UCLA
UCLA Previously Published Works

Title

Genetic variants associated with fasting glucose and insulin concentrations in an
ethnically diverse population: results from the Population Architecture using Genomics
and Epidemiology (PAGE) study

Permalink
https://escholarship.org/uc/item/3bm037rg

Journal
BMC Medical Genetics, 14(1)

ISSN
1471-2350

Authors

Fesinmeyer, Megan D
Meigs, James B
North, Kari E

Publication Date
2013-09-25

DOI
http://dx.doi.org/10.1186/1471-2350-14-98

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3bm037rs
https://escholarship.org/uc/item/3bm037rs#author
https://escholarship.org
http://www.cdlib.org/

Fesinmeyer et al. BMC Medical Genetics 2013, 14:98

http://www.biomedcentral.com/1471-2350/14/98
P BMC

Medical Genetics

RESEARCH ARTICLE Open Access

Genetic variants associated with fasting glucose
and insulin concentrations in an ethnically
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Abstract

Background: Multiple genome-wide association studies (GWAS) within European populations have implicated
common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been
conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2
diabetes in the U.S.

Methods: As part of the ‘Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we
investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic
regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European
Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (Al), and 811 Asians. We
estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by
meta-analysis to combine results across PAGE sites.

Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 X 107,
versus 3/9 in AA (p=0.03 to 6 X 10™), 3/4 SNPs in Hispanics, 2/4 SNPs in Al, and 1/2 SNPs in Asians. For insulin we
observed a significant association with rs780094/GCKR in EA, Hispanics and Al only.

Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of
these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient
power, or to unique patterns of linkage disequilibrium.
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Background

Impaired glucose homeostasis is associated with in-
creased risk of cardiovascular disease and type 2
diabetes [1,2]. While plasma glucose and insulin con-
centrations normally fluctuate in response to dietary
intake and physical activity levels, several genome-
wide association studies (GWAS) have demonstrated
that common genetic variants contribute to glucose
homeostasis. Most studies of this complex trait have
focused on primarily ancestrally European populations,
despite the high prevalence of insulin resistance and
diabetes in many minority groups.

Investigation of the clinical and public health impli-
cations of these genetic discoveries requires not
only confirmation in EA populations, but importantly
generalization of these associations to other groups
such as African Americans, Hispanics, American In-
dians, and Asians; groups that were not adequately
represented in most GWAS. A prior study found that a
genetic risk score composed of 16 SNPs previously as-
sociated with fasting glucose in GWAS in European
populations was associated with fasting glucose in
non-Hispanic blacks and Mexican Americans, indicat-
ing that genetic factors associated with fasting glucose
may be shared across some racial/ethnic groups [3].
The purpose of this study is to examine 36,579 partici-
pants from diverse racial and ethnic backgrounds as
part of the NHGRI-supported ‘Population Architecture
using Genomics and Epidemiology (PAGE)’ Consortium to
investigate associations between SNPs previously-identified
in genome-wide scans for loci associated with glucose and
insulin concentrations.

Methods

Study populations

PAGE involves several studies, described briefly below and
in greater detail on the PAGE website (https://www.
pagestudy.org). All studies were approved by Institutional
Review Boards at their respective sites, and all participants
provided informed consent.

