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Abstract
Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of 
which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediX-
can uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without 
directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) 
transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 
cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further 
evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, 
we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10− 4, rep-
lication P = 0.01), and PYGL (discovery P = 2.3 × 10− 4, replication P = 6.7 × 10− 4). Interestingly, both genes encode proteins 
that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC 
pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of 
the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified 
genes associated with CRC (P < 0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes 
in the previously reported 2q25 locus, CXCR1 and CXCR2, which are potential cancer therapeutic targets. These findings 
provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to 

Stephanie A. Bien and Yu-Ru Su contributed equally to this work.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0043 9-019-01989 -8) contains 
supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-019-01989-8&domain=pdf
https://doi.org/10.1007/s00439-019-01989-8


308 Human Genetics (2019) 138:307–326

1 3

implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data 
in GWAS for discovery of, and biological insight into, risk loci.

Introduction

It is estimated that genetic variants explain 12–35% of the 
heritability in colorectal cancer (CRC) risk (Lichtenstein 
et al. 2000; Czene et al. 2002; Jiao et al. 2014). To date, 
Genome-Wide Association Studies (GWAS) have identified 
56 independent common risk variants that are robustly asso-
ciated with CRC (Peters et al. 2015; Schumacher et al. 2015; 
Orlando et al. 2016). However, the functional relevance of 
most discovered CRC-risk variants (89%) remains unclear. 
The biological mechanisms linking CRC-associated risk var-
iants with target genes have only been validated in the labo-
ratory for six regions [8q24 MYC (Pomerantz et al. 2009), 
8q23.3 EIF3H (Pittman et al. 2010), 11q23.1 COLCA1 and 
COLCA2 (Biancolella et al. 2014), 15q13.3 GREM1 (Lewis 
et al. 2014), 16q22.1 CDH1 (Shin et al. 2004), and 18q21.1 
SMAD7 (Fortini et al. 2014)]. Given that most of the asso-
ciated loci do not include coding variants, a large portion 
of CRC genetic risk is thought to be explained by regula-
tory variation that modulates the expression of target genes. 
This hypothesis is supported by the observation that CRC 
risk variants are enriched in colon expression quantitative 
trait loci (eQTLs) (Hulur et al. 2015) and active regulatory 
regions of colorectal enhancers (Bien et al. 2017). Together, 
this evidence highlights the value of studying transcriptional 
regulation in relation to CRC risk.

Large-scale efforts are underway to map regulatory ele-
ments across tissues and cell types. Many transcriptome 
studies have been conducted where genotype and expres-
sion levels are jointly assayed for many individuals, ena-
bling the discovery of tissue-specific eQTLs. For instance, 
the Genotype-Tissue Expression (GTEx) Project (GTEx 
Consortium 2013) is building a biospecimen repository to 
comprehensively map tissue-specific eQTLs across human 
tissues, which currently includes transcriptomes from 169 
colon transverse samples. These data provide a remarkable 
new resource for understanding function in non-coding 
regions that can be used to inform GWAS.

We employed the computational method, PrediXcan 
(Gamazon et al. 2015), to perform a CRC transcriptome-
wide association study using reference datasets to ‘impute’ 
unobserved expression levels into GWAS datasets. Vari-
ant prediction models were developed using colon trans-
verse transcriptomes (n = 169) from GTEx (GTEx Consor-
tium 2013) and a larger whole blood transcriptome panel 
(n = 922) from the depression genes and networks (DGN) 
(Battle et al. 2014). We included whole blood as a previous 

analysis demonstrated that gene regulatory elements of 
immune cell types from peripheral blood are enriched for 
variants with more significant CRC association P (Bien et al. 
2017). Further, laboratory follow-up of the CRC GWAS 
locus 11q23 implicates two genes, COLCA1 and COLCA2, 
which are co-expressed in immune cell types and correlate 
with inflammatory processes (Peltekova et al. 2014). In addi-
tion to novel discovery, the PrediXcan approach can aid in 
prioritization of candidate target genes in non-coding GWAS 
loci and thereby inform testable hypotheses for laboratory 
follow-up. Therefore, as a secondary analysis we investi-
gated the association of imputed gene expression with CRC 
in the 44 genetic regions harboring one or more of the 56 
independent variants (r2 < 0.2) that are associated with CRC 
in previous GWAS (P ≤ 5 × 10− 8) and were replicated in an 
independent dataset.

We aimed to discover novel loci associated with CRC, 
and refine established regulatory risk loci by reducing the 
list of putative gene targets. Employing PrediXcan, we tested 
genetically regulated gene expression for association with 
CRC in a two-stage approach. In the discovery stage, up 
to 8277 gene sets were tested in 12,186 cases and 14,718 
controls from the Genetics and Epidemiology of Colorectal 
Cancer Consortium (GECCO) and the Colon Cancer Family 
Registry (CCFR). This discovery set was also used to iden-
tify potential target genes in the 44 genetic regions harbor-
ing 56 known CRC risk variants. We attempted replication 
of three novel genes that were not positioned within 1 Mb 
of the 56 previously reported risk variants and with false 
discovery rate (FDR) ≤ 0.2 for CRC risk in a large and inde-
pendent study of 32,825 cases and 39,933 controls from the 
Colorectal Transdisciplinary (CORECT) consortium, UK 
Biobank, and additional CRC GWAS (Fig. 1).

