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Abstract 

Genomic imprinting regulates parent-specific transcript dosage during seed development and is 

mainly confined to the endosperm. Elucidation of the function of many imprinted genes has been 

hampered by the lack of corresponding mutant phenotypes, and the role of imprinting is mainly 

associated with genome dosage regulation or allocation of resources. Disruption of imprinted genes 

has also been suggested to mediate endosperm based post-zygotic hybrid barriers depending on 

genetic variation and gene dosage. Here, we have analyzed the conservation of a clade from the 

MADS-box type I class transcription factors in the closely related species Arabidopsis arenosa, A. 

lyrata and A. thaliana, and show that AGL36-like genes are imprinted and maternally expressed in 

seeds of Arabidopsis species and in hybrid seeds between outbreeding species. In hybridizations 

between outbreeding and inbreeding species the paternally silenced allele of the AGL36-like gene is 
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reactivated in the hybrid, demonstrating that also maternally expressed imprinted genes are perturbed 

during hybridization and that such effects on imprinted genes are specific to the species combination. 

Furthermore, we also demonstrate a quantitative effect of genetic diversity and temperature on the 

strength of the post-zygotic hybridization barrier. Remarkably, a small decrease in temperature during 

seed development increases survival of hybrid F1 seeds, suggesting that abiotic and genetic 

parameters play important roles in post-zygotic species barriers, pointing at evolutionary scenarios 

favoring such effects.  

 

Introduction 

Seed development is a sophisticated and highly regulated process that requires precise signaling 

events and interaction between many distinct cell types and tissues. It starts with fusion of the male 

and female gametes generated in the male and female gametophytes, giving rise to the embryo and 

endosperm that develop in parallel inside the protective seed coat. The process is initiated when a 

conspecific pollen grain lands on the stigma of the female reproductive organ and the pollen tube 

delivers two sperm cells to the female gametophyte. One sperm cell fertilizes the haploid egg cell 

which develops into the diploid embryo, while the other sperm cell fertilizes the homodiploid central 

cell generating the triploid endosperm. The endosperm is important for nutrient flow to the embryo 

but also for coordinating growth of the developing seed (Nowack et al. 2010).  

 

The endosperm has two maternal genome copies and one paternal copy, and a specialized epigenetic 

phenomenon called genomic imprinting regulates parent-specific gene dosage during seed 

development, usually occurring in the endosperm (Gehring and Satyaki 2017). Imprinting is 

manifested by expression of one parental allele, with concurrent silencing of the other allele. The 

main mechanisms for this process are DNA methylation and histone methylation (Berger et al. 2006). 

The FERTILIZATION INDEPENDENT SEED-Polycomb Repressive Complex 2 (FIS-PRC2) 

mediates histone methylation while, in A. thaliana, DNA methylation mediated imprinting is 

maintained by the DNA methyltransferase MET1 (Rodrigues et al. 2015). 

 

A prominent gene family displaying frequent imprinting of its members is the MADS-box 

transcription factor (TF) family. The MADS-box TFs can be divided into type I and type II by 

evolutionary relationships. The type I TFs are further divided into Mα, Mβ and Mγ phylogenetic 

subclasses and only share the highly conserved DNA binding MADS (M) domain. The type II TFs 

have in addition to the M domain, the Intervening (I), the Keratin (K) and the C-terminal (C) domain 
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and are often referred to as the MIKC-type (Parenicova et al. 2003). The type II class is thought to 

have evolved from an ancient whole genome duplication as orthologs are found in many other species 

and the genes are well distributed across all chromosomes in A. thaliana. The type I class TFs 

originate from more recent and smaller scale duplication events and in A. thaliana they are mainly 

concentrated on chromosomes I and V (Parenicova et al. 2003; Airoldi and Davies 2012). As a 

consequence, MADS-box type I orthologs are uncommon in other species (Masiero et al. 2011). 

Imprinted genes occur frequently in the type I class, consistent with the hypothesis that recently 

duplicated genes are more often imprinted to regulate gene dosage (Yoshida and Kawabe 2013). 

Imprinting is observed mainly in the Mα and Mγ subgroups and moreover, members of these two 

subclasses interact extensively in yeast two-hybrid assays, suggesting a common function as 

heterodimers (de Folter et al. 2005). 

 

Functional studies of the MADS-box type I TFs by genetic dissection, however, are hampered by 

genetic redundancy. Their roles have also been suggested to have restricted effect and may therefore 

be involved in specific developmental processes (Nam et al. 2004). Only a few type I genes have been 

studied phenotypically, including AGAMOUS LIKE (AGL) 23, AGL36, PHERES (PHE) 1 (AGL37) 

and PHE2 (AGL38), DIANA (AGL61), AGL62, and AGL80 (Bemer et al. 2008; Kang et al. 2008; 

Steffen et al. 2008; Köhler et al. 2003; Shirzadi et al. 2011; Colombo et al. 2008; Kohler et al. 2005). 

To this end, the biological roles of many imprinted genes are still not known, but the role of 

imprinting is mainly associated with genome dosage regulation or allocation of resources (Dilkes and 

Comai 2004; Haig and Westoby 1989; Rodrigues et al. 2015). 

 

Imprinting has previously been shown to be disrupted in hybrid crosses of A. thaliana and A. arenosa. 

The MADS-box TF PHE1, which is imprinted and only paternally expressed in A. thaliana, was 

upregulated in hybrid seeds and it was shown that the expressed PHE1 was predominantly maternally 

expressed (Josefsson et al. 2006). Disruption of the expression levels of co-adapted MADS-box TFs 

in hybrids may thus trigger genome-wide perturbations observed in hybrids (Roth et al. 2019). 

Furthermore, other MADS-box type I TFs have been shown to be highly upregulated in incompatible 

hybrid crosses between A. thaliana mothers and A. arenosa fathers. Using knock-out mutant lines of 

these genes as A. thaliana mother, increased viability in the incompatible hybrid seeds, suggesting 

that these MADS-box type I TFs partly constitute a genetic basis for the post-zygotic barrier (Walia et 

al. 2009). Hence, investigation of the imprinting status of these genes and other known imprinted 

genes in A. arenosa and A. lyrata will shed light on the role and consequently the evolution of 

imprinting. It is disputed whether imprinting of specific genes is conserved, and whether the 

mechanisms behind the establishment and maintenance of imprinting between related and distant 
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species are preserved (Waters et al. 2013; Klosinska et al. 2016; Hatorangan et al. 2016; Chen et al. 

2018). 

 

Diploid A. arenosa crossed as father to more than 50 accessions of A. thaliana displayed live seeds in 

the range of 1% to 30% (Burkart-Waco et al. 2012). This suggests that the strength of the post-zygotic 

barrier can be modulated by genetic variation in accessions. Comparison of A. arenosa crossed to 

different A. thaliana accessions, thorough phenotyping (Burkart-Waco et al. 2013) and sequencing of 

RNA from hybrid seeds (Burkart-Waco et al. 2015), identified perturbation of the imprinting patterns 

of eight known paternally expressed genes. As these crosses were limited to a specific A. arenosa 

population, we hypothesize that the observed barrier is population dependent. Lafon-Placette et al. 

(2017) demonstrated that in crosses between A. lyrata and A. arenosa, the post-zygotic species barrier 

is is due to endosperm cellularization failure. A similar study in the Capsella genus also indicated 

endosperm failure as the main seed defect in incompatible crosses (Rebernig et al. 2015). A post-

zygotic endosperm-based barrier has also been described for rice (Wang et al. 2018; Tonosaki et al. 

2018) and tomato (Florez-Rueda et al. 2016). 

 

Here we have investigate the role of genetic variation in the establishment of post-zygotic endosperm-

based hybrid barriers both in general, using accession, and in a targeted manner, addressing specific 

MADS-box type I loci. We investigated the function and regulation of a conserved clade of MADS-

box type I Mγ class (AGL34, AGL36 and AGL90) together with some of their interacting partners. To 

further elucidate function, we have analyzed the conservation of this clade in the closely related 

species A. arenosa, A. lyrata and A. halleri, including the imprinting status of AGL36-like genes in A. 

arenosa, in A. thaliana crossed to A. arenosa and in the reciprocal cross of A. arenosa and A. lyrata. 

We find that AGL36-like genes are imprinted and maternally expressed in seeds of Arabidopsis 

species and in hybrid seeds between outbreeding species. In hybridizations between outbreeding and 

inbreeding species the paternally silenced allele of the AGL36-like gene is reactivated in the hybrid, 

demonstrating that also maternally expressed imprinted genes are perturbed during hybridization and 

that such effects on imprinted genes is specific to the species combination.  

 

Moreover, we investigated the role of temperature in hybridization of different genetic backgrounds 

and specific loci and find a significant positive correlation between lower temperatures and hybrid 

seed germination rate. We report that just a small change in temperature during seed development is 

sufficient to increase survival of hybrid F1 seeds, suggesting that abiotic parameters play an important 
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role in post-zygotic, endosperm based species barriers. Crossing mutants of the Mγ and Mα clades, 

and their interacting partners to A. arenosa to further investigate the effect of these genes on the 

hybridization barrier identified that lack of AGL35 significantly aggravate the A. thaliana A. arenosa 

hybrid barrier and that AGL35 is involved in the temperature dependency of the hybrid barrier. 

