
Genetic variation associated with euphorigenic effects
of d-amphetamine is associated with diminished risk for
schizophrenia and attention deficit hyperactivity disorder
Amy B. Harta, Eric R. Gamazonb, Barbara E. Engelhardtc, Pamela Sklard, Anna K. Kählere, Christina M. Hultmane,
Patrick F. Sullivanf, Benjamin M. Nealeg, Stephen V. Faraoneh, Psychiatric Genomics Consortium: ADHD Subgroup1,
Harriet de Witi, Nancy J. Coxa,b, and Abraham A. Palmera,i,2

Departments of aHuman Genetics, bMedicine, and iPsychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637; cDepartment of
Biostatistics and Bioinformatics and Department of Statistical Science, Duke University, Durham, NC 27708; dDepartment of Psychiatry, Mount Sinai School
of Medicine, New York, NY 10029; eDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; fDepartment
of Genetics, University of North Carolina, Chapel Hill, NC 27599; gAnalytic and Translational Genetics Unit, Massachusetts General Hospital, Boston,
MA 02114; and hPsychiatry and Behavioral Science, State University of New York Upstate Medical University, Syracuse, NY 13210

Edited by Huda Akil, University of Michigan, Ann Arbor, MI, and approved March 5, 2014 (received for review October 7, 2013)

Here, we extended our findings from a genome-wide association

study of the euphoric response to d-amphetamine in healthy hu-

man volunteers by identifying enrichment between SNPs associ-

ated with response to d-amphetamine and SNPs associated

with psychiatric disorders. We found that SNPs nominally associ-

ated (P ≤ 0.05 and P ≤ 0.01) with schizophrenia and attention

deficit hyperactivity disorder were also nominally associated with

d-amphetamine response. Furthermore, we found that the source

of this enrichment was an excess of alleles that increased sensi-

tivity to the euphoric effects of d-amphetamine and decreased

susceptibility to schizophrenia and attention deficit hyperactivity

disorder. In contrast, three negative control phenotypes (height,

inflammatory bowel disease, and Parkinson disease) did not show

this enrichment. Taken together, our results suggest that alleles iden-

tified using an acute challenge with a dopaminergic drug in healthy

individuals can be used to identify alleles that confer risk for psychi-

atric disorders commonly treated with dopaminergic agonists and

antagonists. More importantly, our results show the use of the

enrichment approach as an alternative to stringent standards for

genome-wide significance and suggest a relatively novel approach

to the analysis of small cohorts in which intermediate phenotypes

have been measured.

stimulant | dopamine hypothesis | endophenotype | GWAS |
bipolar disorder

Genome-wide association studies (GWAS) implicitly assume
that all SNPs in the genome are equally likely to be causal,

although most SNPs are unlikely to have any functional con-
sequences. Studies from our groups and others have shown the
use of incorporating prior information about SNPs into the ge-
netic analysis of complex traits, including autism and bipolar
disorder (1–6). These studies have shown that there is an en-
richment of SNPs with functional consequences (e.g., expression
quantitative trait loci) among SNPs modestly associated with a
broad spectrum of complex traits.
We recently conducted, to our knowledge, the first GWAS of an

intermediate pharmacogenetic phenotype, namely the acute sub-
jective response to a drug of abuse, d-amphetamine, in a sample of
381 healthy human volunteers (7). We identified only one genome-
wide significant association, and no replication samples were
available; thus, the results were difficult to interpret. In the present
study, we sought to further interrogate the numerous nominally
significant associations from our d-amphetamine response GWAS.
We hypothesized that nominally significant associations would be
mostly false positives but also, would be enriched for true positives.
Amphetamine produces its subjective and behavioral effects in

part by increasing synaptic levels of dopamine (8). We took
advantage of prior GWASs for psychiatric disorders to identify
a subset of SNPs that showed nominal association with both

amphetamine response and psychiatric disorders in which do-
paminergic signaling is also hypothesized to play an important
role. We predicted that, if these different phenotypes had shared
susceptibility alleles, then we would observe more overlapping
SNPs than expected by chance. We also predicted that such an
enrichment phenomenon would have a consistent direction.