Results

Imputation of genetically regulated gene 
expression

Gene expression levels were imputed using previously pub-
lished multi-variant models built using elastic net regulariza-
tion (variant weight gene models V6 available online from 
PredictDB.org). For each tissue and gene, a quality metric 
referred to as predictive R2 was provided as the correlation 
between the observed and predicted expression from the 
multi-variant model based on a tenfold cross validation. 
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After restricting to protein coding genes with a predictive 
R2 > 0.01 (≥ 10% correlation between predicted and observed 
expression), the discovery analysis tested the association of 
imputed expression for 4850 genes using colon transverse 
models and 8277 genes using whole blood models. On aver-
age, colon transverse models used 22 variants (SD = 19) per 
gene with a range of 1–173 variants. The number of variants 
in whole blood models were slightly larger on average with 
a mean of 34 variants (SD = 24) per gene, ranging from 1 to 
213 variants. We report CRC association results and predic-
tive R2 for imputed expression of each gene with P ≤ 0.05 in 
either colon transcriptome or whole blood analysis (Online 
Resource 2 Table S2).

Discovery of new CRC susceptibility genes

In total, multivariate logistic regression was used to test the 
association of CRC with genetically impute gene expres-
sion for 4850 genes from colon transverse models and 8277 
genes from whole blood models. We employed PrediXcan 
in 12,186 cases and 14,718 controls from 16 GWAS stud-
ies. Replication was attempted for associations meeting an 
FDR = 0.2 threshold in the discovery phase if they were in 

a novel CRC region using an independent GWAS dataset 
comprised of 32,825 cases and 39,933 controls from the 
CORECT consortium, UK Biobank, and additional GWAS 
as described in Online Resource 1. In the discovery phase, 
colon transcriptome models identified CRC association with 
imputed genetically regulated gene expression in three puta-
tive novel regions. Two out of three genes tested in the rep-
lication dataset were significant after adjusting for multiple 
comparisons (α = 0.05/3 = 0.017) (Online Resource Fig S1, 
Table 1). In addition to being more than 1 Mb away from 
previously identified risk variants, we confirmed that none 
of the variant predictors used to impute gene expression 
for these three genes were in LD (r2 ≤ 0.1) with previously 
published CRC-risk variants. In the 7q22.1 locus, increased 
expression of TRIM4 was associated with reduced CRC risk 
with an odds ratio (OR) of 0.94 [95% confidence interval 
(CI) 0.91–0.97, discovery P = 2.2 × 10− 4]. Reduced CRC 
risk was also statistically associated with increased geneti-
cally regulated gene expression of TRIM4 in the independ-
ent replication dataset (P = 0.01). The second novel locus, 
14q22.1, was also found to be inversely associated, where 
increased genetically regulated gene expression of PYGL 
was associated with decreased CRC risk, showing an OR 

Fig. 1  Schematic illustration of the study design training data was 
comprised of joint observations of imputed variant genotypes and 
tissue-specific gene expression from reference datasets (DGN and 
GTEx). Elastic net regularization was used to train genetic variant 
predictors of gene expression and downloaded from PredictDB.org. 
Models for colon transverse tissues and whole blood were used for 
imputation of expression into independent GWAS datasets for Colo-

rectal Cancer (CRC). Imputed gene expression was then tested for 
association with case (ca.)–control (co.) status in the discovery stage. 
Novel gene associations with a false discovery rate (FDR) = 0.2 were 
assessed in an independent CRC GWAS dataset. As a secondary anal-
ysis, the association of genetically determined expression of genes in 
44 GWAS-associated risk regions was examined
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of 0.90 (95% CI 0.85–0.96) in the discovery dataset (dis-
covery P = 2.3 × 10− 4) as well as in the replication dataset 
(P = 7.9 × 10− 4). Imputed genetically regulated gene expres-
sion for SLC22A31 was associated with increased CRC risk 
in the discovery phase (P = 1.3 × 10− 4), but did not repli-
cate in the independent dataset. We found no associations in 
novel regions using whole blood variant models that reached 
FDR = 0.2 in the discovery phase.