 

Results 

 

MADS-box type I Mα and Mγ expression in seed development  

 

In order to investigate the role of imprinted loci in the establishment of endosperm based hybrid 

barriers, we analysed MADS-box TFs that are closely related to the paternally silenced AGL36 

(Shirzadi et al. 2011). We re-analyzed the phylogeny of the Mα and Mγ classes and assembled them 

in two groups with several sub-clades (Figure 1A). In the Mγ  group, AGL36 constitutes a sub-clade 

together with AGL90 and AGL34, and the latter genes may represent recent, local gene duplication 

events in A. thaliana since orthologs are not readily identified (Masiero et al. 2011). AGL36 and 

AGL90 have been shown to be imprinted (Shirzadi et al. 2012, Zhang et al. 2018).The wider sub-clade 

includes known imprinted, paternally-expressed genes PHE1/AGL37 and AGL92 (Wolff et al. 2011), 

which cluster together with PHE2/AGL38 and AGL86, respectively. PHE2 expression has previously 

been demonstrated to be bi-allelic (Villar et al. 2009). The most distant member of the sub-clade is 

AGL35, which is closely linked to and located between AGL34 and AGL36 on chromosome 5. AGL34, 

AGL35, AGL36 and AGL90 all map in a 100 Kbp cluster on chromosome 5 (Parenicova et al. 2003), 

and this clustering makes this sub-clade an especially interesting case to study evolution of imprinted 

genes. The function of AGL90 and AGL34 is not known, but AGL36 interacts with two Mα MADS-

box TFs, AGL28 and AGL62 (Bemer et al. 2010; de Folter et al. 2005) where AGL28 has been shown 

not to be imprinted (Zhang et al. 2018) or to display accession dependent imprinting (Wolff et al. 

2011). AGL62 is biparentally expressed and required for endosperm cellularization (Kang et al. 2008), 

and for reason of functional study we have included AGL62 and AGL28 in our analysis. 

 

Next, we investigated relative expression of all MADS-box type I TFs at seed developmental stages 

ranging from one day after pollination (DAP) to 12 DAP (Figure 1B, Figure S1). AGL36 expression 

peaked at 4 DAP and coincided with the timing of endosperm cellularization (Shirzadi et al. 2011), 

hence an RNA-sequencing based differential expression analysis relating all stages to 4 DAP was 

performed. Mα and Mγ class TFs are overrepresented in the transcriptome of the developing seed 

compared to the Mβ class. All 16 Mγ genes and two-thirds of the 25 Mα genes are expressed, whereas 

less than half of the 21 Mβ genes can be identified (Figure S1B). Ordering the Mα and Mγ expression 

profiles according to the branching pattern, displayed a general expression trend with a peak between 



A
c

c
e

p
te

d
 A

r
ti

c
le

4 and 6 DAP (Figure 1B). In the Mγ AGL36 sub-clade, AGL35, AGL36 and AGL90 display similar 

profiles with increasing or unchanged expression towards 4 DAP followed by a decline. AGL34 can 

only be detected in a small developmental window, but the relative expression pattern is equivalent to 

AGL36 and AGL90 at these stages (Figure 1B, Figure S1B). This supports findings by Zhang and 

colleagues (2018) and indicates that AGL34 is not a pseudogene, as previously postulated (Bemer et al. 

2010). A similar pattern is found in Mα subclades, including AGL28. A decrease of AGL62 levels was 

observed after the expression maxima observed in Mα and Mγ classes (Figure 1B). The Mα AGL62 is 

required for correct timing of endosperm cellularization (Kang et al. 2008), and thus play a putative 

role in the establishment of endosperm-based hybrid barriers (Lafon-Placette et al. 2017). The Mα 

MADS-box TF subclass are hypothesized to form dimers with the Mγ-type (de Folter et al. 2005), and 

taken together, the co-occurring Mα and Mγ expression patterns may indicate a possible role for these 

TFs in the establishment of cellularization-based post-zygotic hybrid barriers. 

 

Imprinting and regulation of Mγ and Mα MADS-box genes 

 

Dosage imbalance caused by imprinted genes has been proposed as a cause for hybrid failure in both 

plants and animals (Dilkes and Comai 2004; Wolf et al 2014; Brekke et al. 2016). To this end, we 

successively re-analyzed parent-of-origin expression of the wider AGL36 sub-clade (Figure 1A), 

including the interacting Mα AGL28 (Figure 2). Using Col-0 and Tsu-1 accession specific SNPs, we 

analysed AGL28, AGL35, AGL36 and AGL90 in 4 DAP Col-0 Tsu-1 hybrid seeds (Figure 2A). 

Maternal bias from the seed-coat could be excluded, since all transcripts were previously shown to be 

enriched >8-fold 4DAP in the peripheral endosperm (AGL36, AGL90) compared to all other seed 

tissues or >8-fold and >5-fold enriched in the chalazal endosperm (AGL35 and AGL28, respectively) 

(Belmonte at al. 2013; Hornslien at al. 2019). AGL34 was not expressed at a sufficient level in 4 DAP 

Tsu-1 and was thus omitted. Gene specific RT-PCR products from hybrid crosses were digested with 

SNP-specific restriction endonucleases (Table S1) and fragments analyzed on a Bioanalyzer 2000 as 

well as by Sanger sequencing (Figure 2A, Figure S2). The Mγ genes AGL36 and AGL90 and the Mα 

AGL28 were imprinted and maternally expressed. The Mγ AGL35 was biparentally expressed as 

previously reported (Zhang et al. 2018). AGL36 (Shirzadi et al. 2011; Wolff et al. 2011; Zhang et al. 

2018) and AGL90 (Zhang et al. 2018) has previously been shown to be imprinted. Here, we show that 

AGL90 is maternally biased in its expression but the paternal allele show accession dependent 

imprinting and is not completely silenced from Col-0 pollen donors (Figure 2A, Figure S2). A similar 

lack of silencing of the AGL90 paternal Col-0 allele was recently also reported (Hornslien at al. 2019). 

In contrast, AGL28 was previously reported not to be imprinted (Zhang et al. 2018), or to display 

accession dependent imprinting in hybrids (Wolff et al. 2011).  
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To address the regulation of imprinted genes we contrasted 4 DAP parental seed expression from 

crosses between Tsu-1 and Col-0 accessions versus Tsu-1 and a hemizygous met1-7 +/- in a Col-0 

background to determine if MET1 is involved in maintaining silencing of the the paternal copy of 

AGL28, AGL36 and AGL90 (Figure 2B, Table S1, Figure S2). The paternal copy of AGL28 was 

shown to be expressed using met1-7
+/-

 as pollen donor, suggesting that MET1 is required for silencing 

of the paternal AGL28 allele. In our experimental settings, however, lack of MET1 did not reactivate 

the paternal copy of AGL36 and AGL90, whereas the AGL35 biparental control remains unchanged 

(Figure 2B). In  contrast to these findings, the paternal allele of AGL36 was previously shown to be 

reactivated in crosses with homozygous and hemizygous MET1 mutant pollen using the met1-4 +/- 

allele (Shirzadi et al. 2011; Saze et al. 2003). Lack of MET1, both in homozygous and heterozygous 

mutants leads to DNA hypomethylation and eventually the accumulation of epimutations, and we 

attribute the previously observed paternal expression to such effects in the met1-4 +/- background.. 

The met1-7 +/- allele used in our study was kept hemizygous through repeated outcrosses and 

therefore more likely devoid of such effects (Hornslien et al. 2019).  

 

According to a report investigating the role of small interfering (si) RNA and RdDM in interploidy 

crosses, several MADS-box type I genes, including AGL36, were deregulated in diploid crosses with 

NUCLEAR RNA POLYMERASE D1 (NRPD1) mutant mothers, deficient in the largest subunit of 

RNA polymerase IV, a key components of canonical RdDM (Lu et al. 2012). Using nuclear rna 

polymerase d1 (nrpd1) mutant mothers, AGL36 was upregulated more than 20-fold (Lu et al. 2012). 

We have previously shown that imprinting of AGL36 do not require paternal DOMAINS 

REARRANGED METHYLTRANSFERASE 2 (DRM2) or ARGONAUTE4 (AGO4), both part of the 

RdDM pathway (Shirzadi et al. 2011). The data from Lu and colleagues (2012) suggested that an 

RdDM dependent mechanism maintain the expression level of AGL36 or is active in maintaining the 

silencing of the paternal AGL36 allele after fertilization To test the latter hypothesis, we analysed 

parental expression from 6 DAP seeds, using nrpd1 both as a maternal and paternal contributor in 

crosses to wild type (Figure 2C, Figure S2). The AGL36 imprinting pattern was not affected in any 

cross direction, suggesting that reactivation of the paternal allele is not causing elevated levels of 

AGL36. In contrast to the previous report (Lu et al. 2012), we could also not detect any significant 

upregulation of AGL36 by real-time PCR (Figure 2D) in crosses using a homozygous nrpd1 knock-

out allele (Figure 2E) as maternal cross partner. We conclude that neither the MET1 nor the PolIV 

RdDM pathway is sufficient to silence the paternal allele of AGL36.  

 

Next, we analysed the effect of PRC2 on MADS-box type I genes. The endosperm cellularization 

defect observed in Arabidopsis interspecies hybrid seeds is highly reminiscent to the failure of 

endosperm cellularization phenotype observed in mutants of FIS-PRC2 (Lafon-Placette et al. 2017). 
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We therefore compared the RNAseq relative expression of all MADS-box type I genes between a 

FIS-PRC2 mutant and wild type at seed developmental stages ranging from one DAP to 12 DAP 

(Figure 3A, Figure S3). Clustering of transcript profiles revealed four main patterns of regulation, 

ranging from highly regulated to no effect (Figure S3). Overall, the Mβ class as a group was 

significantly less regulated by the PRC2 medea (mea) mutation than the Mα and Mγ classes, and also 

displayed the least variation (Figure 3B). This is in accordance with previous observations, that the  

Mβ class TF are mainly expressed at low levels or in female gametophytic stages (Bemer et al. 2010).  

