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Educational attainment is associated with many health outcomes,
including longevity. It is also known to be substantially heritable.
Here, we used data from three large genetic epidemiology cohort
studies (Generation Scotland, n = ∼17,000; UK Biobank, n =
∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether
education-linked genetic variants can predict lifespan length. We
did so by using cohort members’ polygenic profile score for edu-
cation to predict their parents’ longevity. Across the three cohorts,
meta-analysis showed that a 1 SD higher polygenic education
score was associated with ∼2.7% lower mortality risk for both
mothers (total ndeaths = 79,702) and ∼2.4% lower risk for fathers
(total ndeaths = 97,630). On average, the parents of offspring in the
upper third of the polygenic score distribution lived 0.55 y longer
compared with those of offspring in the lower third. Overall, these
results indicate that the genetic contributions to educational at-
tainment are useful in the prediction of human longevity.
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Educational attainment is a mainstay in debates concerning social
inequality and life outcomes (1, 2). Individual differences in

educational attainment have been linked to variation in life chances
and longevity: those with more education tend to be healthier (3),
richer in adulthood (4), more upwardly socially mobile (2), and
longer-lived (5, 6). Because education influences—and is influenced
by—various personal characteristics and social factors (7, 8), it has
been difficult to disentangle the precise reasons for its prediction of
key life outcomes (9). Despite it being widely used in studies as a
social-environmental variable, differences in education are under
substantial genetic influence, with heritability frequently estimated at
60% and above in family studies (10–12), and 20–30% in molecular
genetic studies (13, 14). Some specific education-associated genetic
variants have also been uncovered in genome-wide association
studies (GWAS) (15–17). The present study uses previously-
discovered genetic correlates of education to predict variation in
arguably the most important life outcome of all: longevity.
The association of educational outcomes—measured either by

attained qualifications or by duration of full-time education—
with longevity is well established in the scientific literature (e.g.,
refs. 18 and 19). The high value placed upon educational qual-
ifications in society and in the labor market forms one possible
explanation for this link: the higher-level occupations and so-
cioeconomic positions afforded by better education allow greater
access to health-improving resources and surroundings. However,
education also acts as a signal for personal characteristics with
which it is phenotypically correlated, such as general cognitive
ability (20, 21), motivation (22), and health (23), in addition
to aspects of a person’s socio-economic background (24). Thus,

according to two nonmutually exclusive views, educational at-
tainment might cause improvements in longevity via social mecha-
nisms, or might itself be caused by preexisting—partly heritable—
factors that also increase longevity.
Some evidence for the latter view—that some of the variance

in educational attainment and longevity is caused by preexisting
factors—comes from the pervasive genetic correlations of ed-
ucation with many other longevity-linked traits, indicating that
these traits are substantially associated with the same genetic
variants. For example, one study used linkage-disequilibrium
(LD) regression analysis to show that educational attainment was
significantly genetically correlated with lifespan-limiting condi-
tions like cardiovascular disease and stroke (25). In addition,
educational attainment is strongly genetically correlated with
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general cognitive ability (13, 14, 26), itself a well-replicated
phenotypic (27) and genetic (28) correlate of longevity.

The Current Study
In this study, we tested whether the genetic variants associated
with educational attainment are associated with longevity. We
thus assessed the extent to which the genetic contributions to
educational outcomes, which are preexisting and nonsocial, are
related to a key health outcome. To do so, we used the estab-
lished technique of testing for associations between genotyped
subjects and their phenotyped relatives (in this case, the lifespan
of parents) (29).
Offspring genetic variants, such as the Alzheimer’s-linked

APOE e4 allele, have also been linked to parental longevity in
candidate gene studies (30) and more recently in a GWAS (31;
see ref. 32 for a similar analysis of epigenetic markers). More-
over, higher genetic risk for conditions, such as cardiovascular
disease, diabetes, and Alzheimer’s disease, has been related to
earlier parental mortality (33). Because the expected allelic ef-
fect of one allele in parents is 0.5 alleles in offspring (31), precise
predictions can be made of the effect of alleles and polygenic
scores on traits in the offspring themselves.
Here, we used summary data from an independent GWAS of

educational attainment (15) to create polygenic profile scores
(34). These scores quantify the extent to which each participant
carried the genetic variants known to be associated with higher
educational attainment (in the GWAS, education was measured
as the number of years of education). We then linked these
polygenic profile scores to data on the participants’ parents’ age
at death. Our hypothesis was that offspring with polygenic pro-
files for higher educational attainment would have longer-living
parents. We did not make a specific prediction about whether
any effect would be stronger in fathers or mothers. We per-
formed the analysis in three large, independent cohorts to test
the replicability of the result, and meta-analytically combined the
three estimates. The cohorts were Generation Scotland (35, 36)
(n = 17,542), UK Biobank (37) (n = 116,425), and the Estonian
Biobank (38) (n = 7,950).
As a sensitivity analysis, we tested whether our results still held

when taking into account parental fertility: that is, when in-
cluding as a numerical covariate the number of siblings that each
participant reported. This was because of a possible biasing ef-
fect whereby parents with higher numbers of offspring, and thus
linearly proportionate greater likelihood of the parental phe-
notype being included in the study, might have different genetic
propensities for educational attainment. Finally, we compared
the predictive value of the educational polygenic profile score for
parental mortality with the predictive values for a number of
other polygenic profile scores indexing phenotypes that are known
to relate to mortality risk.