Colon Transverse PrediXcan analyses were repeated for 
TRIM4 and PYGL in the discovery dataset stratifying cases 
by proximal (n = 4454 cases), distal (n = 3580 cases), and 
rectal (n = 2936 cases) cancer sites. We excluded 1216 cases 
from the stratified analysis because the colon cancer site was 
unspecified. We found that for both genes the effects and 
p values were similar between the three sites. For TRIM4, 
the CRC association with genetically imputed gene expres-
sion had an OR of 0.94 (95% CI 0.90–0.98, P = 3 × 10− 3) 
in proximal colon cases compared to an OR of 0.95 (95% 
CI 0.90–1.0, P = 5 × 10− 2) in distal colon cases and an OR 
of 0.93 (95% CI 0.88–0.98, P = 2 × 10− 2) in rectal cases. 
There was no significant difference in the effect estimates 
between these cancer sites for TRIM4 (Q-test for heterogene-
ity P = 1.0). Similarly, for PYGL, the CRC association with 
genetically regulated gene expression had an OR of 0.89 
(95% CI 0.82–0.97, P = 3 × 10− 3) in proximal colon cases 
compared to an OR of 0.91 (95% CI 0.83–1.0, P = 2 × 10− 2) 
in distal colon cases and an OR of 0.86 (95% CI 0.77–0.95, 
P = 5 × 10− 4) in rectal cases with no significant difference in 
effects (Q test for heterogeneity P = 0.98).

We further investigated the replicated CRC-associated 
PrediXcan genes by summarizing the single-variant CRC 
association results for variants that were included in the 
prediction models, referred to hereafter as ‘variant predic-
tors’ (Online Resources 3–6 Fig S2). In TRIM4, the associa-
tion was mostly driven by one LD block with 62 correlated 
genetic variant predictors used to impute genetically regu-
lated gene expression in colon tissue models. Among the 
variant predictors of TRIM4, rs2527886 was most signifi-
cantly associated with CRC (P = 1.8 × 10− 4). Bioinformatic 

follow-up of the TRIM4 locus showed that in the genomic 
region containing variants correlated with rs2527886, there 
were six enhancers with strong Chromatin Immunopre-
cipitation Sequencing (ChIP-seq) H3K27ac signal in either 
normal colorectal crypt cells or a CRC cell line (Online 
Resource 1 Fig S3). Using peak signal from H3K27ac activ-
ity to define enhancer regions, two enhancers were gained in 
ten or more CRC cell lines compared to normal colorectal 
crypt cells, referred to as recurrent variant enhancer loci 
(VEL) (Akhtar-Zaidi et al. 2012). Rs2527886 is positioned 
within one of these VEL. Peak ChIP-seq binding region for 
CTCF suggests that the VEL harboring rs2527886 may be in 
physical contact with the TRIM4 promoter. In the same VEL, 
one of the LD variants, rs2525548 (LD r2 = 0.99), is posi-
tioned within transcription factor binding sites for RUNX3, 
FOX, NR3C1, and BATF (Online Resource 1 Fig S3). In the 
PYGL locus, rs12589665 is the variant predictor with the 
strongest marginal association with CRC (P = 3.2 × 10− 4). 
We identified 7 enhancers in the region spanning the variants 
in LD with rs12589665, and three variants in LD with the 
lead predictor variant were positioned in VEL. Two of these 
variants, rs72685325 (r2 = 0.62) and rs72685323 (r2 = 0.53), 
were positioned within binding sites for 7 transcription fac-
tors (Online Resource 1 Fig S3).

A series of exploratory analyses were conducted to 
assess whether the observed inflation in association signals 
(λ = 1.1) was the result of bias in our data or modeling error. 
Results suggest that inflation was not driven by genes with 
low predictive R2 values (Online Resource 1 Fig S4), other 
potential confounding factors common to GWAS like geno-
typing batch effects (Online Resource 1 Fig S5) or cryp-
tic population structure (Online Resource 1 Fig S6–S7), 
or due to inflated Z statistics by modeling genes with little 
variability in expression (Online Resource 1 Fig. S8–S11). 
Observed inflation was slightly reduced, but still elevated 
when looking at the marginal association results for the vari-
ant predictors (λ = 1.07; Online Resource 1 Fig S12) and 
when excluding genes with high predicted co-expression 
(λ = 1.07; Online Resource 1 Fig S13). Collectively, this 

Table 1  Genes passing discovery threshold in novel loci from colon transverse PrediXcan

P For the association between CRC and the genetically determined gene expression in discovery and replication GWAS studies
R2 = the cross-validated R2 value found when training the model (predictive R2 from PredictDB.org). Replicated at α = 0.05/3 genes = 1.7 × 10− 2

Locus Gene Direction of gene expression 
for increased CRC risk

Discovery (n ca./
co. = 12,186/14,718)

Replication (n ca./
co. = 32,825/39,939)

PrediXcan gene model 
information

P P R2 Number of 
predictive 
variants

7q22.1 TRIM4 Decrease 1.7 × 10− 4 1.1 × 10− 2 0.51 62
14q22.1 PYGL Decrease 2.3 × 10− 4 8.7 × 10− 4 0.26 23
16q24.3 SLC22A31 Increase 1.3 × 10− 4 0.62 0.14 29
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exploration suggests that the observed inflation is less likely 
to be the result of modeling or analytical error and more 
likely reflects the polygenicity of CRC.