Results

SNPs Associated with the Euphoric Response to d-Amphetamine Are

Enriched for SNPs Associated with Protection from Schizophrenia. In
the enrichment analysis, we observed a statistically significant
enrichment of schizophrenia-associated SNPs from the Genetic
Association Information Network (GAIN) sample among our
associations with amphetamine response at both the P ≤ 0.01
and P ≤ 0.05 thresholds (empirical P = 0.043 and P = 0.005
respectively (Fig. 1). Fig. 2 displays the results from the enrich-
ment analysis of schizophrenia-associated SNPs from Psychiatric
Genomics Consortium phase 1 (PGC1), which includes the
GAIN dataset as well as a number of additional cohorts. Repli-
cating the results that we initially observed in the GAIN sample,

Significance

We show that the genetic susceptibility to the euphoric effects

of d-amphetamine also influences the genetic predisposition to

schizophrenia and attention deficit hyperactivity disorder

(ADHD). These results reinforce the idea that dopamine plays

a role in schizophrenia and ADHD; this so-called dopamine

hypothesis has been debated for several decades. Specifically,

we found that the alleles associated with increased euphoric

response to d-amphetamine were associated with decreased

risk for schizophrenia and ADHD. These results illustrate how

an acute challenge with a pharmacological agent can reveal a

genetic predisposition that will manifest itself as psychiatric ill-

ness over the lifetime of an individual. Finally, our study offers

a relatively novel paradigm for the analysis of endophenotypes

for which large sample sizes are not typically available.
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we found a significant enrichment of schizophrenia-associated
SNPs among the SNPs associated with amphetamine response at
both the P ≤ 0.01 and P ≤ 0.05 thresholds (empirical P = 0.007
and P = 0.033, respectively) (Fig. 2A).
We hypothesized that, if the enrichment phenomena were

based on a real biological phenomenon, there would be a consistent
relationship between the direction of the effect (positive or
negative) of alleles on risk for schizophrenia and sensitivity to
the euphoric effects of amphetamine. To test this hypothesis, we
performed two analyses: one analysis in which alleles that in-
creased the risk for schizophrenia also increased amphetamine
response (concordant) and one analysis in which alleles that
increased the risk for schizophrenia decreased amphetamine
response (discordant). This analysis could not be performed in the
GAIN schizophrenia study, because odds ratios were unavailable.
In the PGC1 schizophrenia dataset, we found that 239 of 380
SNPs (62.9%) that constituted the enriched set at the P ≤ 0.01
threshold had discordant direction between the two datasets.
Although modest, this enrichment was unambiguously significant
compared with the permutation-derived expected distribution
of SNPs with discordant direction alleles (empirical P = 0.004)

(Fig. 2B). No such enrichment was seen for 141 concordant SNPs
(empirical P = 0.269) (Fig. 2B). A similar result was observed
when using the P ≤ 0.05 threshold (empirical P = 0.017 for
discordant SNPs and empirical P = 0.440 for concordant SNPs)
(Fig. 2B). Therefore, the significant enrichment of schizophrenia-
associated SNPs among amphetamine-associated SNPs was driven
by discordant alleles.

SNPs Associated with the Euphoric Response to d-Amphetamine Are

Enriched for SNPs Associated with Protection from Attention Deficit

Hyperactivity Disorder. We observed significant enrichment of
attention deficit hyperactivity disorder (ADHD)-associated
SNPs among the SNPs associated with amphetamine response at
both the P ≤ 0.01 and P ≤ 0.05 thresholds (empirical P = 0.011
and P = 0.038, respectively) (Fig. 3A). As with schizophrenia, we
hypothesized that there would be a consistent direction of the
effects among the overlapping SNPs. Indeed, we found that 114
of 197 overlapping SNPs (57.9%, P ≤ 0.01 threshold) (Fig. 3A)
had discordant effects (empirical P = 0.011) (Fig. 3B). No such
enrichment was seen for concordant SNPs (empirical P =