Causal Variants across the Life Course (CALiCo) is a
consortium of six demographically diverse population
based studies and a central laboratory, and includes ap-
proximately 58,000 men and women ranging in age from
adolescence to older adulthood. Three CALiCo studies
participated in the present analysis: Atherosclerosis Risk
in Communities Study (ARIC) (N = 13,383) [4], Cardio-
vascular Health Study (CHS) (N = 4,509) [5], and Strong
Heart Cohort Study (SHCS) (N = 1,714) [6]. In addition
to the studies involved in the CALiCo consortium,
PAGE includes three other large studies. The Multieth-
nic Cohort (MEC) is a population-based prospective co-
hort study of over 215,000 men and women in Hawaii
and California aged 45-75 at baseline (1993-1996) and
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primarily of five ancestries [7]. Participants eligible for
the present study were controls in nested case—control
studies of breast, colorectal, or prostate cancer or for
biomarker studies, and who had glucose and/or insulin
measurements (N=942). This analysis also included
data from the Epidemiologic Architecture for Genes
Linked to Environment (EAGLE) study. EAGLE accesses
the genetic component of three National Health and
Nutrition Examination Surveys (NHANES): NHANES
III (phase 2 collected between 1991 and 1994), NHANES
1999-2000, and NHANES 2001-2002 [8-10]. Overall,
7,719 NHANES participants aged 18 and older were in-
cluded in these analyses. Finally, the Women’s Health
Initiative (WHI) is a multifaceted clinical trial and co-
hort study investigating post-menopausal women’s
health in the U.S [11]. Out of the 161,808 women en-
rolled in WHI, 8,312 were selected and included in the
present study. Except for the Women’s Health Initiative,
all studies recruited men and women. All studies col-
lected self-identified racial/ethnic group via question-
naire. In the current analysis, we included “East Asians”
defined as MEC participants who identified themselves
as of sole or mixed Japanese descent, and WHI partici-
pants of Japanese, Chinese, Filipino, Vietnamese, and/or
Korean ancestry. Fasting glucose and insulin concentra-
tions were measured using standard assays, at laborator-
ies specific to each PAGE site.

At all PAGE sites, we excluded underweight (BMI<18.5
kg/m?) and extremely overweight (BMI>60 kg/m?) indi-
viduals with the assumption that these extremes could
be attributable to data coding errors, an underlying ill-
ness or possibly to a familial syndrome and hence, a
rare mutation. We excluded individuals self-reporting
that they have ever been diagnosed with diabetes, or
who report taking diabetes medications. In addition, to
mirror typical exclusion criteria of other studies of glu-
cose homeostasis, we also excluded individuals with
fasting glucose concentrations consistent with diabetes
(i.e., 2126 mg/dl or 27.0 mmol/L ), regardless of self-
reported diabetes status.

After applying the above exclusion criteria, a total of
36,579 participants were selected from the PAGE con-
sortium for analysis.

SNP selection and genotyping

Ten SNPs in 8 genetic regions were selected for geno-
typing based on prior GWAS findings of positive associ-
ation with glucose or insulin concentrations, and
exceeding a genome-wide significance of p <5 x 10 in
studies published through 2010 [12-14]. Nine SNPs were
previously associated with glucose, and 2 were associated
with insulin, with 1 of these SNPs associated with both
quantitative traits (rs780094/GCKR). In the glucose ana-
lysis, we included an additional GWAS finding for type
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2 diabetes (rs7903146/TCF7L2) that had been subse-
quently associated with fasting glucose concentrations
[15]. Each PAGE site prioritized which SNPs to genotype
based on investigator interests, genotyping platforms,
and resources, resulting in heterogeneity of available
glucose or insulin SNPs across racial/ethnic groups. Ten
SNPs were genotyped in European Americans and African
Americans, 4 were genotyped in Hispanics and in
American Indians, and 2 were genotyped in East Asians.

DNA extraction and genotyping methods followed
standard protocols. Each PAGE site employed different
genotyping platforms, with similar quality control cri-
teria. CALiCo sites used TagMan, the Illumina 370CNV
BeadChip, the Affymetrix Genome-Wide Human SNP
Array 6.0, and the Ilumina HumanCVD BeadChip. A
portion of CHS genotype data was obtained from a
previous GWAS. EAGLE used Sequenom’s iPLEX® Gold
coupled with MassARRAY MALDI-TOF MS detection and
[lumina’s BeadXpress with a custom GoldenGate genotyp-
ing assay. MEC used Applied Biosystems OpenArray
and TagMan. WHI used Illumina BeadXpress with the
Veracode GoldenGate genotyping assay. All sites used
internal and blinded external controls, and excluded
genotypes deviating from Hardy-Weinberg expectations
(p-value < 0.001) or with low concordance (typically,
<95% - 99%). In addition to site-specific quality control, all
PAGE study sites genotyped 360 DNA samples from the
International HapMap Project and submitted these data to
the PAGE Coordinating Center for concordance checks
[16]. Additional details on data collection, specimen pro-
cessing, and genotyping are found in the Additional file 1:
Supplementary Methods.