 

In the deregulated classes of transcript profiles, consisting of mainly but not exclusively Mα and Mγ, 

the wild type profiles are generally characterized by increasing expression that decreases after a peak 

(Figure S3, left panels). In the mea cross, both this pattern and the peak are shifted towards higher 

expression levels and later developmental stages. In certain cases, decrease is not observed within the 

analyzed developmental time-frame (Figure S3, right panels). A distinct shift in transcript profiles 

could also be observed between the profile clusters in mea, with one class de-repressed before 6 DAP, 

while a second class started at 9 DAP and the third class at 12 DAP (Figure 3A, three top clusters). 

Mγ dominates the two former classes of transcript profiles together with Mα whereas the latter 

constitutes of Mα and Mβ genes. In a recent report, Zhang and colleagues (2018) analyzed MADS-

box type I deregulation in a swinger (swi) mea double mutant.  These authors identified two major 

expression clusters (C1 and C2) based on difference in temporal expression patterns both in the wild 

type and in the PRC2 double mutant. The latter cluster was distinguished by the an up-regulation of 

the expression pattern in the mutant and could be further divided in two clusters (C2.1 and C2.2) 

based on the timing of downregulation in the wild type (Zhang et al. 2018). The three clusters 

described in our study (Figure 3A, three top clusters) are well in line with the realtime-PCR based 

study of Zhang and colleagues (2018). Eight out of 12 genes in the C2.1 cluster are also found in our 

top cluster, starting deregulation at the earliest stage (Figure 3A, top cluster), whereas three genes are 

fund in our second cluster (Figure 3A, second top cluster) together with all mea swi up-regulated 

genes identified in the C2.2 cluster. This also includes AGL91, AGL49 and importantly AGL34 that 

are upregulated in our study, whereas no upregulation was identified by Zhang et al. In contrast, we 

could not detect any up-regulation for AGL64, as reported by the other study (Zhang et al. 2018).  

 

We conclude that the AGL36 sub-clade, including AGL34 and AGL90, as well as the AGL36 

interacting Mα AGL28 are commonly repressed by MEA from 4-6 DAP. The AGL36 and also the 

AGL90 interacting Mα AGL62 are upregulated in mea at 9 DAP, in accordance with the role of 

AGL62 in in endosperm cellularization (Kang et al. 2008).  
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Conservation of Arabidopsis AGL36-like imprinting in hybrid seeds is species dependent  

 

Having analyzed the expression and regulation of MADS-box type I genes i A. thaliana, we turned 

our focus to the expression and role of these genes in the genus Arabidopsis.  MADS-box type I genes 

are often less conserved between model species. For instance, no orthologs of AGL36 were identified 

in rice or maize (Masiero et al. 2011). AGL36-like genes can be found when analyzing more closely 

related species such as in the genus Arabidopsis (Figure 4A, Figure S4). Two genomic loci of AGL36-

like genes were identified in A. arenosa by assembling online resources (see Materials and methods). 

Both were verified in various individuals from two A. arenosa populations using PCR amplification 

(MJ09-1, MJ09-4 (Jorgensen et al. 2011; Lafon-Placette et al. 2017)). The two genes differ in length 

(1050 bp versus 1008 bp). The shorter does not have a continuous open reading frame and most likely 

harbor an intron based on two open reading frames spaced by an 88 bp sequence. The 1050 bp locus, 

but not the 1008 bp AGL36 locus, was confirmed to produce a transcript in 9 DAP seeds, 

corresponding to the globular-embryo seed stage. Online genome sequencing resources of A. lyrata 

subsp. lyrata suggest one AGL36-like gene (Figure 4A). In the subspecies A. lyrata subsp. petrea, two 

loci have been indicated (Yoshida and Kawabe 2013), but by performing Sanger sequencing from the 

A. lyrata subsp. petrea population MJ09-11 (Jorgensen et al. 2011) combined with online resources, 

we concluded that A. lyrata contains only one AGL36-like locus (Figure 4A, Figure S4). Notably, 

although two AGL36-like loci are present in A. arenosa and A. halleri, our analysis indicates that the 

two duplication events creating the AGL36 subclade (AGL34, AGL36, AGL90) do not exist outside A. 

thaliana.  

 

To analyze imprinting of A. arenosa AGL36-like (AaAGL36-like), we screened natural populations 

(MJ09-4 and MJ09-1) for SNPs that could be used to distinguish the parental alleles. We identified 

one individual that had a SNP in AaAGL36-like (I, cf. Figure 4A) that also allowed SNP detection 

with restriction enzymes (Table S1C). Seed RNA was harvested from reciprocal crosses at 9 DAP 

followed by RT-PCR of the SNP containing regions from AaAGL36-like (Table S2). The PCR 

products were digested with SNP specific enzymes (Table S1C) and fragments analyzed (Figure 4B). 

Only maternal expression was found, suggesting that A. arenosa AGL36-like (AaAGL36 I) is an 

imprinted maternally expressed gene.  

 

Next, we analyzed AGL36-like imprinting in hybrids of A. arenosa and A. lyrata. Amplifying AGL36-

like (Table S1C) from cDNA of reciprocal crosses of A. arenosa and A. lyrata resulted in one 

fragment because AGL36-like (I and VI, respectively in Figure 4A) from both species are the same 

length (Figure 4C). When A. arenosa is crossed as mother to A. lyrata, AaAGL36-like is successfully 

digested by EcoRI (Figure 4C, Table S1C). Using A. lyrata as a mother crossed to A. arenosa, no 

EcoRI digestion fragments occur and thus only expression of AlAGL36-like was observed (Figure 4C). 
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As a reciprocal control, we also used A. lyrata specific digestion by TauI, giving only digestion 

fragments in crosses with A. lyrata mothers (Figure 4C).  To verify the identity of the amplified 

fragments and the maternal expression pattern, the undigested PCR products were Sanger sequenced 

and identified as only maternally contributed (Figure S5). In conclusion, only the maternal allele is 

expressed in reciprocal interspecies crosses between A. arenosa and A. lyrata indicating that 

imprinting of AGL36-like is preserved in A. arenosa x A. lyrata hybrid seeds.  

 

Finally, we investigated AGL36/ AGL36-like imprinting in A. thaliana x A. arenosa hybrid seeds, 

using A. arenosa as the paternal cross partner. Upon amplification of cDNA, both maternally 

expressed AtAGL36 and paternally expressed AaAGL36-like fragments could be identified (Figure 4D, 

lanes 5-6, see figure legend). Restriction with AlwNI digest the maternally contributed cDNA (Figure 

4D, Table S1C). The paternal AaAGL36-like fragments remained undigested in hybrid crosses 

employing two independent A. arenosa populations (Figure 4D, lanes7-10). The paternal cDNA was 

verified by Sanger sequencing and comparison to the A. arenosa control (Figure 4D). We thus 

conclude that in hybrid A. thaliana x A. arenosa seeds, and in contrast to hybrid A. lyrata x A. arenosa 

seeds, the silenced paternal A. arenosa allele is reactivated, demonstrating differential action by the 

maternal species in the hybrid. Furthermore, this finding demonstrates that the paternal alleles of 

maternally expressed imprinted genes are deregulated in hybrid crosses., and not limited to paternally 

expressed genes as described in previous studies (Josefsson et al. 2006; Burkart-Waco et al. 2015). 

 

Genetic and environmental factors influence post-zygotic hybrid barriers 

 

Deregulation of MADS-box type I TF genes has been implicated in setting up the post-zygotic 

hybridization barrier in incompatible hybrid A. thaliana x A. arenosa (Strecno1) seeds, and A. 

thaliana mutation of some of these genes could partially rescue the severe late seed phenotype in the 

same hybrid cross from approximately 1 to 10% (Walia et al. 2009). In order to systematically 

examine if the MADS-box type I TF genes analyzed in this work influence the strength of the hybrid 

barrier we noted that previous analyses to investigate hybrid barriers in Arabidopsis have been 

performed under slightly different temperature regimes (Josefsson et al. 2006; Walia et al. 2009; 

Burkart-Waco et al. 2012; Lafon-Placette et al. 2017) and in line with this, the major hypotheses to 

explain hybrid barriers are centered on genetic factors, not taking environmental variation into 

account. In Rice, however, it has been demonstrated that temperature affects cellularization of the 

endosperm (Folsom et al. 2014) and that Type I MADS box TF genes are deregulated during 

moderate heat stress (Chen et al. 2016). To rule out a temperature effect in our experiments, we 

therefore repeated crosses first performed by Walia et al. 2009 with Strecno1 and Col-0 using the 

original temperature regime (22°C) and at slightly lower temperatures (18°C) and also included the A. 

arenosa accession used in this study, MJ09-4. Surprisingly, both the difference in temperature and 
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genetic variation between A. arenosa populations had a major effect on the strength of the post-

zygotic hybrid barrier (Figure 5A,).  

 

To quantify this observation we first investigated seed survival in the same crosses and temperature 

conditions. Using A. arenosa accessions MJ09-4 and Strecno1 (SN1) in crosses to A. thaliana Col-0 

at both 18°C and 22°C, a substantial increase in the survival of hybrid seeds at 18°C for both 

accessions was observed (Figure 5B) with 18°C MJ09-4 replicates showing up to 60% live seeds 

while at the same time also obtaining the same results as Walia et al. 2009 when crossing Col-0 with 

Strecno1 at 22°C (live seed count 1%, N=162) (Figure 5B).  

 

In hybrid seed germination experiments, the temperature dependency of the strength of the hybrid 

barrier became even more evident for the accessions MJ09-4 and SN1 (Figure 5C, p<0,001). 