0.087) (Fig. 3B). Thus, alleles that decreased risk for ADHD

40 60 80 100 120 140 160 180

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

1700 1800 1900 2000 2100 2200 2300

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

F
re

q
u

e
n

c
y

# overlapping GAIN SCZ SNPs

overlap

Amphetamine

response
GAIN Schizophrenia

P≤0.01 P≤0.05

F
re

q
u

e
n

c
y

*

*

Fig. 1. SNPs associated with the

euphoric response to d-amphet-

amine are enriched for SNPs as-

sociated with schizophrenia in the

GAIN schizophrenia sample. A

schematic representation of the

enrichment analysis is shown in

Left. There was a significant en-

richment of SNPs nominally asso-

ciated with schizophrenia among

SNPs nominally associated with

the euphoric response to d-am-

phetamine; the enrichment was

significant with P value thresholds of (Center) P ≤ 0.01 and (Right) P ≤ 0.05. The black dots represent the number of overlapping SNPs. The histograms

represent the null distribution of overlapping SNPs generated from 1,000 random permutations of the amphetamine data. SCZ, schizophrenia. *P < 0.05.

B

A

Fig. 2. SNPs associated with the euphoric response

to d-amphetamine are enriched among SNPs asso-

ciated with protection from schizophrenia. A shows

a schematic representation of the enrichment analy-

sis. There was a significant enrichment of SNPs that

were nominally associated with schizophrenia from

the PGC1 Schizophrenia sample among SNPs nomi-

nally associated with the euphoric response to d-

amphetamine; the enrichment was significant with

P value thresholds of (Center) P ≤ 0.01 or (Right) P ≤

0.05. The black dots represent the observed number

of overlapping SNPs. The histograms represent the

null distribution of overlapping SNPs generated

from 1,000 random permutations of the amphet-

amine data. B shows the same analysis as A, except

that SNPs were only considered if they were (Upper)

concordant in direction or (Lower) discordant in di-

rection. These results indicate that the discordant

SNPs are responsible for the enrichment observed

in A. AMPH, d-amphetamine; SCZ, schizophrenia.

*P < 0.05.
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were associated with increased amphetamine response. Similar
results were observed at the P ≤ 0.05 threshold (empirical P =
0.038 for discordant SNPs and empirical P = 0.394 for concordant
SNPs) (Fig. 3B).

SNPs Associated with the Euphoric Response to d-Amphetamine Are

Not Enriched for SNPs Associated with Three Negative Control

Phenotypes. We considered the possibility that enrichment might
be caused by linkage disequilibrium (LD) structure or some un-
expected artifact not properly accounted for by the permutation
analysis and thus, would be observed in any large GWAS. To
evaluate this possibility, we examined enrichment in three negative
control phenotypes for which large samples were available. We
found no significant enrichment of SNPs associated with height at
the P ≤ 0.01 or P ≤ 0.05 thresholds (Fig. 4A) (P = 0.518 and P =

0.441, respectively). Similarly, there was no significant enrichment
of SNPs associated with inflammatory bowel disease at the P ≤

0.01 threshold (Fig. 4B) (empirical P = 0.391); data for in-
flammatory bowel disease at the P ≤ 0.05 threshold were not
available. Additionally, we saw no enrichment for Parkinson
disease-associated SNPs at either the P ≤ 0.01 or P ≤ 0.05
thresholds (Fig. 4C) (P = 0.126 and P = 0.836, respectively).
In terms of directionality in the negative control samples, we

found no significant enrichment of concordant or discordant
SNPs in the Parkinson disease dataset. We were unable to obtain
directional information for the height and inflammatory bowel
disease datasets. However, we were able to obtain directional
information for a Crohn disease GWAS dataset that largely over-
laps with a subset of the inflammatory bowel disease sample (9).
Using that dataset, we observed no significant overall enrichment
and no significant enrichment of concordant or discordant SNPs.