Refinement of known CRC GWAS‑risk regions

We first assembled a list of 56 previously reported inde-
pendent (r2 ≤ 0.2) CRC GWAS risk variants and defined 
a distance-based region surrounding each variant as the 
chromosomal position of the first reported (index) vari-
ant ± 1 Mb (Online Resource 1 Table S3). We then combined 
overlapping risk regions by taking the minimum and maxi-
mum chromosomal positions of all regions that overlapped, 
resulting in a total of 44 CRC risk regions harboring 1–4 
independent CRC-risk variants. In these 44 regions, there 
was an average of 20 (SD ± 17) protein-coding genes per 
region annotated by the Consensus Coding Sequence Data-
base (CCDS). The average number of protein-coding genes 
per region with imputed genetically regulated gene expres-
sion in the tissue-specific models was reduced to an average 
of 10 (SD ± 8) genes in colon transverse, and 14 (SD ± 11) 
genes in whole blood. Further, in these regions we found 
that of the total number of genes with genetically regulated 
gene expression across the two models, an average 45% of 
the genes overlapped. We found that 34/44 (77%) of CRC-
risk regions overlapped the transcription start site of a gene 
associated with CRC at a P < 0.05. Comparing the number 
of genes with a P < 0.05 to the total number of CCDS genes 
within 1 Mb of an index variant resulted in an average reduc-
tion of 82% per region (Table 2).

We further investigated the regions that did not show evi-
dence of gene association and found that GWAS reported 
risk variants in 3/10 of these regions were a coding vari-
ant or were in LD with a coding variant (3q26-MYNN and 
LRRC34, 10q24.32-WBP1L, 14q22.2-BMP4). Additionally, 
2/10 of the risk variants were originally discovered in East 
Asian populations and risk SNPs had weaker association 
in our study (10q22.3-rs704017 P = 1 × 10− 4 and 10q24.32-
rs4919687 P = 1 × 10− 2). Another 2/10 GWAS risk variant 
did not replicate in our study (4q31.1-rs60745952 P = 0.8 
and 16p13.2-rs79900961 P = 0.26). In the remaining 3/10 
regions, we found that the index variants did not reach 
genome-wide significance, reflecting power limitations in 
our discovery dataset (4q32.2-rs35509282 P = 6 × 10− 3, 
16q24.1-rs16941835 P = 4 × 10− 3, and 20p12.3-rs961253 
P = 4 × 10− 5).

Among the 34 regions containing associated genes, we 
found that the most significant gene association in the Pre-
diXcan analysis was often the strongest candidate based on 
either known CRC etiology and gene function or results 
from previous laboratory follow-up (e.g. COLCA2, LAMC1, 
POLD3, SMAD7, TGFB1). In addition to confirming sus-
pected genes, new candidates were also identified. For 

example, CXCR1 (P = 8 × 10− 5) and CXCR2 (P = 9 × 10− 5) 
were among the strongest associations. Notably, these genes 
are biologically relevant targets given that they encode 
cytokine receptors known to be implicated in a variety of 
cancers.

Discussion

In this study, we employed the PrediXcan in 12,186 cases 
and 14,718 controls. Genetic variant predictors of gene 
expression from both colon transverse and whole blood tran-
scriptomes were used to test the association of CRC risk 
with imputed gene expression. We replicated novel associa-
tions of TRIM4 and PYGL in a large independent study of 
over 70,000 participants. In addition, we identified strong 
gene targets in several known GWAS loci, including genes 
that were previously not reported as putative candidates.

The two novel gene associations discovered in colon 
transverse models implicate genes involved with hypoxia-
induced metabolic reprogramming, which is a hallmark 
of tumorigenesis in solid tumors. TRIM4 is a member of 
a superfamily of ubiquitin E3 ligases comprised of over 
70 genes notably defined by a highly conserved N-termi-
nal RING finger domain. This family of proteins has been 
implicated in a number of oncogenic or tumor suppressor 
activities that involve pathways related to CRC (Myc, Ras, 
etc.) (Sato et al. 2012; Chen et al. 2012; Zaman et al. 2013; 
Tocchini et al. 2014; Zhou et al. 2014; Zhan et al. 2015), and 
recently have been implicated in inflammatory and immune 
related activities (Eames et al. 2012; Versteeg et al. 2014). 
Somatic alterations in other TRIM genes have been associ-
ated with a large number of cancers including colon (Glebov 
et al. 2006; Noguchi et al. 2011; Hatakeyama 2011). While 
TRIM4 has not previously been implicated in cancer risk, 
the strong homology across gene members of this family and 
their implications in cancer and immunity make this gene an 
interesting candidate. Moreover, a recent study suggests that 
expression of TRIM4 plays a role in sensitizing cells to oxi-
dative stress-induced death and regulation of reactive oxygen 
species (ROS) levels  (H2O2) through ubiquitination of the 
redox regulator peroxide reductase (Tomar et al. 2015). Reg-
ulation of ROS levels and the cellular antioxidant system has 
previously been implicated in the pathophysiology of many 
diseases including inflammation and tumorigenesis (López-
Lázaro 2007; Holmdahl et al. 2013). ROS are associated 
with cell cycle, proliferation, differentiation and migration 
and are elevated in colon as well as other cancers (Vaquero 
et al. 2004; Kumar et al. 2008; Afanas’ev 2011; Lin et al. 
2017). Notably, many of the established environmental risk 
factors for colon cancer implicate oxidative stress pathways, 
including high alcohol consumption, smoking, increased 
consumption of red and processed meats (Stevens et al. 
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1988; Bird et al. 1996), or decreased consumption of fruits 
and vegetables (La Vecchia et al. 2013). In future laboratory 
analysis, it would be interesting to investigate whether the 
association of increased TRIM4 expression with decreased 
CRC risk is mechanistically acting through the regulation of 
ROS and cell growth.

