resolutions to this conundrum. First, detailed biophysical
models suggest that DARPP-32 contributes to synaptic plasticity
precisely by integrating DA bursts over extended periods of time
(28). Participants with enhanced DARPP-32 function (because of
genetic or other factors) may therefore be better at performing such
integration, which would be fit by lower learning rates (37). Second,
the computational approach used here is highly abstract (to min-

imize the number of parameters needed to fit behavioral data); the
derived learning rates cannot capture those of individual synapses
and, instead, reflect adaptation of the entire behavioral system.
Thus, although we argue that one is better off relying on BG (rather
than PFC) when choosing among long-term probabilistic reward
values, the extent to which individuals actually do this can itself vary.
We speculate that those with enhanced DARPP-32 or D2 genetic
factors may rely relatively more on BG, and less on PFC, in the test
phase of our task, leading to lowered effective learning rates. In
contrast, those with poorer striatal function may be overly influ-
enced by only their most recent reinforcement experiences (at the
end of the training phase), a strategy that would be fit by higher
learning rates. This interpretation is in accord with suggestions that
the degree to which striatal and prefrontal systems contribute to
behavior is governed by the relative certainty of each system’s
predictions (14). Those with enhanced striatal function would have
greater certainty in the predictions of the BG system, leading to
greater BG than PFC recruitment.

This line of reasoning is further supported by our COMT
analysis. Increasing COMT Met allele expression was associated
with greater trial-to-trial adjustments after a single instance of
negative feedback; this behavior was fit by higher �L values in the
computational analysis. Notably, COMT Met allele expression is
associated with elevated DA levels in PFC (33), with little to no
COMT effect in striatum (25, 43). These prefrontal DA differences
may be particularly evident after negative events, which have been
associated with temporally extended DA elevations in PFC (and
usually not striatum) (20, 21). Thus, we suggest that the COMT gene
modulates the elevation of frontal DA levels after negative events.
In turn, these DA levels stabilize frontal working memory repre-
sentations (17), including those encoding recent reinforcement
values, enabling adaptive behavior in the face of changing rein-
forcement contingencies (13). Animal studies support this notion,
showing that PFC DA elevations, including those induced by
COMT manipulation, enhance behavioral shifting (23, 22). More-
over, schizophrenic patients, who consistently show impaired pre-
frontal function linked to COMT (33), are impaired at rapid
lose–shift performance in the same task used here, while showing
intact probabilistic NoGo learning (44).

At first glance, our interpretation conflicts with recent physio-
logical data showing that striatal learning rates are actually faster
than those in PFC (45). Those data seem to challenge the widely
held notion that the striatum supports gradual habit-based learning
(16). Our neural models provide a possible resolution to this issue,
whereby initial BG/DA learning is required for later habits to be
‘‘ingrained’’ in the more slowly learning corticcortical projections
(6, 13). The critical difference is that here, we view the high learning
rate PFC system to reflect not fast synaptic modification but, rather,
the ability to actively maintain reinforcement values in working
memory, which can then be immediately applied to affect behavior.
This distinction has been explored in computational models, in
which the synaptic learning of prefrontal abstract representations is
very slow but that, once established, can be actively maintained and
rapidly applied to modify behavior by top-down control (46). It is
the latter function that we attribute to the fast PFC system here.

Finally, although prior studies have linked each of the genetic
polymorphisms with the neural function of interest, we cannot
absolutely discount the possibility that our observed effects are
mediated by different neural mechanisms than those posited here.
We simply note that the polymorphisms examined were specifically
selected based on a priori theoretical and converging empirical
work. Future research is required to confirm that the genetic effects
are accompanied by brain-related changes in the context of the
same behaviors here. Furthermore, although our moderately large
sample size (n � 69) enabled examination of independent genetic
effects on model parameters and behavioral measures of interest,
it is in principle possible that these genetic effects also interact with
each other. Preliminary analysis revealed no such gene–gene
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interactions, but larger sample sizes may be required to reliably
exclude this possibility.

In addition to corroborating a neurocomputational account of
learning in basal ganglia and frontal cortex, our findings also lend
insight into the genetic basis for learning differences. We limited
our analysis to just three polymorphisms that have been clearly
associated with the dopaminergic measures of interest in striatum
and PFC, motivated by theoretical modeling predictions. We found
relatively large effects of normal genetic variation in DA function
on our cognitive measures. These findings provide evidence that
when cognitive tasks and candidate genes are chosen based on
formal theories of brain function, substantial genetic components
can be revealed (47). Moreover, understanding how dopaminergic
variation affects learning and decision making processes may have
substantial implications for patient populations such as Parkinson’s
disease, attention-deficit hyperactivity disorder, and schizophrenia.
Thus, further research into the functions of DA in the basal ganglia
and PFC should provide important insights into improving human
cognition and learning.

Methods
Sample. Our sample was 69 healthy participants (30 females, 39
males), between the ages of 18 and 35 (median � 21). The vast
majority of participants were white, with three participants cate-
gorizing themselves as ‘‘more than one race.’’ We were unable to
obtain COMT genotypes for one subject. The breakdown of COMT
genotypes was 17:32:19 (Val/Val:Val/Met:Met/Met). The break-
down of C957T genotypes was 13:38:18 (C/C:C/T:T/T). The break-
down of DARPP32 genotypes was 4:25:40 (G/G:G/A:A/A). Because
of the low number of participants in the G/G group, we compared

A/A (n � 40) to G/A and G/G carriers combined (n � 29). The
number of T/Met alleles in the DRD2/COMT SNPs were not
correlated [r (68) � 0.06, P � 0.7), and the groupings for DARPP-32
(A/A vs. others) did not correlate with either of the other SNPs (P �
0.15). Thus, the three genetic effects reported above were inde-
pendent from one another.

Procedures. Procedures were approved by the University of Colo-
rado Human Research Committee. Detailed procedures for the PS
task have been described (4, 11) and are reiterated in SI Text.

Data Analysis. We performed general linear model regressions to
test comparisons of interest, using the number of Met/T alleles as
a continuous variable; for details, please see SI Text.

Genotyping. DNA was collected by use of buccal swabs. Subjects
swabbed their cheeks with three cotton swabs, followed by a rinse
of the mouth with water, after which all contents were placed in a
50-ml sterile conical tube and stored at 4°C until extraction.
Genomic DNA was extracted from buccal cells by using a modifi-
cation of published procedures (48). Before SNP analyses, the
concentration of genomic DNA was adjusted to 20 ng/�l. SNP
analyses were performed by using an ABI PRISM 7500 instrument
(Applied Biosystems, Foster City, CA) using TaqMan chemistry.
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