Results
A summary of the parental data, including number of deaths, for
each of the three cohorts is presented in Table 1, and the cohorts
are described more fully in Materials and Methods.

Phenotypic and Genetic Correlations. Before testing our main hy-
potheses, we assessed the phenotypic and genetic correlations
between the two principal variables under investigation: off-
spring education and parental longevity. We ran these analyses
in UK Biobank, by far the largest of the three cohorts involved in
the present study, alone. Phenotypically, offspring education (for
which the median was 15 y, the mean was 15.11 y, and the range was
7–20 y) was significantly and substantially associated with both
mother’s longevity [hazard ratio (HR) per additional year of off-
spring education = 0.897, 95% confidence interval (CI) = (0.889,
0.904), P = 3.08 × 10−126] and father’s longevity [HR per addi-
tional year of offspring education = 0.893, 95% CI = (0.886,
0.899), P = 1.74 × 10−161]. We then assessed the genetic cor-
relation (rg) between educational attainment and parental longevity,
using LD score regression (Materials and Methods) on GWAS
summary scores from two previous studies of these phenotypes (15,
31). The genetic correlation was estimated at rg = 0.447 (SE = 0.080,
P = 2.23 × 10−08) for mother’s longevity, and rg = 0.392 (SE = 0.056,
P = 2.82 × 10−12) for father’s longevity. Thus, there were substantial
relations, both phenotypic and genetic, between the two variables
of interest. These were in the same effect size range as genetic
correlations found in previous studies between educational at-
tainment and a range of other health phenotypes (25).

Polygenic Profile Score Analysis. The polygenic scores for educa-
tional attainment were built using the previous GWAS results
(15) and applied to the participants in Generation Scotland, UK
Biobank, and the Estonian Biobank. Fig. 1 provides descriptive
data for each sample, showing the age at mortality of each parent
depending on each decile of the education polygenic risk score;
in general, higher polygenic scores were associated with older
age at death. However, this illustration only includes parents who
had died. To take into account all of the data, we calculated the
associations between offspring polygenic scores and parental
longevity using Cox proportional hazard models (Table 2). For
mothers, the HRs were not significantly different from zero in
the smaller samples, but were highly significant in UK Biobank.
For fathers, the results were significant in all three samples. In all
cases, the point estimate was in the hypothesized direction: higher
polygenic profile score was associated with lower parental mortality
risk.
We combined the scores across the three cohorts, separately

for mothers and for fathers, using a fixed-effects meta-analysis.
The meta-analytic results showed that a 1 SD higher polygenic
profile score for education was associated with an ∼2.5% lower
mortality risk in mothers [HR = 0.976, 95% CI = (0.968, 0.983),
P = 8.21 × 10−10] and fathers [HR = 0.973, 95% CI = (0.967,
0.979), P < 1.73 × 10−18]. A forest plot is shown in Fig. 2.
Splitting the education polygenic profile score into tertiles, we
calculated that, in the UK Biobank sample, mothers of children
in the highest tertile lived on average 40.8 y beyond age 40,
compared with 40.2 y in the lowest tertile (a difference of 0.6 y). The
corresponding values for fathers were 35.1 y beyond age 40 in the
highest tertile and 34.6 y in the lowest (a difference of 0.5 y).
We next ran the sensitivity analysis including number of sib-

lings as a covariate in the model predicting parental mortality
from offspring genotype. Again, this analysis was run in UK Biobank

Table 1. Descriptive statistics for parents across the three samples

Parent Status

Generation Scotland UK Biobank Estonian Biobank

n Mean age, y (SD) n Mean age, y (SD) n Mean age, y (SD)

Mother Alive 10,340 64.4 (12.5) 45,333 78.4 (8.1) 3,247 63.0 (13.2)
Dead 6,330 73.3 (12.5) 69,990 74.9 (12.1) 2,682 73.5 (12.7)

Father Alive 7,923 62.9 (11.5) 25,915 77.9 (7.3) 2,327 60.9 (11.9)
Dead 8,467 69.7 (11.9) 85,419 71.3 (11.7) 3,744 68.1 (12.9)
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alone. The inclusion of this covariate made little difference to the
UK Biobank results reported above: the association between ed-
ucational polygenic profile score and mother’s longevity was HR
per 1 SD higher polygenic score = 0.978, 95% CI = (0.970, 0.985),
P = 3.29 × 10−09 ΔHR from original model = 0.002; the associ-
ation with father’s longevity was HR = 0.977, 95% CI = (0.970,
0.984), P = 9.86 × 10−12, ΔHR = 0.002.