Under the hypoxic conditions of the tumor microenvi-
ronment, constant reprogramming of glycogen metabolism 
is essential for providing the energy requirements neces-
sary for cell growth and proliferation. PYGL (the second 
novel finding) encodes the key enzyme involved in glyco-
gen degradation, releases glucose-1-phosphate so that it can 
enter the pentose phosphate pathway, which is important 
for generating NADPH, nucleotides, amino acids, and lipids 
required for continued cell proliferation (Favaro et al. 2012). 
It has previously been shown that depletion of PYGL leads to 
oxidative stress (increased ROS levels), and subsequent P53-
induced growth arrest in cancer cells (Favaro et al. 2012). 
Of note, small molecule inhibitors of PYGL are currently 
under investigation for the treatment of diabetes (Praly and 
Vidal 2010). However, while decreased expression of PYGL 
in the tumor may result in tumor senescence, our results 
suggest that decreased PYGL expression is associated with 
increased risk of CRC. Like the dynamic role of expression 
for genes involved in the TGF-beta pathway, these conflict-
ing observations between cancer risk and effects of early 
versus late induction of PYGL on cancer survival are likely 
reflecting the importance of context and fluctuating nutrient 
and oxygen availability within the tumor microenvironment.

Importantly, we found that the PrediXcan analysis iden-
tified new candidate genes in known GWAS loci that had 
previously gone undetected. For instance, in the recently 
identified 2q35 locus (Orlando et al. 2016), the authors origi-
nally reported the two closest genes, PNKD and TMBIM1, 
as potential targets for the putative regulatory locus marked 
by the index variant, rs992157. The authors reported eQTL 
evidence showing that rs992157 was associated with expres-
sion of nearby genes PNKD and TMBIM1 in lymphoblas-
toid cells, but not colorectal adenocarcinoma cells. In our 
PrediXcan analysis, expression of two other genes in this 
region, CXCR1 and CXCR2, were among the most strongly 
associated genes in the entire analysis, while the associations 
for PNKD (P = 6 × 10− 3) and TMBIM1 (P = 0.01) showed 
weaker associations. Our study added independent evidence 
for an association of the locus with CRC given that the index 
variant was only borderline significantly associated in previ-
ous analysis and identify two promising targets, CXCR1 and 
CXCR2. These genes are of note due to their chemotherapeu-
tic properties. Specifically, the CXCR inhibitor, Reparixin, is 
currently under investigation for progression free survival of 
metastatic triple negative breast cancer in a stage 2 clinical 
trial (NCT02370238). Interestingly, expression of CXCR1 
and CXCR2 has been shown to be elevated in colon tumor 

epithelium relative to normal adjacent tissue (P < 0.001). 
While there is still much to be learned, it is possible that this 
drug could also be useful for the treatment of CRC (Dabk-
eviciene et al. 2015).

This study had many strengths, most notably the use of 
reference transcriptome data to perform gene-level associa-
tion testing in several large GWAS studies to both uncover 
novel associations and identify likely functional gene targets 
in known loci. By integrating reference transcriptome data, 
this study focused on genes that are expressed in CRC-rele-
vant tissues. Furthermore, this method provided biologically 
relevant sets to aggregate variants, thereby improving statis-
tical power by reducing the burden of multiple comparisons. 
In addition, our study was quite large, being comprised of 
nearly 100,000 participants across the discovery and replica-
tion datasets.