Similar Results Are Observed When Imputed SNPs from the

Amphetamine Response Dataset Are Excluded. All results pre-
sented were derived from analyses using amphetamine response
data that consist of a mixture of directly genotyped and imputed
SNPs. To assess the possibility that an artifact related to imputation

had caused the observed enrichment, we conducted similar
analyses that were restricted to directly genotyped SNPs in the
amphetamine response dataset; these results were not meaningfully
different (Fig. S1). Thus, these results do not seem to be an artifact
of imputation.

Enrichment of Schizophrenia and ADHD-Associated SNPs Is Observed

in Replication Samples. To replicate our findings of enrichment for
schizophrenia associated SNPs in the GAIN and PGC1 datasets, we
obtained an additional replication dataset [Swedish schizophrenia
sample (10)] and repeated our analyses in the replication sample
alone and the combined meta-analysis sample (PGC1 schizophre-
nia + Swedish schizophrenia). When considering only the Swedish
schizophrenia sample, we observed borderline significant enrich-
ment at the P ≤ 0.05 threshold (P = 0.067); when we performed the
same analysis in the meta-analysis sample (PGC1 schizophrenia +
Swedish schizophrenia), we found that the strength of enrichment
improved (P = 0.021) compared with the same analysis in the
PGC1 schizophrenia sample alone. We also found that the strength
of enrichment among the discordant SNPs was slightly improved in
this larger meta-analysis sample (P = 0.016) compared with the
results from the PCG1 schizophrenia data.
Similarly, we were able to replicate our findings in a newer

ADHD replication dataset [Psychiatric Genomics Consortium
phase 2 (PGC2) ADHD] using the P ≤ 0.05 threshold. In this case,
we did not observe a significant enrichment when using only the
ADHD replication dataset (PGC2 ADHD); however, we did ob-
serve a nearly significant enrichment of discordant direction SNPs
(P = 0.060). Similarly, in the meta-analysis sample (PGC1 ADHD +

PGC2 ADHD), we observed an even more significant enrichment
of discordant direction SNPs (P = 0.010) in the meta-analysis
sample compared with the PCG1 ADHD sample alone.

SNPs Associated with the Increased Euphoric Response to

d-Amphetamine Are Enriched for SNPs That Confer Protection from

Bipolar Disorder. We hypothesized that SNPs associated with the
euphoric response to amphetamine may also be enriched for SNPs

A

B

Fig. 3. SNPs associated with the euphoric response

to d-amphetamine are enriched among SNPs asso-

ciated with protection from ADHD. A shows a sche-

matic representation of the enrichment analysis.

There was a significant enrichment of SNPs that

were nominally associated with ADHD from the

PGC1 ADHD sample among SNPs nominally associ-

ated with the euphoric response to d-amphetamine.

The results were (Center) significant at the P ≤ 0.01

threshold and (Right) borderline significant at the

P ≤ 0.05 threshold. The black dots represent the

observed number of overlapping SNPs. The histo-

grams represent the null distribution of overlapping

SNPs generated from 1,000 random permutations of

the amphetamine data. B shows the same analysis

as A, except that SNPs were only considered if

they were (Upper) concordant in direction or (Lower)

discordant in direction. These results indicate that the

discordant SNPs are responsible for the enrichment

observed in A. AMPH, d-amphetamine. *P < 0.05.
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associated with bipolar disorder. We did not observe an overall
significant enrichment (Fig. S2). However, when we stratified
SNPs by concordant vs. discordant, we again observed a signif-
icant enrichment of discordant SNPs at both the P ≤ 0.01 and
P ≤ 0.05 thresholds (empirical P = 0.018 and P = 0.045, re-
spectively) (Fig. S2).