Statistical analysis

In order to maximize comparability with prior studies of
glucose homeostasis, we converted insulin and glucose
concentrations into units commonly reported in the lit-
erature. Thus, we investigated continuous fasting glucose
(mmol/L) and natural log transformed fasting insulin
(pmol/L). The association between each SNP and its re-
lated quantitative trait was estimated using linear regres-
sion with robust standard errors (SEs) [17]. SNP
genotype was coded assuming an additive genetic model
(ie., 0, 1, or 2 copies of the coded allele). For ease in
interpreting the results, we coded the allele that was as-
sociated with an increased insulin or glucose concentra-
tion in the prior GWAS. All analyses were stratified by
self-identified racial/ethnic group, and adjusted for co-
variates known to be associated with insulin and/or glu-
cose concentrations: smoking (current vs. former/never;
smoking increases insulin resistance) [18], continuous
BMI (obesity is associated with insulin resistance) [19],
sex (insulin metabolism differs by sex) [20], and continu-
ous age (insulin metabolism varies by age) [21]. Analyses
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were performed for each of the 6 participating PAGE
studies separately and study-specific results (effect sizes
and robust SEs) were combined with fixed-effects meta-
analysis using R.

Based on our hypothesis that GWAS-identified glu-
cose and insulin SNPs are associated with glucose and/
or insulin concentrations across all race/ethnicities, we
did not adjust for multiple testing. We labeled meta-
analysis results as “replicating” (for EA) or “generalizing”
(for other racial/ethnic groups) if the beta was in the
same direction as the original GWAS, and was statisti-
cally significant (ie, p < 0.05). All aggregate results will
be available via dbGaP (http://www.ncbi.nlm.nih.gov/gap)
at a future date.

Approximately 13% of the overall WHI study cohort
was selected to contribute to PAGE. This selection was
non-random, and was enriched for subjects with certain
incident health conditions (e.g., cardiovascular disease
and stroke), non-European American race/ethnicity, and
BMI>40. Therefore, analyses of WHI data incorporated
inverse probability weighting to account for this sam-
pling strategy.

We only reported results if the meta-analysis sample
size was > 400. For each racial/ethnic group, we esti-
mated the statistical power to detect the GWAS-
reported effect sizes for each SNP using Quanto (hydra.
usc.edu/gxe/), assuming the same effect size as reported
in the prior GWAS, an additive genetic model and a
two-sided test of association at p = 0.05. Power calcula-
tions were based on allele frequencies specific to each
racial/ethnic group. We evaluated I* as a measure of het-
erogeneity [22], to describe the presence or absence of
excess variation across the PAGE study sites.

Results

The distribution of insulin and glucose measurements
and demographic characteristics for participants in each
PAGE site by racial/ethnic group are detailed in Table 1.
In general, subjects were middle-aged to older adults
(mean age ranging from 41 to 73 years across studies),
with average BMI ranging from normal to obese (24 —
32 kg/m?). Coded allele frequencies, stratified by racial/
ethnic group, are presented in Table 2. Analyses involved
a total of 36,579 subjects, including 23,323 European
Americans, 7,526 African-Americans, 3,140 Hispanics,
1,779 American Indians, and 811 East Asians.

Glucose SNPs

Table 3 lists meta-analysis results for EA and AA, for 9
SNPs previously associated with glucose in GWAS. Within
European Americans all coded alleles were significantly as-
sociated with increased glucose concentrations, and thus
replicated findings of prior GWAS. In African Americans,
7 of 9 SNPs demonstrated associations in the same
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Table 1 Characteristics of PAGE participants, by race/ethnicity and PAGE site