Our study had several limitations. For many genes, the 
predictive R2 for genetic variant models was relatively low, 
indicating that a small proportion of the variance in gene 
expression was explained by these models. In a recent pub-
lication, Su et al. (2018) demonstrated through extensive 
simulations that while there is an attenuation of true signal 
as a results of this, the diminishment in power was less than 
anticipated and more importantly this does not increase type 
I error. Predictive performance values were relatively strong 
in the models used for PYGL (R2 = 0.26) TRIM4. (R2 = 0.51) 
corresponding to 51% and 71% correlation between pre-
dicted and observed expression, respectively. In general, 
larger sample sizes for the reference panel will be needed 
to achieve better prediction models, particularly for rarer 
variants. While PYGL and TRIM4 were discovered using the 
colon tissue model, the whole blood model also showed evi-
dence of association. This finding was not surprising in light 
of the recent GTEx paper demonstrating that many GWAS 
loci implicate shared eQTLs (GTEx Consortium et al. 2017). 
It should also be noted that variant predictors could impli-
cate enhancers influencing the expression of multiple genes 
and because this study only evaluates genetically influenced 
expression levels, there is uncertainty that the associated 
gene is the causally related gene. As such, laboratory follow-
up remains a critical extension of these findings; however, 
this laborious work can now be more targeted based on 
results from this analysis.

The loci identified using GWAS are most often located in 
non-coding regions and provide little biological insight. In 
contrast, the PrediXcan method directly tests putative target 
genes providing strong hypotheses for subsequent laboratory 
follow-up. The CXCR1 and CXCR2 findings are of inter-
est given their therapeutic potential. As such, these findings 
provide preliminary support for new molecular targets that 
could potentially repurpose a putative cancer therapeutic 
agent and highlight the utility of integrating functional data 
for discovery of, and biological insight into risk loci.
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Future analyses would be improved by increasing the 
number of transcriptomes. Similarly, larger GWAS sample 
sizes, or imputation of other molecular phenotypes (ChIP-
seq, DNase-Seq, etc.) as data become available could be 
fruitful in the identification of important enhancer(s) or 
other regulatory elements that could influence the expres-
sion of one or more genes.

In conclusion, we identified two novel loci through the 
association of genetically predicted gene expression for 
TRIM4 and PYGL with CRC risk and identified strong target 
genes in known loci. The CXCR1 and CXCR2 findings high-
light the advantage of using gene-based methods to identify 
stronger candidate genes and potentially expedite clinically 
relevant discovery. Further functional studies are required to 
confirm our findings and understand their biologic implica-
tions. This, in turn, could provide further insight into CRC 
etiology and potentially new therapeutic targets.

Materials and methods

Description of study cohorts

The discovery phase was comprised of 26,904 participants 
(12,186 CRC cases and 14,718 controls) of European ances-
tral heritage across 16 studies (described in methods and 
materials of Online Resource 1). Details of genotyping, QC 
and single-variant GWAS have been previously reported 
(Peters et al. 2013; Schumacher et al. 2015). The replication 
phase included a total of 32,825 cases and 39,933 controls. 
In addition to previously published CRC GWAS studies 
from CORECT (Schumacher et al. 2015) we included UK 
Biobank (application number 8614) and new CRC GWAS 
from additional GWAS. A nested case–control dataset from 
the UK Biobank resource was constructed defining cases 
as subjects with primary invasive CRC diagnosed, or who 
died from CRC according to ICD9 (1530–1534, 1536–1541) 
or ICD10 (C180, C182–C189, C19, C20) codes. Control 
selection was done in a time-forward manner, selecting one 
control for each case, first from the risk set at the time of the 
case’s event, and then multiple passes were made to match 
second, third and fourth controls. For prevalent cases, each 
case was matched with four controls that exactly matched 
the following matching criteria: year at enrollment, race/
ethnicity, and sex. In total, 5356 cases and 21,407 matched 
controls were included from UK Biobank in the replication 
analysis. For the site-stratified analysis, “proximal” colon 
cancer was defined as hepatic flexure, transverse colon, 
cecum and ascending colon (ICD9 1530,1531,1534,1536), 
“distal” colon cancer was defined as descending colon, sig-
moid colon, and splenic flexure (ICD9 1532,1533,1537) and 
“rectal” was defined as rectosigmoid junction, and rectum 
(ICD9 1540,1541).

Studies, sample selection and matching are described in 
Online Resource 1, which provides details on sample num-
bers, and demographic characteristics of study participants. 
All participants provided written informed consent, and each 
study was approved by the relevant research ethics commit-
tee or institutional review board.

Whole‑genome sequencing reference genotype 
imputation panel

We performed low-pass whole-genome sequencing of 2192 
samples (details in Online Resource 1) at the University 
of Washington Sequencing Center (Seattle, WA, USA). A 
detailed description is provided in the Online Resource 1. 
In brief, after sample QC and removal of samples with esti-
mated DNA contamination > 3% (16), duplicated samples 
(5) or related individuals (1), sex discrepancies (0), and 
samples with low concordance with genome-wide variant 
array data (11), there were a total of 1439 CRC cases and 
720 controls of European ancestry available for subsequent 
imputation. These data were used as a reference imputation 
panel for the discovery and replication GWAS datasets.