Interestingly, when comparing two other A. arenosa accessions, MJ09-1 and SN2, in crosses to Col-0, 

these were found to be insensitive to the temperature change tested here although they display a 

higher seed survival rate than SN1 crossed to Col-0 (Figure 5C). These accessions may still be 

affected at larger differences in temperature due do genetic variation and different adaptation. Even 

though the variation between replicates is high, especially in 18°C crosses, a clear bypass effect of 

low temperature on the post-zygotic barrier is observed. Furthermore, germination of both 18°C and 

22°C crosses demonstrate an increased germination rate of hybrid seeds involving the A. arenosa 

MJ09-4 population as paternal cross partner compared to crosses with A. arenosa SN1, SN2 or MJ09-

1 (Figure 5C). Control interspecies crosses crosses in A. thaliana accessions and A. arenosa MJ09-4 

at 18°C and 22°C displayed no significant difference in germination between the temperatures (Figure 

S6). Furthermore, tetraploid A. thaliana mothers have been shown to alleviate the hybridization 

barrier, and to exclude this scenario we verified the diploidy of A. thaliana Col-0 accessions, the A. 

arenosa MJ09-4 population and the Strecno lines (SN1 and SN2) using flow cytometry (Figure S7).  

 

Our findings indicate that genetic variation between A. arenosa populations also influence the success 

rate of hybridization, as previously demonstrated for different A. thaliana genotypes (Burkart-Waco et 

al. 2012). We therefore further investigated the temperature dependency of the hybrid barrier by 

varying the maternal A.thaliana accession used in the hybrid cross. Burkart-Waco et al. 2012 crossed 

56 accessions using the Strecno1 line at 22°C to investigate the effect of the genetic variation on the 

hybrid barrier and could demonstrate a weaker barrier when using C24, producing 17% normal seeds, 

while using Ler-1 and WS-2 resulted in 5,2% and 3,5% normal seeds respectively. Using Col-0 they 

obtained 1,7% normal seeds. Here, we demonstrate that crossing Col-0, Ler-1, C24 and WS-2 

accessions to the A. arenosa accession MJ09-4 give the effect of elevated seed survival for all 

accessions except Ws-2 (Burkart-Waco et al. 2012) when comparing to the previous report using SN1 

at 22°C (Figure 5D). In addition, the accessions Col-0, C24 and Ws-2 have a significant increase in 
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seed survival when decreasing the temperature to 18°C (Figure 5D, p<0,05). Ler-1 appeared to be 

insensitive to the temperature change, similar to the observations using A. arenosa accessions MJ09-1 

and SN2 in combination with Col-0 (Figure 5C). 

 

Previously published data report that the embryo does not make the transition to the heart stage in 

crosses between diploid A. thaliana Col-0 and A. arenosa Strecno1 at 22
o
C

 
(Burkart-Waco et al. 

2013), which we also could confirm for Strecno1 under our laboratory conditions at 22
o
C (Figure 5). 

Our analysis at 18
o
C, however, demonstrates that most seeds develop past this point (Figure 6A-I). 

There was a clear correlation between the severity of the hybrid barrier in A. arenosa accessions and 

the timing of endosperm cellularization in hybrid seeds (Figure 6A-I) suggesting that endosperm 

cellularization is the major mechanism for setting up the barrier. 

 

The role of MADS Type I loci in the A. thaliana A. arenosa hybrid barrier. 

In order to investigate the specific effect of selected MADS type I loci in establishing or bridging the 

A. thaliana A. arenosa hybrid barrier, we analyzed insertional mutant alleles of the selected candidate 

genes (Figure S8A, Table S3). Homozygous mutants could be obtained for all investigated loci except 

as previously described for AGL62 (Kang et al. 2008), suggesting no vital requirement in seed 

development. Significantly reduced transcript levels were demonstrated in all lines with the exception 

of AGL34 where transcript levels were significantly elevated (Figure S8B). Segregation analysis could 

not detect reduced transmission of the mutant alleles suggestive of a requirement in male or female 

gametophytes or a recessive effect in embryo or endosperm (Figure S8C, Table S4). We also 

inspected seed size, seed germination and flowering time. For this analysis agl28-1 was omitted due 

to mixed Ws-2 Col-0 accession background. Only minor differences were observed in seed size and 

flowering time (Figure S9A-B) and no difference in germination of mutant seeds was observed (97-

100%, N=200). Finally, seed developmental phenotypes in single and higher order mutants were 

investigated, scoring live, aborted and unfertilized seeds (Figure S9C). Notably, a heterozygous 

agl62-1 mutation in a double homozygous agl28-1 agl36-1 background did not differ from single 

agl62 mutants. We concluded that a thorough analysis of seed development in single, double and 

triple mutants of AGL34, AGL35, AGL36 and AGL90 including their interaction partners AGL28 and 

AGL62 did not result in any obvious seed developmental phenotypes (Figure S8, Figure S9).  

 

In the case of agl28-1 a mixed Ws-2 Col-0 accession background did not allow a direct comparison of 

hybrid seed barrier strength effects, due to the strong effect of the Ws-2 accession (Figure 5D, right 

panel). Indeed, single agl28-1 mutants as well as double or triple mutant combinations with agl36, 

agl62 and agl90  crossed with A. arenosa all produced significantly lower seed germination rates in 9 

out of of 10 cross combinations (Figure S10A). In a direct comparison using Ws-2 wild type as 

control, compared to Col-0 and agl28-1 when crossed with A. arenosa MJ09-4, revealed no difference 
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in seed germination rate between Ws-2 and agl28-1(Figure S10B, left). In order to further investigate 

the role of agl28-1 we generated an AGL28 genomic rescue construct that was transformed into 

homozygous agl28-1 mutant background. Six homozygous T2 lines were crossed to A. arenosa 

MJ09-4 and scored for germination (Figure S10B, right). None of the rescue lines were significantly 

different from agl28-1 or the Ws-2 control, suggesting that the observed reduced germination is 

caused by the Ws-2 background alone. Since the Ws-2 background effect co-segregated with the 

agl28 mutation through repeated introgression to Col-0, we hypothesized a major part of the genetic 

variation causing the strong Ws-2 A. arenosa hybrid barrier to be linked to the AGL28 locus. In order 

to genetically map the effect, we backcrossed a Col-0 introgressed hemizygous agl28-1 to Col-0 and 

genotyped the progeny for the presence of agl28-1, and crossed the two types of plants resulting with 

A. arenosa  MJ09-4 pollen donors (Figure S10C, see legend for detail). Plants wild type for the 

AGL28 locus had a high probability to be Col-0 in the AGL28 region, and did also regain Col-0 

germination rates in crosses with A. arenosa  (Figure S10C, NS not significantly different). In 

addition, plants hemizygous for agl28-1 having a high probability to be Ws-2 Col-0 heterozygous in 

the AGL28 region, displayed intermediate germination levels and were still significantly different 

from Col-0 (Figure S10C, p<0,05). This strongly suggest the strong Ws-2 effect on the hybrid barrier 

to be linked to the AGL28 region on top of chromosome 1. 

 

Finally, various single and double A. thaliana MADS-box type I mutants were crossed with the A. 

arenosa MJ09-4 population at the two temperatures established (18°C and 22°C ). First, we wanted to 

investigate the influence of the mutated loci on the strength of the hybrid barrier, as measured by 

germination rate. Secondly, we wanted to explore if the identified temperature effect on the strength 

of the hybrid barrier was modulated by the mutated loci, as observed using in both A. thaliana and A. 

arenosa accessions (Figure 5C, D). 

 

Hybrid seed phenotypes were inspected for some representative crosses at 18°C (Figure S11A-C). We 

observed the seed classes normal non-collapsed seeds, collapsed brown seeds and viviparous seeds 

(Figure S11A). The frequency of non-collapsed seeds in a silique and seed germination frequency 

were well correlated (Figure S11B). Seed size measurements also displayed variation but no strong 

effect of the mutant mother background (Figure S11C). The ploidies of A. thaliana x A. arenosa 

hybrids with both Col-0 and agl36-1 agl90-2 as mother were verified using flow cytometry (Figure 

S7).  

 

In general, none of the single or higher order A. thaliana mutants had a significant effect to alleviate 

the hybrid barrier when crossed to the A. arenosa MJ09-4 accession (Figure 7). This is conflicting 

with previous data reported for agl62 and agl90 crossed with an A. arenosa Strecno1 population at 

22°C (Walia et al. 2009). In the Walia study, mutants of agl62 and agl90 used as mothers in the cross 
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increased the germination frequencies from 1% in crosses with Col-0 to 10% in crosses with agl62 

and agl90. In our experiment, the average germination frequencies of of agl62-1 at 22°C, and the 

average germination frequencies of agl34-2 at 22°C were indeed slightly higher than the Col-0 control 

crossed to A. arenosa, but the difference is not significant. We could therefore not reproduce the 

findings of Walia et al. in crosses using the A. arenosa MJ09-4 accession. The reason for this 

discrepancy may be genetic differences in the A. arenosa accessions used (MJ09-4 in this study 

versus Strecno1 in Walia et al.). As demonstrated here, different A. arenosa accessions can modulate 

the strength of the hybrid barrier (Figure 5C).  

 

We did however see a significant effect of the single mutant agl35-1 to aggravate the hybrid barrier 

when crossed to the A. arenosa MJ09-4 accession (Figure 7). Significant reduction was observed at 

both temperatures tested. When the homozygous agl35-1 mutant was crossed to A. arenosa at 18°C, a 

significant reduction from average values of close to 50% germination to less than 20% was observed 

(Figure 7, p<0,001), and in the 22°C  experiment we found a reduction from more than 25% to close 

to 15% (Figure 7, p<0,01). These findings suggest that AGL35 may play a role to relieve and bypass 

the hybrid barrier, or that lack of AGL35 disrupts or lowers the treshold for disruption of endossperm 

cellularization. 