Other Polygenic Scores. To provide context for the effect size of
the education polygenic profile score’s association with parental
mortality, we tested associations of parental longevity with a series
of other offspring polygenic profile scores. We ran these analyses
only in UK Biobank, using the same methods as those for the ed-
ucational polygenic profile score analyses. The polygenic profile
scores were for five known phenotypic predictors of mortality risk:
height, body mass index (BMI), cardiovascular disease, major de-
pressive disorder (MDD), and smoking (39–43).
The hazard ratios for predicting mortality for either parent

from offspring polygenic profiles for height and for MDD were
both near to 1 and nonsignificant (P > 0.28). For mothers, there
was no significant relation with offspring smoking genetic risk (P =
0.07). However, scores for BMI, cardiovascular disease and, for
fathers, smoking, made significant predictions of mortality risk (P <
5.85 × 10−06). The effect sizes for each of these genetic predictors
were similar to that for education (approximately a 2% difference in
mortality risk per 1 SD difference in the score) (Table S1). Thus,
the score composed of genetic variants weighted toward their re-
lation to educational attainment made similar-sized predictions of
longevity risk to genetic scores weighted toward alleles linked to
other well-established risk factors for mortality. Note that a number
of other polygenic associations with mortality were addressed in the
UK Biobank sample in a previous study, using somewhat different
methods (33).

Discussion
This study found that offspring polygenic profiles for education
were robustly associated with parental longevity: those with more
genetic variants related to better educational qualifications had
longer-living parents. We tested the study’s principal hypothesis
across three large cohorts, totaling over 130,000 participants.
The associations were of broadly similar effect size in all three
cohorts. Meta-analytically, there was a substantial and strongly
significant overall prediction, which was similar for males and for
females: individuals with 1 SD higher polygenic profile score for
a college degree had parents who were at ∼2.5% lower risk of
mortality. Put another way, parents with offspring in the upper
third of the polygenic score distribution lived an average of 0.55 y
longer than those in the lower third. The results—which were
comparable to the effect sizes from other known predictors of
mortality, such as cardiovascular disease and smoking, and which
were bolstered by the finding of a moderate-sized genetic cor-
relation between the two variables—suggest the hypothesis that
the ultimate reason education predicts mortality is, in part, be-
cause of an underlying, quantifiable, genetic propensity.
Why do genetic variants related to educational attainment predict

parental mortality? There are a number of possible mechanisms—
both genetically and environmentally mediated—that might explain
the result. First, these genetic variants might improve cognitive or
personality phenotypes, such as intelligence, motivation, and con-
scientiousness, thus improving educational attainment; the higher
quality of life and environment afforded by a better education might
then improve health and reduce mortality risk. The effects of the
genetic score might manifest directly on the parents’ behavior (to
the extent that they are shared between parents and offspring), or
have indirect effects via greater offspring resources and ability to
care for aging parents (44). Our analysis could not test between
these direct and indirect possibilities.
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Fig. 1. Parental age at death by education polygenic score decile in each cohort. Error bars in all three plots represent ±1 standard error of the mean. Note
that this plot does not include data from participants whose mother and/or father was living at the time of assessment.

Table 2. Results from Cox proportional hazard models predicting parental mortality risk from
offspring education polygenic profile score

Parent Cohort n Offspring n Parental deaths HR (95% CI) SE P value

Mother Generation Scotland 16,670 6,330 0.954 (0.907, 1.001) 0.024 0.056
UK Biobank 115,323 69,990 0.976 (0.968, 0.984) 0.004 1.52 × 10−10

Estonian Biobank 5,929 2,682 0.979 (0.940, 1.018) 0.020 0.280
Meta-analysis 137,922 79,702 0.976 (0.968, 0.983) 0.004 8.21 × 10−10

Father Generation Scotland 16,390 8,467 0.932 (0.891, 0.973) 0.021 0.0007
UK Biobank 111,334 85,419 0.975 (0.969, 0.981) 0.003 2.05 × 10−13

Estonian Biobank 6,097 3,744 0.942 (0.909, 0.975) 0.017 0.0003
Meta-analysis 133,821 97,630 0.973 (0.967, 0.979) 0.004 1.73 × 10−18

Hazard ratios are expressed per SD of polygenic profile score. Meta-analytic rows are in bold. All models
adjusted for offspring sex, genotyping array, and SNP principal components as described in Materials and
Methods.
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Second, the genetic variants related to education might also affect
other variables that themselves lower mortality risk. This could occur
in the absence of a causal pathway involving education itself. For
example, individuals with long-term illnesses are at greater risk of
educational failure (23), and also tend to perform more poorly on
tests of cognitive ability (45); such health complaints, which might
partly be genetic in origin, could also increase mortality risk. Third,
and unlike the above mechanisms that all posit a mediated mecha-
nism (that is, genetic variants related to educational attainment have
effects on some factor that leads to additional longevity), biological
pleiotropy (46) might play a role: in this view, the genetic variants
reflect a general “system integrity” (47), whereby genotypes related
to better physical health (and thus lower mortality risk) are also
related to better neural health (and thus better educational
performance).
Testing the relative contributions of each of the three possible