European Americans

African Americans

Site N Female (%) Age BMI Fasting glucose Fasting insulin N Female (%) Age BMI Fasting glucose Fasting insulin,
yrs kg/m? mmol/L pmol/L yrs kg/m? mmol/L pmol/L
ARIC 10221 534 542 (5.7) 26.7 (4.6) 5.5(0.5) 60.7 (44.7) 3162 614 532 (58) 29.1 (6.0) 5.5(0.6) 79.7 (58.3)
CHS 3902 580 726 (5.6) 26.1 (43) 55(0.5) 824 (423) 607 63.1 730 (5.8) 279 (54) 55 (0.6) 779 (474)
EAGLE 3713 544 51.1 (196) 273 (5.7) 55(1.1) 64.3 (42.5) 1791 555 415 (16.2) 286 (6.6) 53(13) 75.1 (594)
MEC 238 44.2 67.8 (8.1) 252 (4.1) 4.7 (0.6) 435 (394) 157 22.3 67.8 (7.1) 273 (4.2) 4.7 (09) 43.0 (309
WHI 5249 100.0 67.0 (6.9) 280 (6.3) 52 (05) 529 (41.2) 1809 100.0 62.0 (7.1) 316 (7.2) 5.1 (0.6) 72.9 (49.0)
Total 23323 7526
Hispanics American Indians
Site N Female (%) Age BMI Fasting glucose Fasting insulin N Female (%) Age BMI Fasting glucose Fasting insulin
yrs kg/m? mmol/L pmol/L yrs kg/m? mmol/L pmol/L
EAGLE 2215 50.7 416 (17.0) 28.1 (54) 55(1.3) 78.1 (55.5)
MEC 133 338 67.5 (6.9 26.1 (3.3) 4.7 (0.6) 349 (31.5)
SHCS 1714 56.5 55.8 (8.3) 294 (6.0) 5.6 (0.6) 87.5 (704)
WHI 792 100.0 60.0 (6.7) 282 (54) 5.1 (0.5) 63.1 (43.5) 65 100.0 62.0 (7.8) 288 (54) 5.1 (0.6) 64.2 (51.0)
Total 3140 1779
East Asians
Site N Female (%) Age BMI Fasting glucose Fasting insulin
yrs kg/m? mmol/L pmol/L
MEC 414 51.6 68.7 (7.9) 243 (34) 4.8 (0.6) 414 (239
WHI 397 100.0 65.0 (74) 25.1 (45) 53 (0.5) 444 (25.8)
Total 811

Means and standard deviations are shown for continuous characteristics. ARIC: Atherosclerosis Risk in Communities Study; CHS: Cardiovascular Health Study; EAGLE: Epidemiologic Architecture of Genes Linked to
Environment; MEC: Multiethnic Cohort; WHI: Women's Health Initiative; SHCS: Strong Heart Cohort Study; BMI: body mass index; Note: minimum BMI was 18.5 for all sites and ancestry groups.

86/t71/0SET-1 L1 /U0 [RAIUSIPIWIOIG MMM//:d1y
86:L ‘ELOT $213U3D [DIIPa NG [ 18 19A3WUISD

8 J0 7 abed



Fesinmeyer et al. BMC Medical Genetics 2013, 14:98
http://www.biomedcentral.com/1471-2350/14/98

Page 5 of 8

Table 2 Coded allele frequencies for glucose and insulin SNPs, stratified by racial/ethnic group

SNP SNP Gene GWAS CA NCA European African Hispanics American East
location phenotype Americans Americans Indians Asians
rs11708067 intron ADCY5 glucose a o} 0.78 0.84 NG NG NG
rs560887 intron G6PC2 glucose C t 0.71 0.93 0.86 0.92 NG
rs4607517 5" region GCK glucose a g 0.18 0.07 NG 0.25 NG
rs780094 intron GCKR glucose and C t 0.59 0.81 067 0.28 045
insulin
1s7944584 intron MADD glucose a t 0.73 0.95 NG NG NG
rs10830963 intron MTNR1B glucose g C 0.28 0.07 0.23 NG NG
rs11558471 3"UTR SLC30A8 glucose a g 0.68 091 NG NG NG
rs4506565 intron TCF7L2 glucose t a 0.32 045 NG NG NG
rs7903146 intron TCF7L2 glucose t C 0.29 0.28 0.24 0.12 0.05
1s35767 5" region IGF1 insulin g a 0.84 0.55 NG NG NG