 

It is noteworthy that the effect of lower temperature to alleviate the hybrid barrier is also is bypassed 

by mutation of AGL35. We analyzed if any of the loci investigated played a role in establishing the 

observed temperature effect on the hybrid barrier strength (Figure 7).  The Col-0 control and most 

mutant crosses, including agl23,agl36, agl62 and agl90 displayed significant differences in 

germination frequencies between the two temperatures examined (Figure 7). Crosses with the single 

mutants agl34 and agl35 and the agl36 agl62 double mutant, however, displayed no significant 

differences in its germination rate between 18° and 22°C (Figure 7), similar to the previous 

observation in the Ler-1 accession cross (Figure 5D). The temperature immunity seen in agl35 appear 

to be the most prominent due to low variation in the observations, and may suggest that the AGL35 

links the hybrid block to the temperature effect.  

 

Discussion  

 

The role and regulation of imprinted genes 

 

In this report we have systematically analyzed the function and conservation of imprinting of a subset 

of MADS-box type I TFs in hybrid crosses in the context of biological and environmental variance. In 

our expression analysis we observe that Mα and Mγ class type I TFs are highly represented in the 
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transcriptome of the developing seed, and that both classes contain correlated transcript profiles that 

peak around the onset of endosperm cellularization. The expression peak occurs at a crucial 

developmental time point when the endosperm switches from nutrient sink to source for the 

developing embryo (Lafon-Placette et al. 2016), which is suggestive of a function in this process. 

Defects in endosperm cellularization are also the mechanistic basis for a post-zygotic reproductive 

barrier between Arabidopsis species and thus support a role for these genes in a hybrid scenario. The 

Mα and Mγ class co-regulation is consistent with the notion that Mα forms dimers with the Mγ-type 

MADS-box TF class (de Folter et al. 2005). Furthermore, since imprinted genes interact with 

biparentally expressed genes this would favor the dosage hypothesis for the selection of imprinted 

genes (Dilkes and Comai 2004). According to this hypothesis imprinting is a means to optimize the 

expression level of a gene, opposed by the parental conflict theory, where parental conflict over 

resources leads to selection of genes that promote or restrict resource allocation (Haig and Westoby 

1991).  

 

It has been postulated that maternally expressed imprinted genes are regulated by the release of DNA 

methylation in the central cell by central cell specific action of the DNA glycosylase DEMETER 

(DME). We could, however, demonstrate that lack of DNA methylation maintenance in the pollen 

germline does not activate all silenced paternal alleles. There is a discrepancy between the lack of 

activation of paternal AGL36 observed in this work and previously published data (Shirzadi et al. 

2011). However, the two studies were done using different accessions and also different met1 mutant 

alleles. Accession specific effects are less likely since we see paternal reactivation of AGL28 using the 

same accessions. However, since the history of zygosity is not known for the met1 allele used in the 

previous study, accumulated hypomethylation may explain the inconsistency. Nevertheless, even 

though the paternal allele of AGL28 reactivated in our study, paternal silencing of AGL90 and AGL36 

was not lifted. In this study, met1-7 was held as heterozygous, thus avoiding parental demethylation. 

This suggests that maternally expressed imprinted genes may be regulated by other mechanisms or 

have different regulatory requirements.  

 

Evolution of silencing of the paternal allele of maternally expressed imprinted genes has been 

associated to global methylation patterns generated towards suppressing transposons (Kim and 

Zilberman 2014; Anderson and Springer 2018). De novo methylation of transposons is mainly 

performed by the action of RdDM, and in the lack of a mechanistic scenario for the imprinting of 

maternally expressed genes this pathway is an obvious candidate. Several Mα and Mγ class type I TFs 

including AGL36 have also been suggested to be upregulated in lack of RdDM (Lu et al. 2012). In the 

case of AGL36 we could, however, not observe any change in paternal silencing in reciprocal crosses 

with a PolIV mutant (nrpd1), i.e. blocking canonical RdDM. Furthermore, we were also unable to 

verify the previously reported upregulation of AGL36 in the same crosses and time points (Lu et al. 
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2012). In order to determine the global effect, however, a systematic elucidation of the role of RdDM 

in the regulation of maternally expressed imprinted genes is required.  

 

Although it does not regulate imprinting of maternally expressed genes, we show that repression by 

PRC2 is specifically targeted towards Mα and Mγ class type I TFs and acts to repress gene activity 

concurrent with and at post-cellularization stages. In absence of MEA, only the maternal allele of 

AGL36 is upregulated (Shirzadi et al. 2011), indicating that the mode of regulation does not interfere 

with the actual imprinting mechanism. We hypothesize that DNA methylation of the paternal allele 

protects from PRC2 repression, as suggested for the paternally expressed imprinted gene PHE1 

(AGL37) (Villar et al. 2009; Makarevich et al. 2008; Kohler et al. 2003). In such a scenario the 

paternal allele of paternally expressed genes should be targeted by PRC2 at cellularization, but the 

mechanism here remains to be explored. We observe, however, that Mα and Mγ class type I TFs are 

regulated by PRC2 in distinct clusters from 6 to 12 DAP and that maternally and paternally expressed 

genes are co-regulated in the same cluster. While the meaning of the observed gradual repression by 

FIS-PRC2 in the context of Mα and Mγ role in seed development remains open to speculation, it 

seems clear that FIS-PRC2 acts through specific sets of genes at successive stages in seed 

development, rather than exerting a global effect in the seed concurrent with endosperm 

cellularization.  

 

Species dependent deregulation of imprinting 

We identified orthologs of AGL36 in A. arenosa and A. lyrata and studied imprinting in A. arenosa 

and hybrids of A. arenosa, A. lyrata and A. thaliana. AGL36 is imprinted in A. thaliana and 

maternally expressed, and here we prove that one of the two AGL36-like genes in A. arenosa is also 

exclusively maternally expressed, demonstrating conservation of imprinting. The maternal allele of 

the paternally expressed imprinted genes have previously been shown to be reactivated in the hybrid 

of A. thaliana and A. arenosa (Walia et al. 2009; Josefsson et al. 2006; Burkart-Waco et al. 2015). We 

show that, in hybrid A. thaliana x A. arenosa seeds, the paternal AGL36-like allele is reactivated, 

suggesting that deregulation in hybrid crosses is not limited to paternally expressed genes as described 

in previous studies (Walia et al. 2009). This loss of regulation is in strong contrast to the A. lyrata x A. 

arenosa hybrid cross where the imprinting of AGL36-like is maintained.  

 

The variation or perturbation of the pattern of imprinting might play a role in the endosperm 

hybridization barrier between species (Florez-Rueda et al. 2016), and in the case described here, 

different mechanisms may act in the same species depending on the cross partner. Previous imprinting 

analyses involved crosses between inbreeders and outbreeders, fueling speculation that the 

mechanisms regulating imprinted genes may differ depending on the mating system (Josefsson et al. 

2006; Burkart-Waco et al. (2012); Hatorangan et al. 2016; Klosinska et al. 2016). However, 
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intraspecific variation of imprinting within A. thaliana has previously been demonstrated (Waters et al. 

2013; Pignatta et al. 2014). Consistent with the notion that imprinting can vary independently of 

mating systems, reactivation of the normally imprinted paternal A. arenosa AGL36 allele depended on 

the maternal species: it was observed only in crosses to A. thaliana but not to A. lyrata.  

 

A temperature and population dependent quantitative barrier phenotype 

We have identified an important role of temperature in the establishment of endosperm based post-

zygotic hybrid barriers. This opens for speculation and a multifaceted scenario emerges identifying 

several parameters; both intrinsic variation in genetic pathways in both parents and external abiotic 

factors such as temperature may act in concert to mediate the generation of post-zygotic species 

barriers.  

 

The discovery that lowering the temperature by only 4°C from 22°C to 18°C degrees during the 

fertilization and development of the A. thaliana x A. arenosa hybrid seed increases survival was 

surprising. Nevertheless, incompatibility between diverged individuals can be sensitive to temperature 

as, for example, in seedling hybrid necrosis (Bomblies and Weigel 2007). In this case, however, 

appropriate temperatures can ameliorate acute incompatibilities manifested only during early seed 

development and, therefore, may play a significant role in reducing interspecific hybridization barriers. 

High environmental sensitivity may also explain inconsistencies with previous studies noted in 

Results. 

 

Crossing A. thaliana wild type Col-0 and mutants to different A. arenosa accessions demonstrated 

variation depending on the pollen donor and no significant increase in seed viability could be 

observed by using the mutants of the MADS-box type I TFs as mothers. The variability caused by 

natural variation has been demonstrated in A. thaliana by using different accessions. Burkart-Waco et 

al. (2012) used the diploid A. arenosa accession Strecno-1 and crossed it as the pollen donor to 56 A. 

thaliana accessions and scored seed viability ranging from 30% normal seeds to close to 2%. Burkart-

Waco et al. (2013) compared seed development of A. thaliana accessions Col-0 and C24 crossed to A. 

arenosa, which respectively produced 0 to 1% and ~17% live hybrid seeds. Hybrid embryos at all 

stages beyond 2 DAP were developmentally delayed and similar between Col-0 and C24, with the 

exception of a few C24 x A. arenosa hybrid embryos displaying developmental progression to heart 

stage by 6 DAP, whereas no Col-0 embryos made this transition. This is in clear contrast to our 

findings where most seed survive this stage. Using different A. thaliana accessions in crosses to the A. 

arenosa accession MJ09-4, we obtained highest seed germination rates in crosses with C24. However, 

the cross combination with the Ws-2 accession produced similarly low germination rates as the A. 

arenosa accession Strecno-1 crossed with Col-0. This indicates that rather than specific accession 

having specific effects, it is the combination of accessions that determines the strength of the hybrid 
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barrier. Although we could not observe elevated seed viability when single or multiple MADS-box 

type I mutants were used in crosses to A. arenosa, deficiency of AGL35 resulted in significant 

reduction of the germination frequency. Notably, mutants of AGL35 crossed to A. arenosa display two 

effects: first, it increase lethality; second, it decrease or eliminate the temperature effect, suggesting a 

critical role for this gene in mediating the strength of the hybrid block and the temperature effect. 