mechanisms described above—which are not mutually exclusive—
will require a finer-grained analysis of the complex pathways
that link the education-associated genetic variants to longevity,
via mediating traits, conditions, and behaviors. In this study, we
compared the size of the association of longevity with the edu-
cational polygenic score with that for polygenic scores for height,
BMI, cardiovascular disease, major depressive disorder, and
smoking. Future analyses could get closer to the mechanism by
assessing the degree of overlap and generality among genetic
predictors of longevity. Because GWAS studies provide a deeper
knowledge of the specific, causal genetic variants that are linked
to education and to longevity (15–17, 31), we will be able to
address their biological and social mechanisms in greater detail,
improving our understanding of precisely why scores for, for
example, height make no prediction of longevity but those for
education do. In any case, regardless of the underlying mecha-
nisms, the polygenic profile score for education showed pre-
dictive value. As GWAS sample sizes for education and related
variables increase, and more genetic variants are uncovered (48),
we would expect steadily to obtain improved genetic predictions
of longevity.
The longevity prediction made by the polygenic profile for

educational attainment was substantially smaller than that for
the phenotype of educational attainment. This is to be expected
for two reasons. First, polygenic profiles only explain small
amounts of variance in their respective phenotypes because of

the power of the original GWAS studies to detect SNPs with
significant associations (as noted, we expect this to improve with
larger, future GWAS studies), and do not include nonadditive
genetic variants that may also be important in explaining heri-
tability. Second, educational attainment is far from completely
heritable (12), being influenced by social and environmental
factors that may also be predictive of parental mortality. How-
ever, the finding that the longevity-predicting power of a genetic
profile for education (a variable often thought of as “social”)
compares favorably in effect size to polygenic profiles for car-
diovascular disease and BMI (variables that are medical in na-
ture) supports the importance of educational attainment as a
general indicator of health and social status.
Our method, using parental longevity as an outcome variable

predicted by offspring genotype, allowed considerably higher
power compared with studies of genotype and mortality in the
same individuals; such data are more difficult to collect because
they require follow-up of genotyped individuals until their own
death. This method, combined with the large sample sizes, our
replication and meta-analysis, and the inclusion of parents who
were still alive as censored data points in the proportional hazard
models, substantially improved our results’ robustness. Our ef-
fect size estimates for the main analysis were similar in samples
from the United Kingdom and from Estonia, indicating that the
education-related genetic variants make predictions across dif-
ferent cultures (although further replication in other groups will
be necessary). Finally, our results appeared robust to parental
fertility: they were only slightly altered after adjustment for number
of siblings.
Although the effects found here were broadly consistent

across cultures, the samples were not fully representative of the
populations from which they were drawn. All samples were re-
stricted to individuals of White European ancestry. Whereas this
reduces bias due to population stratification within each sample,
it does make the results less generalizable, and samples of par-
ticipants with different genetic backgrounds may show different
results. In addition, self-selection effects (49) mean that those
with more education, higher intelligence, higher socioeconomic
status, higher conscientiousness, and closer proximity to testing
centers were probably more likely to participate. The concomi-
tant restriction of range potentially led to downward bias in our
effect sizes. A more subtle consequence of self-selection is that
many of the above characteristics might make these self-selected
individuals more likely to benefit, in terms of health or other life
outcomes such as longevity, from higher educational attainment
(that is, their genetic propensities for education may interact
with other traits). However, in such a conceptualization, the ed-
ucational variants are still the ultimate explanation for some of the
variance in longevity.
No measures of parental educational attainment were avail-

able in our samples, precluding an analysis testing whether there
were any incremental associations of the polygenic score beyond
phenotypic education, or whether any effects of the genetic score
were entirely mediated by educational attainment. The advan-
tages of our parental-proxy method are noted above, but we may
have underestimated the effects: we would expect exactly double
the effect size for polygenic prediction of an individual’s own
longevity from their genetic profile (31). Finally, although we
adjusted for each study participant’s number of siblings to con-
trol for fertility differences, by definition all of the individuals
whose ages at mortality were analyzed in the present study (i.e.,
the parents) had children. It remains possible that the associa-
tions studied here would be different for individuals with no
children, who may have also had systematically different poly-
genic profiles for education.
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Fig. 2. Forest plot for the fixed-effects meta-analysis of the association
between educational polygenic profile score and mortality risk for mothers
and fathers across the three samples. HRs are for a 1 SD higher polygenic
profile score.
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Conclusion
This study used molecular genetic methods in three large sam-
ples, finding that a polygenic profile score for education in off-
spring made a statistically significant prediction of parental
longevity. In the general population, there are genetic variants
that relate not only to important predictors of health outcomes
(in this case, education), but also with the health outcomes them-
selves (in this case, longevity). Combining the polygenic profile for
educational attainment with profiles for other important cognitive,
personality, and health-related traits will enable future studies to
make better predictions of longevity, with applications in epide-
miological research and beyond.

Materials and Methods
Educational Attainment “Discovery” GWAS. The educational attainment
polygenic scores were built using summary data from the largest GWASmeta-
analysis of educational attainment to date (15). To reduce the possibility of
sample overlap or cryptic relatedness affecting the polygenic scores, the
GWAS data were reanalyzed after excluding all United Kingdom-based co-
horts for predictions into the independent United Kingdom cohorts. Simi-
larly, the Estonian Biobank data were excluded from a second reanalysis of
the GWAS data. Data from 23andMe, used in the original meta-analysis,
were not available for the calculation of polygenic scores.