A Subset of the SNPs That Are Associated with the Euphoric Response

to d-Amphetamine Are Enriched for SNPs That Confer Protection from

Both Schizophrenia and ADHD. We were interested in testing
whether any of the SNPs that overlapped with d-amphetamine
response were shared with both schizophrenia and ADHD.
Shared SNPs would suggest shared biology, potentially related
to dopaminergic function. We found suggestive evidence for
enrichment of SNPs shared among all three phenotypes (am-
phetamine response, schizophrenia, and ADHD; P = 0.062) (Fig.
S3). When we tested only concordant SNPs (increased amphet-
amine response and increased risk for both schizophrenia and
ADHD) and discordant SNPs (increased amphetamine response
and decreased risk for both schizophrenia and ADHD), we only
found significant enrichment for discordant SNPs (P = 0.029) (Fig.
S3), similar to results for schizophrenia and ADHD. This analysis
identified a small subset of SNPs that is likely to contribute to
enhanced euphoric responses to d-amphetamine and decreased
risk for schizophrenia and ADHD. This result is interesting in light
of the results from the PGC Cross-Disorder group, which showed
no genetic overlap between schizophrenia and ADHD (6).

Discussion

Our results show that SNPs associated with response to a dopa-
minergic drug challenge (d-amphetamine) are enriched for SNPs
associated with psychiatric disorders that are treated with do-
pamine agonists (ADHD) and antagonists (schizophrenia). Rather
than identifying a few SNPs with a high degree of statistical con-
fidence, our method is intended to identify a heterogeneous col-
lection of SNPs that is made up of both true- and false-positive
associations. We show that this enrichment was caused by alleles
that increased the euphoric response to amphetamine and de-
creased the risk for both schizophrenia and ADHD. In contrast, no
enrichment was observed for concordant SNPs or any non-
psychiatric phenotypes. We also showed that the results were

not an artifact of imputation and that these effects could be
replicated in multiple samples.
Of the theories regarding the underlying mechanisms for

schizophrenia, the so-called dopamine hypothesis has been the
most enduring (11, 12). Although this theory is still under debate
(13, 14), several lines of evidence lend credence to the hypoth-
esis. For example, the efficacy of typical antipsychotic drugs is
almost linearly related to their affinity for the dopamine D2
receptor (15). Additionally, when high doses of amphetamine
are ingested for a protracted period, psychotic symptoms can
develop (16). Several studies have shown increased striatal do-
pamine release in response to a d-amphetamine challenge in
schizophrenics and consequently, a worsening of symptoms (17,
18). Our study adds genetic evidence to support the dopami-
nergic hypothesis of schizophrenia using a cohort of healthy
volunteers carefully screened against Axis I psychiatric disorders.
A dopamine hypothesis of ADHD has also been proposed and

challenged (19, 20). ADHD is often treated with methylpheni-
date or amphetamine products (d-amphetamine, mixed amphet-
amine salts, or lisdexamfetamine) (21). The therapeutic effects of
these drugs are believed to be caused by their ability to increase
the synaptic availability of dopamine. Interestingly, our results
suggest that insensitivity to a drug that is used to treat ADHD
might be a genetic risk factor for ADHD; however, it is important
to note that we examined sensitivity to the euphoric effects of
amphetamine and not sensitivity to its therapeutic effects. Our
results are consistent with studies that have shown a protective
effect from substance use disorders in stimulant-treated adoles-
cents with ADHD (22, 23).
A puzzling feature of our results is that we saw enrichment of

protective alleles for both schizophrenia and ADHD among our
top associations with acute amphetamine response, whereas
a simplistic understanding of these disorders suggests different
types of dopamine dysregulation: excess dopamine in schizo-
phrenia vs. dopamine deficit in ADHD. There is mixed evidence
for shared genetic risk for schizophrenia and ADHD. A higher
incidence of ADHD symptoms has been observed among relatives
of schizophrenic patients compared with healthy controls (24) as
well as increased risk for schizophrenia among relatives of in-
dividuals with ADHD (25). A recent polygenic risk score analysis
identified shared genetic susceptibility between schizophrenia
and ADHD (26). However, another recent study did not identify
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Fig. 4. SNPs associated with the euphoric response

to d-amphetamine (P ≤ 0.01 and P ≤ 0.05) do not

show enrichment among SNPs associated with height,

inflammatory bowel disease, or Parkinson disease. We

performed these analyses as a negative control. A

shows the results for the height enrichment analysis.