 

Weakening of hybridization barriers at lower temperatures might increase fitness of a self-

incompatible colonizer by broadening mate choice: few viable seeds are better than no seed. This 

mechanism could, for instance, have been important for recolonization after the Pleistocene 

glaciations, a period that was characterized by secondary contact and high amount of hybridization 

with or without genome duplication (Stebbins 1984; Brochmann et al. 2004). Although A. thaliana is 

a self-crosser, the mechanism might be ancestral and predate A. thaliana. Its occurrence should be 

investigated by hybridizing more species under varying temperature. In northern Europe and the 

Fennoscandian region, A. thaliana with unreduced gametes has most likely hybridized with pollen 

from tetraploid A. arenosa to create the allotetraploid A. suecica on multiple hybridization events 

(Novikova et al. 2017). Making a synthetic tetraploid A. thaliana and crossing it to A. arenosa, can 

make viable, although unstable, hybrids (Comai et al. 2000). Environmental stress such as heat or cold 

may increase the rate of unreduced gamete formation (De Storme and Mason 2014) and facilitate 

hybridization between diploids and tetraploids (Vallejo-Marin and Hiscock 2016). Such instances of 

genome doubling, however, did not occur in our experiments as flow cytometry of sampled hybrids 

indicated genome content consistent with reduced gametes of the diploid parents A. thaliana and A. 

arenosa. Formation of 2N gametes may be under different regulation in Arabidopsis. The temperature 

sensitive mechanism affecting the endosperm-based barrier and its dependency on AGL function 

remain an open area of investigation.  

 

In Rice, it has been shown that temperature affects cellularization of the endosperm (Folsom et al. 

2014) and that Type I MADS box TF genes are deregulated during moderate heat stress (Chen et al. 

2016). The temperature stress tested were much higher than tested here for Arabidopsis, but the 

different species have different temperature adaptations in general. The rice MADS box TF 

OsMADS87 is a heat-sensitive imprinted gene which is associated with syncytial stage endosperm 

and regulates rice seed size (Chen et al. 2016). OsMADS87 is a putative ortholog of Arabidopsis 

PHE1. Mutants of OsMADS87 have accelerated endosperm cellularization and lower sensitivity to a 

moderate heat stress in terms of seed size (Folsom et al. 2014, Chen et al. 2016). Our results indicate 

that some of the Arabidopsis thaliana MADS box mutants hybridized to A. arenosa, display a 

lowered heat sensitivity that may indicate a temperature sensing role for the MADS box genes in the 

endosperm of A. thaliana as well. Considering that many of the Type I MADS box genes are 

regulated by the PRC2 complex and that the finding that OsFIE1 is imprinted and temperature 
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sensitive in rice seeds (Folsom et al. 2014), this proposes an epigenetic regulation during hybrid seed 

development which is altered during environmental perturbations (Folsom et al. 2014). Given the 

importance of overcoming post-zygotic isolation for the early stages of neo-hybridization (Vallejo-

Marin and Hiscock 2016), this temperature effect can be a useful tool for investigating the endosperm 

based post-zygotic barrier and early speciation. 

 

Materials and methods 

 

Plant material and cultivation 

A. thaliana accessions and mutant plant lines were obtained from the Nottingham Arabidopsis Stock 

Center (NASC) unless specified otherwise. For details on MADS-box type I mutant lines see Table 

S1. The met1-7 and nrpd1 accession numbers are SALK_076522 and SALK_083051, respectively. 

The mea/fis1 mutant was kindly supplied and described in Chaudhury et al. (1997). The A. arenosa 

populations MJ09-1 and MJ09-4 and the A. lyrata MJ09-11 descended from natural populations in 

central Europe as described, respectively, by Jørgensen et al. (2011) and Lafon-Placette et al. (2017). 

A. arenosa populations Strecno1 (SN1) and Strecno2 (SN2) were kindly supplied by Kirsten 

Bomblies (Hollister et al. 2012). Seeds were surface sterilized either by washing steps with 70% 

ethanol, 20% bleach and wash solution (0.001% Tween20) or by over-night chlorine gas sterilization 

(Lindsey et al. 2017), sown out on 0.5 MS plates (Murashige and Skoog 1962) supplemented with 2% 

sucrose and appropriate antibiotics for selection of mutant lines. The seeds were then stratified over-

night (A. thaliana) or 1 to 3 weeks (A. arenosa and A. lyrata) at 4°C before transferring to growth 

chambers with either 18°C or 22°C under long day conditions (16 hr light, 160 µmol/m
2
/s, relative 

humidity 60-65%). A. thaliana A. arenosa F1 hybrid seeds were stratified at 4°C for 4-6 days before 

being placed in growth chambers for scoring of germination as seedling root protruding from the seed 

regardless of survival at later stages. Germinated seedlings were transferred to soil and grown under 

long day conditions at 18°C or 22°C. A. arenosa and A. lyrata plants were vernalized at 8°C under 

short day conditions (10 hr light) for 4-5 weeks to stimulate flowering. To avoid self-pollination, 

controlled crosses were performed by emasculating unopened flower buds followed by hand 

pollination after 2 days. Developing or mature seeds were harvested for designated purposes at 

defined time points. See Table S5 for an overview of interspecies crosses. For flowering time analysis, 

flowering time was scored as day after stratification and the average number of leaves at stem 

emergence from the rosette.   
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Tissue handling, DNA and RNA extraction and cDNA synthesis 

Tissue was harvested directly in liquid nitrogen and DNA was isolated using E.Z.N.A. Plant DNA kit 

(Omega) according to manufacturer’s instructions. For total RNA isolation, seeds were hand-dissected 

from siliques directly into pre-chilled tubes with MagNA Lyser Green Beads (Roche) and grinded in 

lysis buffer (Sigma Plant total RNA kit) using a MagNA Lyser Instrument (Roche). Isolated RNA 

was treated with DNase I (Sigma) and cDNA synthesized with Oligo (dT) and Superscript III reverse 

transcriptase (Invitrogen). Samples were cleaned using a QIAquick PCR purification kit (Qiagen). 

DNA or RNA concentration was measured using a NanoDrop1000 spectrophotometer or RNA was 

measured with a Qubit 3 fluorometer (ThermoFisher) using the Qubit RNA BR Assay kit (Invitrogen). 

All kits were used according to the manufacturers’ instructions. 

 

RNA Sequencing and sequence analysis 

Total RNA was isolated from dissected seeds 1, 2, 3, 4, 6, 9 and 12 DAP from Ler crossed to Col-0 

and from mea/fis1 crossed to Col-0 in two biological replicates as described previously (Shirzadi et al. 

2011). RNA samples were DNase treated before quality checked using an Agilent 2100 Bioanalyzer. 

Total RNA was prepared to a Strand-specific TruSeqTM RNA-seq library and all 28 samples 

sequenced over 3 lanes on an Illumina HighSeq 4000, 150 bp paired end reads. Differential 

expression analysis was performed with RSEM (Li and Dewey 2011) using the edgeR software 

package (McCarthy et al. 2012). The expression profiles were analyzed and visualized using the 

Tidyverse 1.2.1, ComplexHeatmap 1.17.1 (Gu et al. 2016), Dendextend 1.7.0 (Galili 2015), Viridis 

0.5.0 packages in R version 3.4.3.  

 

Molecular cloning and genotyping 

All T-DNA mutant lines were genotyped using specific primers (Table S1, Table S2). Due to high 

sequence similarities between MADS box genes and AGL36-like genes in different species, primers 

were optimized to ensure specific amplification and fragments were sequenced for confirmation of 

identity. The sequencing and characterization of AGL36-like genes from MJ09 A. arenosa and A. 

lyrata lines were performed by PCR amplification with designated primers (Table S2) using KOD 

Hot Start DNA polymerase (Sigma) according to manufacturer’s instructions with 1,5 mM of MgSO4 

and PCR program with 95°C denaturation, 55°C annealing, and 70°C extension for 35 cycles. The 

amplified fragment was subsequently cloned into a TOPO Blunt pCR Zero vector (Invitrogen) 

according to the manufacturers’ instructions. The AGL28 genomic complementation construct was 

created by nested PCR using primers described in Table S2 containing att sites for GateWay cloning 

(Invitrogen) according to the manufactures’ instructions. The genomic AGL28 fragment was 3531 bp 

including 2000 bp upstream of the start codon and 500 bp downstream of the stop codon and was 

cloned into the destination vector pMDC99. The construct was transformed into Agrobacterium 

tumefaciens strain GV3101 pMP90RK which was used to transform agl28-1 mutant using the floral 
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dip method (Clough and Bent, 1998) and transformants were selected for by the appropriate resistance 

encoded in the inserted T-DNA, hygromycin. All sequences from A. arenosa and A. lyrata generated 

for this study have been deposited in the National Center for Biotechnology Information Sequence 

Read Archive (https://www.ncbi.nlm.nih.gov/) with accession numbers MN380433 to MN380437. 