Independent Sample 1: Generation Scotland: The Scottish Family Health Study.
Participants. Generation Scotland: the Scottish Family Health Study (35, 36) is a
cohort study of participants recruited in the Glasgow, Tayside, Ayrshire,
Arran, and northeast areas of Scotland. Initially, 7,953 probands aged 35–65 y
were recruited either through their general medical practitioner (95% of
probands) or via direct publicity and word-of-mouth. Their family members
were also invited to take part, resulting in a final sample of 24,084 partici-
pants with an age range of 18–100 y.

All components of Generation Scotland received ethical approval from the
National Health Service Tayside Committee on Medical Research Ethics
(Research Ethics Committee Reference no. 05/S1401/89). Generation Scotland
has been granted Research Tissue Bank status by the Tayside Committee on
Medical Research Ethics (Research Ethics Committee Reference no. 10/S1402/
20), providing generic ethical approval for a wide range of uses within
medical research.
Genotyping.Generation Scotland participants were genotyped with either the
HumanOmniExpressExome8v1-2_A or HumanOmniExpressExome-8v1_A. Qual-
ity control was carried out in PLINK v1.9b2c (50, 51). SNPs were removed if they
had a missingness rate >2% or a Hardy–Weinberg Equilibrium test at P < 10−06,
leaving a total of 561,125 autosomal SNPs for analysis. Duplicate samples were
removed. Individuals were removed based on gender mismatch and missing-
ness (>2% of genotypes missing). The subsequent dataset was combined with
the 1,092 individuals of the 1000 Genomes population (52) before principal
components being calculated in GCTA (53). Outliers, defined by being more
than 6 SDs away from the mean of the first two principal components, were
removed (54). This left a sample of 20,032 participants. Individuals who
appeared in both the UK Biobank and Generation Scotland studies (n = 174)
were excluded from the latter study. After merging with the available covariate
data, 17,542 participants had age at death or censoring information in at least
one parent.

Independent Sample 2: UK Biobank.
Participants. Data stem from the baseline wave of the UK Biobank Study (37)
(www.ukbiobank.ac.uk). Analyses were performed under data applications
8304 and 10279. The UK Biobank sample was substantially larger than our
other two studies: it contains around 500,000 community dwelling men and
women in the United Kingdom, who were recruited between 2006 and
2010. Here, we used data from 116,425 participants (aged 40–73 y) who had
genetic data and at least one parent’s longevity data available for analyses.
Ethical approval for UK Biobank was granted by the Research Ethics Committee
(11/NW/0382).
Genotyping. Details on the UK Biobank genotyping procedure and quality-
control steps that were included for the current analyses have been reported
previously (31). Briefly, of the 152,729 participants with genetic data avail-
able as of August 2015, 116,425 were retained after exclusions based on SNP
missingness, relatedness, gender mismatch, non-British ancestry, and pre-
viously reported quality control failure for the UK BiLEVE study.

Independent Sample 3: Estonian Biobank.
Participants. The Estonian Biobank (38) is the population-based biobank of
the Estonian Genome Center at the University of Tartu (EGCUT). For this
study, 51,380 volunteer participants (aged 18–103 y) were recruited between
2002 and 2011. The cohort included ∼5% of the adult population from all
counties of Estonia. At recruitment, the participants completed an extensive
questionnaire on health, lifestyle, and genealogy and provided a blood
sample. Approval for the Estonian Biobank was given by the Research Ethics
Committee of the University of Tartu. All participants signed a broad in-
formed consent form at recruitment.
Genotyping. In total, DNA samples from >16,000 participants have been
genotyped with various genome-wide arrays. In 2011, the subset of indi-
viduals selected to be genotyped with the Illumina OmniExpress chip, in-
tentionally included 1,200 individuals who had died by that time, as well as
500 women and 250 men who were 80 y old or older at that time. The rest of
this genotyped sample (in total 7,950 subjects after removing close relatives)
consists of random population controls.

Parental Longevity Phenotype. In all three independent cohorts, parental
longevity was assessed for both mothers and fathers. To account for pre-
mature deaths as a result of external causes, such as accidents, and in particular,
the Second World War (55), we excluded individuals who died prematurely
(<40 y). Parents who were alive at the baseline wave of the respective studies
were treated as censored observations. Age at censoring was calculated as the
cohort’s baseline year of assessment minus the parent’s year of birth. Parents
whose age at censor was <40 y were excluded. In Generation Scotland, a small
number of outliers (n = 26) with an age-at-death/censor >100 y were removed.