GWAS genotype data and quality control

In brief, genotyped variants were excluded based on call 
rate (< 98%), lack of Hardy–Weinberg Equilibrium in con-
trols (HWE, P < 1 × 10− 4), and low minor allele frequency 
(MAF < 0.05). We imputed the autosomal variants of all 
studies to an internal imputation reference panel derived 
from whole genome sequencing (described above). We 
employed a two-stage imputation strategy (Howie et al. 
2012) where entire chromosomes were first pre-phased using 
SHAPEIT2 (Delaneau et al. 2013), followed by imputation 
using minimac3 (Das et al. 2016). Only variants with an 
imputation quality R2 > 0.3 were included for subsequent 
analyses.

Imputation of genetically regulated gene 
expression in study cohort

Jointly measured genome variant data and transcriptome 
data sets were used by Gamazon et al. to develop addi-
tive models of gene expression levels. The weights for the 
estimation were downloaded from the publicly available 
database (http://hakyi mlab.org/predi ctdb/). We used these 
models to estimate genetically regulated expression of genes 
in colon transverse, and whole blood. These estimates repre-
sent multi-variant prediction of tissue-specific gene expres-
sion levels.

In-depth details of the reference cohort, datasets, and 
model building have previously been described (Gamazon 
et al. 2015). To summarize, jointly measured genome-wide 

http://hakyimlab.org/predictdb/
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genotype data and RNA-seq data were obtained from two 
different projects: (1) the DGN cohort (Battle et al. 2014) 
(whole blood, n = 922) and (2) GTEx (GTEx Consortium 
2015) (transverse colon, n = 169), predominantly of European 
ancestry. Gamazon et al. used approximately 650,000 variants 
with MAF > 0.05 to impute non-genotyped dosages using the 
1000G Phase 1 v3 reference panel variants with MAF > 0.05 
and imputation R2 > 0.8 was retained for subsequent model 
building. In each tissue, Gamazon et al. normalized gene 
expression by adjusting for sex, the top 3 principal components 
(derived from genotype data) and the top 15 PEER factors (to 
quantify hidden experimental confounders). These genomic 
and transcriptomic data sets were used to train additive mod-
els of gene expression levels with elastic net regularization 
(Gamazon et al. 2015). The model can be written as

where Yg is the expression trait of gene g, wk,g is the effect 
size of genetic marker k for g, Xk is the number of refer-
ence variant alleles of marker k and ε is the contribution of 
other factors influencing gene expression. The effect sizes 
(wk,g) in Eq. (1) were estimated using the elastic net penal-
ized approach. The summation in Eq. 1 is referred to as the 
genetically determined component of gene expression. The 
variant models (weights, w_k,g) were downloaded from 
the publicly available database (http://hakyi mlab.org/predi 
ctdb/).

The heritability of gene expression was used to estimate 
how well the variant models predict gene expression levels. 
The narrow-sense heritability for each gene was calculated 
by Gamazon et al. (2015), using a variance-component model 
with a genetic relationship matrix (GRM) estimated from 
genotype data, as implemented in GCTA (Yang et al. 2011). 
The proportion of the variance in gene expression explained by 
these local variants was calculated using a mixed-effects model 
(Torres et al. 2014; Gamazon et al. 2015). This heritability was 
highly correlated with the predictive R2 (The cross-validated 
R2 value found when training the model). Only genes with 
R2 ≥ 0.01(≥ 10% correlation between predicted and observed 
expression) were tested for association with CRC. Further-
more, this analysis focused on the component of heritability 
driven by variants in the vicinity (1 Mb) of each gene (cis-
variants) because the component based on distal variants could 
not be estimated with enough accuracy to make meaningful 
inferences.

Genotypes were treated as continuous variables (dosages). 
Using the variant weights provided by Gamazon et al. we esti-
mated the genetically regulated gene expression (GReX) of 
each gene g

(1)Yg =
∑

k

wk,gXk + �,

(2)GReX =
∑

k

wk,gxk,

where wk is the single-variant coefficient derived by regress-
ing the gene expression trait Y on variant Xk using the refer-
ence transcriptome data. To address linkage disequilibrium 
among variant predictors, Gamazon et al. (2015) used the 
variable selection method to select a sparser set of (less 
correlated) of predictors. Specifically, variant weights (wk) 
were derived using elastic net with the R package glmnet 
with α = 0.5. These weights are available from http://hakyi 
mlab.org/predi ctdb/. Using Eq. 2, and the reference variant 
predictor weights (wk,g), the (unobserved) genetically deter-
mined expression of each gene g (GReX) was estimated in 
our GWAS sample. For both transcriptome models, sepa-
rate analyses were performed for genetically based expres-
sion of genes (up to 2 tests per gene). Genes with predictive 
R2 > 0.01 were tested for association with CRC in our cohort 
(colon transverse n = 4850 genes, and whole blood n = 8277 
genes).