CA: coded allele; NCA: non-coded allele; NG: not genotyped; UTR: untranslated region.

direction as the original GWAS report, and 3 were statisti-
cally significant (rs10830963/MTNRIB, p = 3.7 x 107%
rs4506565/TCF7L2, p = 0.03; and rs7903146/TCF7L2, p =
5.9 x 10). In Hispanics, 3 out of 4 genotyped SNPs were
associated with significantly increased glucose concentra-
tions (rs560887/G6PC2, p = 5.5 x 107 rs780094/GCKR,
p = 2.7 x 107; and rs10830963/MTNRIB, p = 3.3 x 107).
Two out of four SNPs were also associated with increased
glucose concentrations in American Indians (rs4607517/
GCKR, p = 0.03; and rs780094/GCKR, p = 0.04). Only 2
SNPs were genotyped in East Asians, and 1 was associated
with increased glucose concentrations (rs780094/GCKR,
p = 0.03).

Insulin SNPs

Table 3 lists meta-analysis results for EA and AA, for 2
SNPs (rs780094/GCKR and rs35767/IGFI) associated in-
sulin in prior GWAS. The association between rs780094/
GCKR and (In) insulin replicated in EA (p-value = 1.3 x
1019, but did not generalize to AA (p = 0.12). This asso-
ciation was also significant in Hispanics (p = 0.01) and
American Indians (p = 4.8 x 10™), but not East Asians
(p = 0.39). The association between rs35767/IGFI and
insulin was not significant in EA or AA.

Evidence for heterogeneity

Overall, we observed little evidence of heterogeneity across
studies. In EA, rs7903146/TCF7L2 had a statistically signifi-
cant p-value for heterogeneity in the association with
glucose (x> = 18.79, p = 0.001), For this association, the
site-specific betas for WHI, CHS, EAGLE, ARIC, and MEC
were 0.03, 0.03, 0.02, 0.14, and 0.12 mmol/L, respectively.
In American Indians, rs560887/G6PC2 had a statistically
significant I*> p-value for heterogeneity in the association
with glucose in American Indians (x> = 7.31, p = 0.03). For
this association, the data came from 3 sites of SHCS
(Arizona, Oklahoma, and South Dakota); and the betas

were 0.42, -0.01, and 0.17 mmol/L. For each of these SNPs,
results of random effects models are presented in Table 3.

Discussion
Overall, our results demonstrate that all 9 GWAS find-
ings for glucose replicate in EA, yet fewer generalize to
other racial/ethnic groups (3/9 in AA, 3/4 in Hispanics,
and 2/4 in American Indians and 1/2 in East Asians). In
the analysis of insulin, we found that rs780094/GCKR
replicated in EA, and generalized to Hispanics and
American Indians. We observed limited evidence for
excess heterogeneity by site in the meta-analyses, with
significant heterogeneity detected for only two SNPs.
Some earlier studies have examined the generalizability
of some or all of these index SNPs for glucose and insu-
lin in populations of African ancestry, with limited suc-
cess. The Howard University Family Study [23] found
nominal significance (p<0.05) at the SLC30A8 locus, the
Multi-Ethnic Study of Atherosclerosis [24] at MTNRIB,
and the Candidate Gene Association Resource at G6PC2,
GCK, and MTNRIB [25]. The sparse generalization of glu-
cose and insulin-related GWAS findings to African Ameri-
cans could be attributable to several phenomena. First,
reduced power in AA: as illustrated in Table 3, several of
the non-significant effect sizes in AA were very similar in
magnitude to the effect sizes reported in the original
GWAS. For example, for rs780094/GCKR, the coded allele
was associated with similarly higher glucose concentrations
in the original GWAS in EA (0.029 mmol/L) [12]. However,
the coded allele frequency in PAGE EA was 0.59, versus
0.81 in AA. This difference in coded allele frequency may
have reduced our ability to detect an association in AA; the
power to detect the previously reported effect size for this
SNP was 0.99 in EA, and 0.51 in AA. Second, reduced link-
age disequilibrium in AA: lack of association, particularly
for analyses having close to adequate power (such as
rs560887/G6PC2 in AA), may be due to differences in