Statistical Analyses.
LD score regression (genetic correlation). To assess the genetic correlation be-
tween the two primary phenotypes of interest, we used LD score regression
(56), which allows genetic correlations to be calculated using GWAS sum-
mary data alone (without raw genotype or phenotype data). It does not
matter for LD score regression whether there is sample overlap between the
studies. We calculated the genetic correlation (rg) using the summary data for
educational attainment from the GWAS that also served as the basis for our
polygenic profile scores (see below) (15) and using the summary data for pa-
rental longevity (specifically, the Martingale residuals from Cox proportional
hazards models of parental lifespan) from a recent GWAS in the UK Biobank
sample (31). LD score regression was used with all its default settings.
Polygenic scoring. The results from the educational attainment GWAS analyses
were carried forward into polygenic score models in the three independent
cohorts using the PRSice software (57). We built polygenic profile scores
based on the genotyped SNP data in Generation Scotland (nSNPs = 561,125),
UK Biobank (nSNPs = 672,491), and EGCUT (nSNPs = 628,325). The optimal
threshold determined from the previous analysis (15), specifically P = 1.00
(that is, inclusion of all SNPs) was used for all analyses in all samples.

We tested whether the polygenic profile score was related to the par-
ticipant’s (that is, the offspring’s) own educational duration. To do this, we
included the score in a linear regression analysis predicting the offspring’s
years of education alongside covariates of age, sex, and 15 SNP-based
principal components to account for population stratification. The polygenic
profile score was significantly related to years of education in Generation
Scotland (n = 17,814; standardized β = 0.132, SE = 0.008, P < 2.20 × 10−16), UK
Biobank (n = 119,167; standardized β = 0.106, SE = 0.003, P < 2.20 × 10−16), and
EGCUT (n = 7,959; standardized β = 0.118, SE = 0.011, P = 1.77 × 10−26). Note
that, for Generation Scotland, a kinship matrix was fitted to account for the
structure of relatedness (as in the main analysis; see below) and for UK Bio-
bank, years of education were calculated in accordance with the protocol used
in the previous GWAS meta-analysis (15). Overall, the polygenic profile score
had a small, positive relation to offspring’s own educational duration.

The respective effect sizes for the SNP risk alleles were multiplied by the
numberof risk alleles (0, 1, or 2) carriedby theparticipants inGeneration Scotland,
UK Biobank, and EGCUT. The sum score across all SNPs within each threshold
yielded a polygenic score for each participant in the three cohorts. These scores
are proxy measures (∼50% accurate) of the parental genetic risk scores.
Polygenic prediction of mortality. The educational attainment polygenic scores
were modeled against the age at death for the parents of the independent
cohorts. Cox proportional hazards models were run, using a pedigree-derived
kinship matrix to account for relatedness in Generation Scotland. Covariates
included sex, and the first 15 SNP-based principal components to account for
population stratification. Analyses were conducted in R using the “survival”
(58), “kinship2” (59), and “coxme” (60) libraries.
Meta-analysis. Fixed-effects meta-analysis was performed across the three co-
horts, separately formothers and fathers, using themetafor package for R (61).

13370 | www.pnas.org/cgi/doi/10.1073/pnas.1605334113 Marioni et al.

http://www.ukbiobank.ac.uk/
www.pnas.org/cgi/doi/10.1073/pnas.1605334113


ACKNOWLEDGMENTS.We thank the cohort participants and team members
who contributed to these studies. Generation Scotland received core support
from the Chief Scientist Office of the Scottish Government Health Director-
ates (CZD/16/6) and the Scottish Funding Council (HR030060). R.E.M., S.J.R., S.P.H.,
W.D.H., G.D., D.C.L., D.J.P., C.R.G., and I.J.D. are members of the University of
Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, which is
supported by funding from the Biotechnology and Biological Sciences Research
Council, the Medical Research Council, and the University of Edinburgh as part of
the cross-council Lifelong Health andWellbeing initiative (MR/K026992/1) and Age

UK as part of the Disconnected Mind Project. The research was conducted using
the UK Biobank Resource. The Estonian Genome Center at the University of Tartu
work was supported through the Estonian Genome Center of University of
Tartu by the Targeted Financing from the Estonian Ministry of Science and
Education (SF0180142s08), the Development Fund of the University of Tartu
(Grant SP1GVARENG), the European Regional Development Fund to the
Centre of Excellence in Genomics (EXCEGEN; Grant 3.2.0304.11-0312), and
through FP7 Grant 313010. This research was facilitated by the Social Science
Genetic Association Consortium.

1. Breen R, Goldthorpe JH (2001) Class, mobility and merit: The experience of two British
birth cohorts. Eur Sociol Rev 17(2):81–101.

2. Breen R, Karlson KB (2014) Education and social mobility: New analytical approaches.
Eur Sociol Rev 30(1):107–118.

3. Zajacova A, Hummer RA, Rogers RG (2012) Education and health among U.S. working-
age adults: A detailed portrait across the full educational attainment spectrum.
Biodemogr Soc Biol 58(1):40–61.

4. Harmon C, Oosterbeek H, Walker I (2003) The returns to education: Microeconomics.
J Econ Surv 17(2):115–156.

5. Brown DC, et al. (2012) The significance of education for mortality compression in the
United States. Demography 49(3):819–840.

6. Montez JK, Hayward MD (2014) Cumulative childhood adversity, educational at-
tainment, and active life expectancy among U.S. adults. Demography 51(2):413–435.