Results from the P ≤ 0.01 threshold are shown in Left,

and results from the P ≤ 0.05 threshold are shown in

Right. The black dots represent the observed count of

height-associated SNPs among associations with

d-amphetamine response. The histograms represent

the null distribution of overlapping SNPs generated

from 1,000 random permutations of the amphet-

amine data. B shows the results for the inflammatory

bowel disease enrichment analysis [P ≤ 0.01 thresh-

old; P ≤ 0.05 results were not available from In-

ternational Inflammatory Bowel Disease Genetics

Consortium (IIBDGC)]. The black dot represents the

observed count of inflammatory bowel disease-asso-

ciated SNPs among associations with d-amphetamine

response. The histogram represents the null distri-

bution of overlapping SNPs generated from 1,000

random permutations of the amphetamine data.

None of these results were significant. C shows the

results for the Parkinson disease enrichment analysis.

Results from the P ≤ 0.01 threshold are shown in Left, and results from the P ≤ 0.05 threshold are shown in Right. The black dots represent the observed count

of Parkinson disease-associated SNPs among associations with d-amphetamine response. The histograms represent the null distribution of overlapping SNPs

generated from 1,000 random permutations of the amphetamine data. GIANT, Genetic Investigation of Anthropometric Traits.
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significant polygenic risk overlap for schizophrenia and ADHD
(6), and a different recent study found no significant genetic
correlation estimated from SNP heritabilities for the two dis-
orders (27). Our approach is different, because we are examining
only the subset of SNPs that is associated with both amphetamine
response and these psychiatric disorders, which may explain the
discrepancy between our results and these two recent studies and
may identify another advantage of our approach.
These data suggest that our acute amphetamine response

phenotype may be viewed as an endophenotype for schizophre-
nia and ADHD. Whereas prior definitions of endophenotypes
have focused on cosegregation of the putative endophenotype
and the disease phenotype, we examined associations at SNPs
throughout the genome to establish a genetic link between am-
phetamine response with both schizophrenia and ADHD. Our
sample was specifically screened to exclude individuals with Axis
I disorders, which should have depleted the number of risk
alleles present in this population. The results suggest a relatively
novel approach to the empirical validation of endophenotypes.
Comorbidity of ADHD and bipolar disorder has been repor-

ted in the literature (28), and thus, we considered the possibility
of enrichment of bipolar disorder-associated SNPs and am-
phetamine response-associated SNPs. Although we did not ob-
serve overall enrichment, we did observe directionality, with
significant enrichment of discordant SNPs at two P value thresh-
olds. These results suggest that, in addition to schizophrenia and
ADHD, the acute amphetamine response phenotype may also
be an endophenotype for bipolar disorder (29).
We initially conceived of the acute response to amphetamine

as an intermediate phenotype for drug abuse. However, our results
suggest that acute drug challenge phenotypes may be useful in
identifying SNPs that are functionally relevant to psychiatric dis-
orders. Based on this study, it may be reasonable to ask whether
sensitivity to therapeutic drugs (or drugs that cause worsening of
symptoms) may uncover alleles that confer risk or protection for
other disorders. Whether acute amphetamine response is indeed
a useful intermediate phenotype for drug abuse or other disorders
may be determined in future studies; related research examining the
euphoric response to alcohol has proven fruitful (30–34).
Our amphetamine response GWAS was based on a relatively

small sample. Lack of power is likely to contribute to the inability to
achieve signals that survive multiple testing corrections in the GWAS
of psychiatric phenotypes (35). By taking an enrichment approach,
we were able to capitalize on associations that did not meet stringent
genome-wide significance criteria but were nominally associated with
amphetamine response. Our results suggest that the enrichment
approach is complementary to the traditional GWAS approach and
a valuable secondary analysis. In contrast to GWAS, which aims to
identify specific SNPs, the power of our method is that it can draw
biological inferences from a heterogeneous set of SNPs composed of
both true and false positives. However, this method is unable to
distinguish between these two categories.
Although our study is not without limitations, we considered