Table 3 Meta-analysis of selected candidate SNPs and fasting glucose and natural log insulin, by racial/ethnic group

Coded European Americans African Americans Hispanics
Phenotype SNP Allele Effect Size (95% Cl)* P-value N Power Effect Size (95% Cl)*  P-value N Power Effect Size (95% Cl)* P-value N Power
glucose 11708067 A 0.068 (0.013 - 0.123) 2.0E-02 9323 086  0.151 (-0.064 - 0.366) 1.7E-01 3080 034
(mmol/L) rs560887 C 0.072 (0.054 - 0.090) 9.0E-15 14946 0.99 0.041 (-=0.025 - 0.106) 23E-01 4857 0.70 0.100 (0.051 - 0.149) 5.5E-05 1666 0.64
rs4607517 A 0.061 (0.030 - 0.093) 1.6E-04 2916 095 0025 (-0.111 - 0.160) 72E-01 456 0.13
rs780094 C 0.050 (0.036 - 0.064) 1.2E-12 21608 0.99 0.026 (-0.014 - 0.065) 20E-01 5699 0.51 0.063 (0.029 - 0.098) 2.7E-05 1992 038
157944584 A 0.055 (0.002 - 0.108) 4.0E-02 9191 0.72 —0.177 (<0544 - 0.191) ~ 35E-01 3037 0.09
510830963 G 0.063 (0.043 - 0.083) 9.5E-10 16883 099  0.096 (0.043 - 0.149) 3.7E-04 6234 092 0076 (0040 - 0.112) 3.3E-05 2223 097
rs11558471 A 0.080 (0.033 - 0.126) 7.8E-04 10741 0.96 —0.138 (-0.386-0.111)  2.8E-01 3447 0.19
rs4506565 T 0.107 (0.059 - 0.154) 9.8E-06 10644 0.88 0.160 (0.013 - 0.306) 3.0E-02 3425 0.35
rs7903146 T 0.052 (0.014 - 0.052)** 71E-03 21710 099  0.050 (0.022 - 0.078) 59E-05 7469 054 0010 (-0.026 - 0.046) 57E-01 2611 0.28
(Injinsulin rs780094 C 0.034 (0.024 - 0.044) 1.3E-10 20945  0.14 0022 (-0.006 - 0.050) 12E-01 5648 006  0.039 (0.008 - 0.070) 1.3E-02 1975 006
(pmol/L) rs35767 G 0.018 (-0.005 - 0.040) 1.3E-01 10741 0.05 0.022 (-0.011 - 0.057) 1.8E-01 3446 0.05
Coded American Indians East Asians Original GWAS Report
Phenotype SNP Allele  Effect Size (95% CI)* P-value N Power Effect Size (95% Cl)* P-value N  Power Reference Effect Size (95% Cl)
glucose 11708067 A Dupuis et al. T 0.027 (0.021 - 0.033)
(mmol/L) rs560887 C 0.128 (-0.047 - 0.303)***  1.5E-01 1298 0.28 Bouatia-Naji et al. 0.060 (0.050 - 0.080)
rs4607517 A 0.053 (0.006 - 0.100) 2.8E-02 1282 0.63 Prokopenko et al. 0.062 (0.048 - 0.076)
rs780094 C 0.048 (0.003 - 0.093) 3.6E-02 1739 025  0.063 (0.006 - 0.121) 3.1E-02 736 0.17  Dupuis et al. 0.029 (0.023 - 0.035)
rs7944584 A Dupuis et al. T 0.021 (0.015 - 0.027)
rs10830963 G Prokopenko et al. 0.072 (0.062 - 0.082)
11558471 A Dupuis et al. T # 0.027 (0.019 - 0.035)
rs4506565 T Dupuis et al. t § 0.023 (0.015 - 0.031)
rs7903146 T —0.037 (=0.096 - 0.023) 2.3E-01 1738 0.1 —0.033 (-0.181 - 0.114)  6.6E-01 758 0.06 Dupuis et al. t 0.023 (0.015 - 0.031)
(Injinsulin rs780094 C 0.080 (0.035 - 0.125) 4.8E-04 1697 005 0026 (-0.033 - 0.085) 39E-01 689 005  Dupuis et al. 0.032 (0.024 - 0.040)
(pmol/L) rs35767 G Dupuis et al. T 0 (—0.002 - 0.022)