7. Brinch CN, Galloway TA (2012) Schooling in adolescence raises IQ scores. Proc Natl
Acad Sci USA 109(2):425–430.

8. Ritchie SJ, Bates TC (2013) Enduring links from childhood mathematics and reading
achievement to adult socioeconomic status. Psychol Sci 24(7):1301–1308.

9. Deary IJ, Johnson W (2010) Intelligence and education: Causal perceptions drive an-
alytic processes and therefore conclusions. Int J Epidemiol 39(5):1362–1369.

10. Bartels M, Rietveld MJ, Van Baal GCM, Boomsma DI (2002) Heritability of educational
achievement in 12-year-olds and the overlap with cognitive ability. Twin Res 5(6):544–553.

11. Rowe DC, Vesterdal WJ, Rodgers JL (1998) Herrnstein’s syllogism: Genetic and shared
environmental influences on IQ, education, and income. Intelligence 26(4):405–423.

12. Shakeshaft NG, et al. (2013) Strong genetic influence on a UK nationwide test of
educational achievement at the end of compulsory education at age 16. PLoS One
8(12):e80341.

13. Krapohl E, Plomin R (2015) Genetic link between family socioeconomic status and
children’s educational achievement estimated from genome-wide SNPs.Mol Psychiatr
21(3):437–443.

14. Marioni RE, et al. (2014) Molecular genetic contributions to socioeconomic status and
intelligence. Intelligence 44(100):26–32.

15. Okbay A, et al.; LifeLines Cohort Study (2016) Genome-wide association study iden-
tifies 74 loci associated with educational attainment. Nature 533(7604):539–542.

16. Rietveld CA, et al.; LifeLines Cohort Study (2013) GWAS of 126,559 individuals identifies
genetic variants associated with educational attainment. Science 340(6139):1467–1471.

17. Rietveld CA, et al. (2014) Common genetic variants associated with cognitive per-
formance identified using the proxy-phenotype method. Proc Natl Acad Sci USA
111(38):13790–13794.

18. Lleras-Muney A (2005) The relationship between education and adult mortality in the
United States. Rev Econ Stud 72:189–221.

19. Nordahl H, et al. (2014) Education and cause-specific mortality: The mediating role of dif-
ferential exposure and vulnerability to behavioral risk factors. Epidemiology 25(3):389–396.

20. Deary IJ, Strand S, Smith P, Fernandes C (2007) Intelligence and educational achieve-
ment. Intelligence 35(1):13–21.

21. Strenze T (2007) Intelligence and socioeconomic success: A meta-analytic review of
longitudinal research. Intelligence 35(5):401–426.

22. Schoon I (2008) A transgenerational model of status attainment: The potential me-
diating role of school motivation and education. Natl Inst Econ Rev 205(1):72–82.

23. Case A, Fertig A, Paxson C (2005) The lasting impact of childhood health and cir-
cumstance. J Health Econ 24(2):365–389.

24. Marks GN (2014) Education, Social Background and Cognitive Ability: The Decline of
the Social (Routledge, New York).

25. Hagenaars SP, et al.; METASTROKE Consortium International Constorium for Blood
Pressure GWAS; SpiroMeta Consortium; CHARGE Consortium Pulmonary Group;
CHARGE Consortium Aging and Longevity Group (2016) Shared genetic aetiology
between cognitive functions and physical and mental health in UK Biobank (N =
112,151). Mol Psychiatr 21(6):758–767.

26. Calvin CM, et al. (2012) Multivariate genetic analyses of cognition and academic
achievement from two population samples of 174,000 and 166,000 school children.
Behav Genet 42(5):699–710.

27. Calvin CM, et al. (2011) Intelligence in youth and all-cause-mortality: Systematic re-
view with meta-analysis. Int J Epidemiol 40(3):626–644.

28. Arden R, et al. (2016) The association between intelligence and lifespan is mostly
genetic. Int J Epidemiol 45(1):178–185.

29. Wacholder S, et al. (1998) The kin-cohort study for estimating penetrance. Am J
Epidemiol 148(7):623–630.

30. Reed T, Carmelli D, Robinson TS, Rinehart SA, Williams CJ (2003) More favorable midlife
cardiovascular risk factor levels in male twins and mortality after 25 years of follow-up is
related to longevity of their parents. J Gerontol A Biol Sci Med Sci 58(4):367–371.

31. Joshi PK, et al. (2016) Variants near CHRNA3/5 and APOE have age- and sex-related
effects on human lifespan. Nat Commun 7:11174.

32. Bell JT, et al.; MuTHER Consortium (2012) Epigenome-wide scans identify differen-
tially methylated regions for age and age-related phenotypes in a healthy ageing
population. PLoS Genet 8(4):e1002629.

33. Pilling LC, et al. (2016) Human longevity is influenced by many genetic variants: Ev-
idence from 75,000 UK Biobank participants. Aging (Albany, NY) 8(3):547–560.

34. Purcell SM, et al.; International Schizophrenia Consortium (2009) Common polygenic vari-
ation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752.