several alternative explanations for our observations, but none
proved credible. One possibility was that results from any two
GWAS may overlap because of LD patterns. By using permu-
tation, we preserved the LD structure among the SNPs being
tested, which should guard against such a phenomenon. This
possibility is further addressed by the directional analyses and our
use of negative control phenotypes. We considered the possibility
that the enrichment that we observed was driven by functional
brain SNPs (e.g., expression quantitative trait loci) that would be
enriched for any brain disease. However, we saw no enrichment
for Parkinson disease-associated SNPs, suggesting that our results
are specific to schizophrenia and ADHD; the results from our
directional analyses of schizophrenia and ADHD further dispute
the possibility that the overlapping SNPs are important for all
brain diseases. We were also concerned that artifacts caused by
imputation could bias our results. However, we observed similar
results when we considered only SNPs that were directly geno-
typed in the amphetamine response sample; permutation should

further guard against any such artifacts (Fig. S1). Our results are
further strengthened by the fact that they were observed in
multiple datasets.
By examining our GWAS results through the lens of enrich-

ment, we were able to interrogate results that do not meet
stringent criteria for statistical significance. Our results suggest
that alleles identified using an acute drug challenge can be used
to identify alleles that influence risk for psychiatric disorders.
Our results also support the dopamine hypotheses of schizophrenia
and ADHD. Ultimately, this study shows that additional sec-
ondary analyses of GWAS results may provide new insights into
the biology of psychiatric disorders. These results also suggest a
useful and generalizable method for the genetic analysis of
modestly sized intermediate phenotypes that are unlikely to
yield genome-wide significant results and for which replication
samples are not typically available.

Materials and Methods
Genetics of Amphetamine Dataset. Study details are provided in the work by

Hart et al. (7). This study was approved by the Institutional Review Board of

The University of Chicago and was carried out in accordance with the Hel-

sinki Declaration of 1975. Briefly, 381 healthy volunteers attended three

separate 4-h sessions, during which they received d-amphetamine (placebo,

10 mg, or 20 mg) under double blind conditions and subjective self-report

questionnaires at regular intervals: the Profile of Mood States (36), Drug Effects

Questionnaire (37), and Addiction Research Center Inventory (38). Sparse factor

analysis (39) was used to reduce the dimensionality of the phenotype data to

a small number of factors that explained both drug response and baseline

characteristics of the sample. For the present study, we limited our analyses to

the 10-mg [d-amphetamine] response factor. This factor, hereafter referred to as

amphetamine response, was one of themost interpretable factors, reflecting the

subjective euphoric response to amphetamine, and it showed the strongest as-

sociation signal (7). Subjects were genotyped using Affymetrix 6.0 arrays. Im-

putation was performed using the HapMap3 and 1000 Genomes reference

panels (40, 41). Self-reported ancestry was confirmed by analysis with the

SMARTPCA component of EIGENSOFT (42). The sample used in the current

study was restricted to participants of European ancestry (n = 325). After

quality control and imputation, 5,974,669 SNPs were available for analysis.

The samples used for the enrichment analysis are shown in Table S1; addi-

tional details are given in the SI Materials and Methods.

Data Preparation. In the Genetics of Amphetamine dataset, SNPs with minor

allele frequencies < 0.01 were removed. Genotypes were converted into

PLINK format with GTOOL (www.well.ox.ac.uk/∼cfreeman/software/gwas/

gtool.html) with a threshold of 0.8 specified; markers with missing rates >

10% were excluded. The amphetamine response phenotype was permuted

1,000 times using the “make-perm-pheno” command in PLINK (43), and as-

sociation testing was run with each of these 1,000 permuted phenotypes

with the PLINK “assoc” command. The numbers of SNPs available for the

enrichment analysis are listed in Table S2.