 

Phylogenetic analysis  

All alpha and gamma MADS-box genes were extracted from the A. thaliana genome (TAIR10 at 

https://www.arabidopsis.org/). The genomic sequence was translated into amino acid with the 

AUGUSTUS gene prediction program (Stanke and Morgenstern 2005) using the A. thaliana gene 

model. Nucleotides from the coding regions were aligned based on the protein sequence with 

PAL2NAL (Suyama et al. 2006). Positions with more than 80% gaps and ambiguously aligned 

positions were removed from the alignment. A phylogenetic tree was inferred from the resulting 

alignment using the GTRGAMMA model and the automatic bootstrapping criteria MRE (option -l 

autoMRE) in RAxML v8.0.26 (Stamatakis 2014; Pattengale et al. 2011). The genes AGL34, AGL36, 

and AGL90 from A. thaliana were used as queries in BLAST against the non-redundant nucleotide 

database at NCBI (blast.ncbi.nlm.nih.gov/) to find all homologous genes in the Arabidopsis genus. In 

addition, all available Arabidopsis Illumina whole genome sequence data from Sequence Read 

Archive (SRA) was employed in the phylogenetic analysis. These libraries were assembled with rna-

spades (Bankevich et al. 2012) and AGL36 related genes were identified with BLAST. All AGL36 

related genes were aligned and phylogenetic trees were inferred as for the MADS-box genes. In the 

final analysis only one copy of the gene was kept for each species.  

  

Real-time quantitative PCR 

Real-time PCR was performed on a LightCycler 96 instrument using FastStart Essential DNA Probes 

Master protocol (Roche) and FastStart Essential DNA Green Master protocol (Roche) using 

designated primers (Table S2). Relative expressions were calculated according to Pfaffl (2001) and 

are average values of at least two biological replicates. In reactions with low relative expression an E-

value of 2.0 was used. All PCR products were sequenced to verify identity of the product amplified.  

 

Single nucleotide polymorphism (SNP) analysis 

Seed tissue was sampled at 4 DAP from reciprocal crosses from A. thaliana, at 7 DAP from crosses 

between A. thaliana and A. arenosa, and at 9 DAP from reciprocal crosses of A. arenosa and A. lyrata. 

cDNA was amplified by PCR using designated primers (Table S2) and digested using SNP specific 

enzymes (Table S4) analyzed on an Agilent 2100 Bioanalyzer using the DNA-1000-LabOnChip 

system (Agilent Technologies). Images for figures were assembled using Illustrator software (Adobe). 
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Dry seed phenotyping using ImageJ 

For A. thaliana A. arenosa hybrid crosses, mature seeds were harvested one silique at a time before 

imaging using a Nikon D90 and analysis using ImageJ to determine seed size (mm
2
). Viviparous 

seeds were excluded from the analysis. MADS-box type I mutants were grown and harvested at the 

same time and conditions. Seed size was measured and analyzed using ImageJ to determine the 

average seed size (mm
2
) per plant. The significance differences between plant lines were tested using 

Kruskal-Wallis test: p=0,0047 and in pairwise comparison to wildtype (Wilcoxon rank-sum test).  

 

Microscopy and Feulgen staining of seeds 

Tissue was harvested from A. thaliana and A. thaliana x A. arenosa at 7 DAP and 10 DAP (seeds 

from 3 siliques per biological replicate). The seeds were stained with Schiff’s reagent (Sigma-Aldrich 

S5133) following fixation and embedding in LR White (London Resin) as described by Braselton et al. 

(1996). An Olympus FluoView 1000 Confocal Laser Scanning microscope (BX61WI) with an 

excitation of 488 nm and emission from 500 to 600 nm was used for imaging. 

 

Ploidy measurements of adult hybrids as well as crossing parents 

Ploidy was measured for a selection of the plants with two of the A. arenosa parents (from MJ09-4 

population), two Col-0 plant individuals, 14 A. thaliana Col-0 x A. arenosa F1 hybrids and 12 A. 

thaliana agl36-1 agl90-2 x A. arenosa F1 hybrids. Also, the A. arenosa lines Strecno1 and Strecno2 

were included to confirm ploidy. One rosette leaf and one inflorescence were analysed for all samples 

except for agl36-1 agl90-2 x A. arenosa F1 hybrids where only rosette leaves were analysed. The 

ploidy was assessed by establishing the genome content by estimating the relative fluorescence 

intensities by flow cytometry (FCM) and the two-step methodology according to Dolezel et al. (2007). 

The reference standards for the raw cytometric analysis were Solanum pseudocapsicum for the A. 

thaliana and A. arenosa hybrid comparison to A. thaliana, and Carex acutiformis for the A. arenosa 

Strecno1 (N=10) and Strecno2 (N=12). The samples and the internal reference were chopped with a 

razor blade in 0.5 ml ice-cold Otto I buffer (0.1 M citric acid, 0.5% Tween 20). This was then filtered 

through a nylon mesh (loop size 0.42 µm), incubated at room temperature for 5 min before being 

stained with 1 ml of Otto II buffer (0.4 M Na2HPO4 ·  12 H2O) supplemented with AT-selective 

fluorescent dye DAPI (4’,6-diamino-2-phenylindol) and 2-mercaptoethanol in final concentrations of 

4 μg/ml and 2μl/ml, respectively. After about 5 min of incubation at room temperature, the relative 

fluorescence intensity for a minimum of 3000 nuclei was recorded using a Partec Space flow 

cytometer (Partec GmbH, Münster, Germany) equipped with an UV-LED chip (365 nm). The FCM 

results are the fluorescence intensities relative to unit fluorescence intensity of the internal reference 

standard. 
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Accession Numbers 

All sequences generated in this study have been deposited in the National Center for Biotechnology 

Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) with project number 

PRJNA562212. 
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Supplementary legends 

Figure S1: Phylogeny and expression of MADS-box type I transcription factors during seed 

development.  

 

Figure S2: Imprinting analysis of AGL28, AGL35, AGL36 and AGL90.  

 

Figure S3: Clustering of MADS-box type I genes based on expression pattern in wild type and 

mea mutant seeds.  

 

Figure S4: AGL36 related genes from all available Arabidopsis genomes in Sequence Read 

Archive, GenBank and Phytozome.  
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Figure S5: Imprinting analysis of AGL36-like in the reciprocal cross of A. arenosa and A. lyrata.  

 

Figure S6: Germination rate in self crosses of A. thaliana accessions and A. arenosa MJ09-4 is 

not affected by temperature.  

 

Figure S7: Ploidy measurement of Arabidopsis populations and hybrids.  

 

Figure S8: Genetic analysis of selected MADS-box type I transcription factors.  

 

Figure S9: Phenotypic characterization of MADS-box transcription factor mutants.  

 

Figure S10: Characterization of a genetic background effect in mixed A. thaliana accessions 

crossed to A. arenosa.  

 

Figure S11: F1 hybrid seed phenotypes from A. arenosa crosses to A. thaliana Col-0, agl36-1, 

agl90-1, agl90-1 and agl36-1 agl90-2 at 18°C.  

 

Table S1: Schematic overview of restriction digest set-up.  

 

Table S2 Oligonucleotide name, sequence and description. 

 

Table S3: Characterization of mutants used in this study.  

 

Table S4: Segregation of the mutant alleles agl28-1, agl34-2, agl35-1, agl36-1, agl90-1 and 

agl90-2 in self crosses and in reciprocal crosses to wild type (Col-0).  

 

Table S5: Crossing scheme for various A. thaliana to A. arenosa experiments.  
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Figure legends 

Figure 1: MADS-box type I transcription factors share similar expression profiles during seed 

development. A) Maximum likelihood phylogeny of alpha and gamma MADS-box type I genes in 

Arabidopsis thaliana. The tree was inferred using the GTRGAMMA model on 41 genes with 532 

unambiguously aligned nucleotides. Scale bar represents the mean number of nucleotide substitutions 

per site. Only bootstrap values above 65% are shown. B) Gene expression profiles of alpha and 

gamma MADS-box type I genes were ordered in five groups according to the branching pattern. 

Transcript quantification and differential expression analysis was performed with RSEM and 

visualized using R. Gene expression profiles for stages ranging from one to 12 days after pollination 

(DAP) are relative to four DAP using a base-2 logarithmic scale (logFC). Two biological replicas 

with three technical replicas were analysed. Note that genes within groups show similar gene 

expression profiles, with a common maximum reached between three and six DAP. 

 

Figure 2: Imprinting and epigenetic regulation of AGL28, AGL35, AGL36 and AGL90. A) 

Imprinting analysis of AGL28, AGL35, AGL36 and AGL90 using accession specific restriction digest 

on single nucleotide polymorphisms (SNPs) in reciprocal crosses between accessions Tsu-1 and Col-0. 

For each panel, the accession specific digestion pattern is indicated. Seeds were harvested for analysis 

four days after pollination (DAP). Bioanalyzer images of one of three biological replicas is shown. B) 

SNP analysis of AGL28, AGL35, AGL36 and AGL90 in crosses with met1-7+/- (Col-0 background) 

pollen. Only AGL28 display paternal activation in the met1-7+/- mutant. Wild type (WT) crosses are 

duplicated from A) for visualization. Crosses were harvested as A). Bioanalyzer images of one of 



A
c

c
e

p
te

d
 A

r
ti

c
le

three biological replicas is shown. C) SNP analysis of AGL36 in reciprocal crosses between WT (Col-

0) or nrpd1 (Col-0) and WT (Ler). Crosses were harvested six DAP. The AGL36 imprinting pattern is 

not changed in the nrpd1 crosses compared to WT crosses. D) Real-time PCR analysis of AGL36 

expression in three biological replicas the nrpd1 background at six DAP. The relative expression 

difference is not significant (NS, t-test; p=0,389). E) Real-time PCR verifying significant knock-down 

(t-test; p=0,015, indicated by asterisk) of NRPD1 in three biological replicas of nrpd1 homozygous 

background. Error bar indicate standard deviation (SD). 