Gene level tests of CRC association with imputed 
genetically regulated gene expression

Discovery phase

Statistical analyses of all data were conducted centrally at 
the GECCO coordinating center on individual-level data. 
Multivariate logistic regression models were adjusted for 
age, sex (when appropriate), center (when appropriate), and 
genotyping batch (ASTERISK) and the first four principal 
components to account for potential population substructure. 
Imputed genetically regulated gene expression (GREx), was 
treated as a continuous variable. All studies were analyzed 
together in a pooled dataset using logistic regression models 
to obtain odds ratios (ORs) and 95% confidence intervals 
(CIs). Quantile–quantile (Q–Q) plots were assessed to deter-
mine whether the distribution of the P was consistent with 
the null distribution (except for the extreme tail). All analy-
ses were conducted using the R software (Version 3.0.1). 
Novelty of a gene finding was determined by taking all 
variant predictors of the gene and determining if they were 
in linkage disequilibrium (LD ≥ 0.2 in Phase 3 Thousand 
Genomes Europeans) with a previously reported GWAS 
index variant.

We identified suggestive findings in the discovery stage to 
be replicated in a second independent dataset. In the discov-
ery stage we employed a false-discovery rate (FDR) thresh-
old of 0.2 separately for colon transverse and whole blood 
models. FDR for each gene was calculated using the R statis-
tical package p.adjust, which uses the method of Benjamini 

(3)

logit(pCRC) = �0 + �1GReX + �2age + �2 sex + �3 center

+ �4 batch + PC1 + PC2 + PC3 + PC4.

http://hakyimlab.org/predictdb/
http://hakyimlab.org/predictdb/
http://hakyimlab.org/predictdb/
http://hakyimlab.org/predictdb/
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and Hochberg to calculate the expected proportion of false 
discoveries amongst the rejected hypotheses (Hochberg and 
Benjamini 1990). Genes meeting this threshold were carried 
forward for replication.

Replication phase

To replicate novel PrediXcan findings (n = 3 genes from 
colon transverse models) that had a FDR ≤ 0.2, we used the 
same GTEx colon transverse, elastic net prediction models 
(as we had done in the discovery GECCO-CCFR data) to 
impute genetically regulated gene expression in replica-
tion samples from (1) CORECT (pooled across consortium 
studies), (2) UK Biobank and (3) a pooled dataset of 5 
independent GWAS datasets. Multivariate logistic regres-
sion was used to test the association of imputed genetically 
regulated gene expression with colorectal cancer risk in 
these three datasets and then meta-analyzed effects using 
inverse variance weighting of Z scores (details provided in 
Online Resource 1). A two-sided P value less than 0.05/
(number of genes to be replicated) was considered statisti-
cally significant.

Definition of CRC risk regions and refinement 
of GWAS loci

The 56 previously reported CRC risk variants used in this 
analysis had an LD r2 ≤ 0.2 with other risk variants in our 
known list, or were otherwise previously reported to main-
tain statistical significance in regression models condition-
ing on other nearby risk variants (referred to hereon as 
‘independent’ risk variants). For each of the 56 independent 
risk variants defined in Table S3, we further defined ‘risk 
regions’ as 1 megabase (Mb) upstream and 1 Mb down-
stream of each risk variant (2 Mb regions surrounding each 
risk variant). Overlapping 2 Mb risk regions were then 
combined into a single new risk region defined as the mini-
mum and maximum chromosomal coordinates from one or 
more overlapping risk regions (the union of the overlapping 
regions). This resulted in a total of 44 regions harboring one 
or more risk variants (maximum of four independent risk 
variants). A list of transcription start sites (TSS) for genes 
that showed nominal association (P ≤ 0.05) between geneti-
cally regulated gene expression and CRC risk in colon trans-
verse and whole blood models was then intersected with the 
list of 44 risk regions to identify a list a putative target genes 
regulated by non-coding GWAS risk variants.

Bioinformatic follow‑up

Bioinformatic follow-up was performed for the TRIM4 and 
PYGL loci using the UCSC Genome Browser and pub-
licly available functional data for CRC relevant tissues 

and cell-types from Roadmap, ENCODE, as well as previ-
ously published epigenomes (Akhtar-Zaidi et al. 2012). The 
TRIM4 and PYGL loci were defined as the genomic region 
containing all variants in LD (r2 ≥ 0.2 from Phase 3 Thou-
sand Genomes Project) with the variant predictor having the 
strongest marginal CRC association (TRIM4-rs2527886 and 
PYGL-rs12589665). We then aligned the locus with refseq 
protein coding genes, epigenetic signals in normal crypts 
and CRC cell lines to identify recurrently gained and lost 
variant enhancer loci (VEL), and ChIP-seq transcription fac-
tor binding sites.

URLs

PrediXcan software, https ://githu b.com/hakyi mlab/Predi 
Xcan; University of Michigan Imputation-Server, https ://
imput ation serve r.sph.umich .edu/start .html; GTEx Portal, 
http://www.gtexp ortal .org/; PredictDB, http://predi ctdb.org/.
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