ClI: confidence interval; *Effect size is calculated for coded allele relative to non-coded allele; t effect size from replication cohort, as effect size was not reported for discovery cohort; # effect size reported for
1513266634, a SNP in LD with rs11558471 (r2 = 0.96); § effect size reported for rs7903146, a SNP in LD with rs4506565 (r2 = 0.92);**heterogeneity p-value = 0.001, X2 = 18.79 in a fixed effects model, so results from a
random effects model are shown; ***heterogeneity p-value = 0.03, x2 = 7.31 in a fixed effects model, so results from a random effects model are shown.
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linkage disequilibrium patterns between EA and AA. SNPs
discovered in GWAS of European populations are largely
tagSNPs for causal variants, thus associations between
tagSNPs and phenotypes only persist as long as the SNP
tagging pattern is upheld. African populations are known
to have, on average, much less linkage disequilibrium across
the genome than European populations, thus the relation-
ship between European tagSNPs and causal variants may
not exist in African populations.

Similar to the PAGE consortium, previous studies have
reported nominally significant associations for fasting
glucose at the MTNRIB, G6PC2, and GCK loci in
Hispanic Americans [24,26], and at GCKR in East Asians
[27]. Larger follow-up studies are needed to determine
whether other genetic regions identified in European
GWAS are important in non-Europeans, and to expand
research into other populations, such as American
Indians, that have not been as thoroughly investigated at
these genes.

The PAGE consortium offers a unique opportunity to
investigate associations between candidate SNPs and
glucose and insulin concentrations in ancestrally diverse
cohorts with well-characterized phenotypes. The sub-
stantial strength of PAGE is the relatively large samples
of ancestrally diverse participants, in which very little is
known about the genetic etiology of insulin and glucose
concentrations. However, this analysis had several limita-
tions. First, smaller sample sizes in Hispanics (N=3140),
American Indian (N=1779), and East Asians (N = 811)
limited our ability to detect statistically significant asso-
ciations in these groups. As shown in Table 2, coded
allele frequencies varied considerably between racial/eth-
nic groups, which likely resulted in reduced power in
several analyses. Further, not all SNPs were genotyped in
all race/ethnicity groups, which limited our ability to
assess generalization of GWAS findings to Hispanics,
American Indians, and East Asians. In addition, our
genotyping approach was limited to SNPs previously
associated with glucose and/or insulin in GWAS conducted
prior to 2010. These GWAS were all conducted in
European-descent populations, and thus the most promis-
ing SNPs from those studies may not be relevant to other
populations, due to between-population differences in link-
age disequilibrium, particularly in AA.

Conclusion

In conclusion, in this large and diverse study we were
able to replicate 9 GWAS-identified glucose SNPs and 1
of 2 insulin SNPs in EA. Even with limited sample sizes
for additional racial/ethnic groups, we found that most
of the nine GWAS glucose findings analyzed generalized
to at least one non-EA racial/ethnic group, with several
SNPs generalizing to multiple groups (e.g., rs780094/
GCKR generalized to Hispanics, American Indians, and
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East Asians) These findings indicate that it would be
worthwhile to pursue additional genotype data on larger
samples drawn from of these populations, and perform
an even more comprehensive investigation of the
generalizability of GWAS findings for glucose and insu-
lin in diverse populations. In addition, an investigation
of gene-environment and gene-gene interactions may
help resolve ancestry-based differences in the genetic
basis of glucose and insulin concentrations.

Additional file

[ Additional file 1: Supplementary Methods. ]
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