35. Smith BH, et al. (2006) Generation Scotland: The Scottish Family Health Study; a new
resource for researching genes and heritability. BMC Med Genet 7(1):74.

36. Smith BH, et al. (2013) Cohort Profile: Generation Scotland: Scottish Family Health
Study (GS:SFHS). The study, its participants and their potential for genetic research on
health and illness. Int J Epidemiol 42(3):689–700.

37. Collins R (2012) What makes UK Biobank special? Lancet 379(9822):1173–1174.
38. Leitsalu L, et al. (2015) Cohort Profile: Estonian Biobank of the Estonian Genome

Center, University of Tartu. Int J Epidemiol 44(4):1137–1147.
39. Wood AR, et al.; Electronic Medical Records and Genomics (eMERGE) Consortium;

MIGen Consortium; PAGE Consortium; LifeLines Cohort Study (2014) Defining the role
of common variation in the genomic and biological architecture of adult human
height. Nat Genet 46(11):1173–1186.

40. Locke AE, et al.; LifeLines Cohort Study; ADIPOGen Consortium; AGEN-BMI Working
Group; CARDIoGRAMplusC4D Consortium; CKDGen Consortium; GLGC; ICBP; MAGIC
Investigators; MuTHER Consortium; MIGen Consortium; PAGE Consortium; ReproGen
Consortium; GENIE Consortium; International Endogene Consortium (2015) Genetic studies
of body mass index yield new insights for obesity biology. Nature 518(7538):197–206.

41. Schunkert H, et al.; Cardiogenics; CARDIoGRAM Consortium (2011) Large-scale asso-
ciation analysis identifies 13 new susceptibility loci for coronary artery disease. Nat
Genet 43(4):333–338.

42. Ripke S, et al.; Major Depressive Disorder Working Group of the Psychiatric GWAS
Consortium (2013) A mega-analysis of genome-wide association studies for major
depressive disorder. Mol Psychiatry 18(4):497–511.

43. Tobacco and Genetics Consortium (2010) Genome-wide meta-analyses identify mul-
tiple loci associated with smoking behavior. Nat Genet 42(5):441–447.

44. Torssander J (2013) From child to parent? The significance of children’s education for
their parents’ longevity. Demography 50(2):637–659.

45. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: A lifespan perspective.
Lancet Neurol 7(2):184–190.

46. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex
traits: Challenges and strategies. Nat Rev Genet 14(7):483–495.

47. Deary IJ (2012b) Looking for ‘system integrity’ in cognitive epidemiology. Gerontology
58(6):545–553.

48. Flint J, Munafò M (2014) Schizophrenia: Genesis of a complex disease. Nature
511(7510):412–413.

49. Johnson W, Brett CE, Calvin C, Deary IJ (2016) Childhood characteristics and partici-
pation in Scottish Mental Survey 1947 6-Day Sample Follow-ups: Implications for
participation in aging studies. Intelligence 54:70–79.

50. Purcell S, Chang CC (2015) PLINK 1.9 package. Available at https://www.cog-genomics.
org/plink2. Accessed October 7, 2016.

51. Chang CC, et al. (2015) Second-generation PLINK: Rising to the challenge of larger
and richer datasets. Gigascience 4:7.

52. The 1000 Genomes Project Consortium (2010) A map of human genome variation
from population-scale sequencing. Nature 467(7319):1061–1073.

53. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: A tool for genome-wide
complex trait analysis. Am J Hum Genet 88(1):76–82.

54. Amador C, et al.; Generation Scotland (2015) Recent genomic heritage in Scotland.
BMC Genomics 16:437.

55. Corley JE, Crang JA, Deary IJ (2009) Childhood IQ and in-service mortality in Scottish
army personnel during World War II. Intelligence 37:238–242.

56. Bulik-Sullivan B, et al.; ReproGen Consortium; Psychiatric Genomics Consortium; Ge-
netic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consor-
tium 3 (2015) An atlas of genetic correlations across human diseases and traits. Nat
Genet 47(11):1236–1241.

57. Euesden J, Lewis CM, O’Reilly PF (2015) PRSice: Polygenic Risk Score software.
Bioinformatics 31(9):1466–1468.

58. Therneau T (2015a) A package for survival analysis in R. R package, v2.38. Available at
cran.r-project.org/package=survival. Accessed October 7, 2016.

59. Therneau T, Atkinson E, Sinnwel J, Schaid D, McDonnell A (2014) kinship2: Pedigree
functions. R package, v1.6.0. Available at cran.r-project.org/package=kinship2.
Accessed October 7, 2016.

60. Therneau T (2015b) coxme: Mixed effects Cox models. R package, v2.2-5. Available at
cran.r-project.org/package=coxme. Accessed October 7, 2016.

61. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package.
J Stat Softw 36(3):1–48.

Marioni et al. PNAS | November 22, 2016 | vol. 113 | no. 47 | 13371

SO
CI
A
L
SC

IE
N
CE

S
G
EN

ET
IC
S

SE
E
CO

M
M
EN

TA
RY

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
http://cran.r-project.org/package=survival
http://cran.r-project.org/package=kinship2
http://cran.r-project.org/package=coxme