 

Figure 3: PRC2 dependent transcriptional repression of MADS-box type I transcription factors 

during seed development. A) Heat-map clustering of gene expression profiles of MADS-box type I 

transcription factors (TFs) in the Polycomb Repressive Complex 2 (PRC2) MEDEA mutant seeds 

(mea) compared to wild type (WT). Expression profile based clustering, transcript quantification and 

differential expression analysis was performed for three biological replicas using RSEM and 

visualized using R. Differential gene expression profiles for stages ranging from one to twelve days 

after pollination (DAP) are shown using a base-2 logarithmic scale (logFC). Note strong expression 

change in three out of four expression clusters. B) Box-plot showing class specific expression of 

MADS-box type I TFs at stages from one to twelve DAP. The MEA dependent repression is shared 

by the alpha (Mα) and gamma (Mγ) class TFs, while the beta (Mβ) class is weakly affected in the mea 

background. Relative expression changes are displayed in a base-2 logarithmic scale. 

 

Figure 4: Conservation and imprinting of AGL36-like genes in Arabidopsis and in selected 

hybrid crosses. A) Maximum likelihood phylogeny of AGL36-like genes in A. arenosa, A. 

pedemontana, A. halleri, A. lyrata and A. thaliana. The tree was inferred using the GTRGAMMA 

model on 15 sequences with 938 unambiguously aligned nucleotides. Because of space limitations 

branches marked ½ are shortened to half their original length. Only bootstrap values above 65% are 

shown. Scale bar represents the mean number of nucleotide substitutions per site. Arabidopsis species 

are indicated by colors. Roman numerals (right) indicate distinct genes in the respective species and is 

used as reference in B-D. B) SNP analysis of A. arenosa AGL36 (I) in MJ09-4 background at 9 days 

after pollination (DAP). Left half, undigested; right half, digested with BceAI. Cross plants where 

AaAGL36 is digested by BceAI are indicated “A.a.”. Cross plants where AaAGL36 is not digested by 

BceAI are indicated “A.a. SNP”. The shorter 475 bp fragment is AaAGL36. AaAGL36 (I) is 

maternally expressed in A. arenosa as only the undigested AGL36 fragment is present when A.a SNP 

is the mother, whereas completly digested fragments result when A.a. is the mother. C) Imprinting 

and maternal expression of AGL36 is conserved in reciprocal crosses between A. arenosa and A. 

lyrata at 9 DAP. AaAGL36 (I) and AlAGL36 (VI) fragments are both 768 bp of length (lanes 1-2). 

EcoRI digests AaAGL36 (I) only (lanes 3-4) and TauI digests AlAGL36 (VI) only (lanes 8-9). In 
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hybrid crosses, only the maternal fragments are digested, and no or very weak undigested fragments 

are left (lanes 5-7, 10-12). D) Imprinting of AGL36 is lifted in crosses between A. thaliana and A. 

arenosa. The undigested fragments of AtAGL36 (VIII) and AaAGL36 (I) are 819 and 768 bp, 

respectively (lanes 1 and 3). An AlwNI restriction site is only present in AtAGL36 (VIII) (lanes 2 and 

4). In hybrid crosses, both fragments are visible (lanes 5-6) and AlwNI restriction digest only the 

maternal AtAGL36 fragment. Note that the paternal AaAGL36 (I) allele is expressed (lanes 7-10). 

EcoRI digests both AaAGL36 and AtAGL36 leaving only digested fragments (lanes 11-12). BR, 

biological replicate; A.t., A. thaliana; A.a., A. arenosa; A.l., A. lyrata. All crosses shown are in the 

order female x male. Two biological replica represent results from three biological replicas tested. 

DAP stages used are 4 for A.t., 7 for A.t.xA.a and 9 DAP for A.a., A.l. and the A.axA.l. reciprocal cross. 

 

Figure 5: Temperature has a significant effect on the hybrid barrier between A. thaliana and A. 

arenosa. A) Micrographs of siliques with A. thaliana crossed to A. arenosa hybrid F1 seeds grown at 

18°C and 22°C 20 days after pollination (DAP). The crosses were made using two different A. 

arenosa lines, MJ09-4 and Strecno1 (SN1). Live seeds are green, collapsed seeds are brown or pale 

green. B) Graph showing percentage live A. thaliana x A. arenosa hybrid F1 seeds from crosses in A). 

Three biological replicates were tested for each temperature for both A. arenosa lines MJ09-4 and 

SN1 (N=174, 163, 175, 162, respectively). C) Germination rate of A. thaliana x A. arenosa hybrid F1 

seeds. Four A. arenosa accessions were crossed to A. thaliana at 18°C and 22°C, MJ09-1, MJ09-4, 

SN1 and SN2 (18°C: MJ09-1 N= 18 BR (931 seeds), MJ09-4 N= 18 BR (986 seeds), SN1 N= 9 BR 

(524 seeds) and SN2 N= 9 BR (475 seeds). 22°C: MJ09-1 N= 12 BR (612 seeds), MJ09-4 N= 36 BR 

(1482 seeds), SN1 N= 36 BR (1544 seeds), SN2= 12 BR (673 seeds)). D) Germination rate of A. 

thaliana Col-0, Ler, C24 and Ws-2 crossed to A. arenosa MJ09-4 at 18°C and 22°C (18°C: Col-0 N= 

12 BR (572 seeds), C24 N= 8 BR (451 seeds), Ler N= 12 BR (772 seeds), Ws-2 N= 12 BR (622 

seeds). 22°C: Col-0 N= 24 BR (1212 seeds), C24 N= 12 BR (462 seeds), Ler N= 12 BR (751 seeds), 

Ws-2 N= 12 BR (727 seeds)). A.t., A. thaliana; A.a., A.arenosa. Blue colour: 18°C, red colour: 22°C. 

Outliers are plotted as large points. BR, biological replicas. Significance is indicated for the 

comparison of lines at 18°C and 22°C (Wilcoxon rank-sum test: NS.: p > 0.05; *: p≤ 0,05; **: p≤0,01; 

***: p≤0,001). Error bar indicate standard deviation (SD). 

 

Figure 6: Variation in endosperm cellularization between A. thaliana and A. arenosa hybrids. A-

H) Confocal scanning laser micrographs of endosperm cellularization in hybrid seeds visualized by 

Feulgen staining. For all crosses, both non-cellularized and cellularized endosperm is observed and 

micrographs representative for each class are presented in the left and right panels respectively. Open-

arrow heads point to syncytial endosperm nuclei while closed-arrow heads point to cellularized 

endosperm nuclei. Scale bar=50μm. A-B) A. thaliana control 7 days after pollination (DAP) typically 
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at the embryo late heart stage where most seeds display complete endosperm cellularization (B). C-D) 

A. thaliana x A. arenosa MJ09 hybrid seeds at 7 DAP. Embryo development is slower compared to A. 

thaliana controls. Both non-cellularized (C) and cellularized endosperm (D) was frequently observed. 

E-F) A. thaliana x A. arenosa MJ09 hybrid seeds at 10 DAP. Only a few seeds fail to cellularize (E) 

and most seeds exhibit completed endosperm cellularization (F). G-H) A. thaliana x A. arenosa SN1 

hybrid seeds at 10 DAP. A higher fraction of seeds display syncytial stage endosperm (G) compared 

to A. arenosa MJ09 hybrid seeds (E-F), but some have completed endosperm differentiation (H). I) 

Quantification of the described embryo and endosperm stages. All crosses are indicated as female x 

male. TxT, A. thaliana seeds, N=34; TxA, A. thaliana x A. arenosa MJ09 hybrid seeds, N=81; TxS, A. 

thaliana x A. arenosa SN1 hybrid seeds, N=98; em, embryo stages; en, endosperm stages. 

 

 

Figure 7: Genetic and environmental parameters influence the F1 hybrid barrier. A) 

Germination rate of seeds from A. arenosa MJ09-4 crossed as pollen to the A. thaliana (Col-0), single 

mutants agl23-1, agl34-2, agl35-1, agl36-1, agl62-1, agl90-1, and agl90-2 and the double mutant 

agl36-1 agl62-1 at 18°C and 22°C. Box-plot contains scattered dots representing germination rates 

observed per silique. Outliers are plotted as large points. Significance is indicated for the comparison 

of the mutant lines between 18°C and 22°C (Kruskal-Wallis test: p<2,2-16; Wilcoxon rank-sum test: 

NS.: p > 0.05; *: p≤0,05; **: p≤0,01; ***: p≤ 0,001). 18°C: Col-0 N= 10 BR (536 seeds), agl23-1 N= 

12 BR (294 seeds), agl34-2 N= 12 BR (707 seeds), agl35-1 N= 12 BR (641 seeds), agl36-1 N= 12 BR 

(704 seeds), agl36-1 agl62-1 N= 12 BR (532 seeds), agl62-1 N= 8 BR (442 seeds), agl90-1 N= 12 

BR (568 seeds), agl90-2 N= 12 BR (753 seeds). 22°C: Col-0 N= 12 BR (578 seeds), agl23-1 N= 12 

BR (407 seeds), agl34-2 N= 12 BR (610 seeds), agl35-1 N= 12 BR (571 seeds), agl36-1 N= 12 BR 

(635 seeds), agl36-1 agl62-1 N= 12 BR (498 seeds), agl62-1 N= 8 BR (403 seeds), agl90-1 N= 12 

BR (514 seeds), agl90-2 N= 12 BR (635 seeds). BR, biological replicas. 
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