Enrichment Analysis. The number of SNPs that overlapped between the

amphetamine response results and the results for each of the pheno-

types described above was recorded (for both the P ≤ 0.01 and P ≤ 0.05

thresholds). Next, the number of overlapping SNPs in each permuted

dataset (n = 1,000) was recorded, yielding the expected null distribu-

tion. The empirical P value was computed as the fraction of permuta-

tions where the number of overlapping SNPs matched or exceeded the

observed count. A statistically significant enrichment was defined as an

enrichment P value < 0.05 (i.e., less than 50 permutations were found

with a greater number of overlapping SNPs).

Directionality Analysis. For the SNPs that overlapped between the phenotypes

examined in the enrichment analyses described above, we examined the

direction of the effect in both the amphetamine response and the second

phenotype. The signs of the logistic regression β-coefficients [i.e., ln(odd

ratio)] were used to denote directionality. The Z scores from the PGC1 ADHD

results were used to denote directionality of the association, with Z score >

0 corresponding to odds ratio > 1. The signs of the β-coefficients or Z scores

were flipped if the PGC reference allele did not match the reference allele in

the amphetamine response dataset. We recorded the number of concordant

SNPs (positive in both samples or negative in both samples) and the number

of discordant SNPs (positive in one sample and negative in the other sample)

in the real and permuted datasets. This procedure generated the expected
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null distribution of concordant alleles (e.g., alleles associated with risk as

well as heightened response to amphetamine) and the expected null dis-

tribution of discordant alleles. Excluding strand ambiguous SNPs had no

effect on our results. The empirical P value was computed as the proportion

of permutations where the number of overlapping SNPs matched or

exceeded the count observed in the real data.

Replication Analyses. Enrichment and directionality analyses were performed

as described above in the replication samples alone (Swedish schizophrenia

study and PGC2 ADHD) and the combined meta-analysis samples (PGC1

schizophrenia + Swedish schizophrenia and PGC1 ADHD + PGC2 ADHD).

Meta-analysis was performed with the “meta-analysis” command in PLINK.
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SI Materials and Methods

Enrichment Datasets. GAIN Schizophrenia. This GWAS (1) included
1,351 European-American cases with schizophrenia and 1,378
European-American controls. Subjects were genotyped on the
Affymetrix 6.0 array. After quality control, 729,454 SNPs were
available for analysis. Precomputed association results were ob-
tained from dbGaP (phs000021.v3.p2). This sample is a subset of
the PGC1 schizophrenia sample (below).
PGC1 Schizophrenia.This mega-analysis (2) included 9,394 European
cases and 12,462 European controls. Imputation was performed
with the HapMap3 reference panel (3). After quality control,
1,252,902 SNPs were available for analysis. Publicly available asso-
ciation results were obtained from https://pgc.unc.edu/Sharing.php.
PGC1 ADHD. This meta-analysis (4) included four separate ADHD
studies, with the final dataset comprised of 2,064 trios, 896 cases,
and 2,455 controls of European ancestry. Imputation was per-
formed with the HapMap3 reference panel (3). After quality
control, 1,206,462 SNPs were available for analysis. Publicly
available association results were obtained from https://pgc.unc.
edu/Sharing.php.
PGC1 Bipolar Disorder. This GWAS (5) included 7,481 European
cases and 9,250 European controls. Imputation was performed
with the HapMap2 reference panel (6). After quality control,
2,541,952 SNPs were available for analysis. Publicly available
association results were obtained from https://pgc.unc.edu/
Sharing.php.
Negative control phenotype: Genetic Investigation of Anthropometric

Traits Height. This meta-analysis (7) included 133,653 European
individuals. Imputation was performed with the HapMap2 ref-
erence panel (6). After quality control, 2,469,636 SNPs were
available for analysis. Publicly available association results were
obtained from www.broadinstitute.org/collaboration/giant/index.
php/GIANT_consortium_data_files.
Negative control phenotype: International Inflammatory Bowel Disease

Genetics Consortium Inflammatory Bowel Disease. This GWAS (8) in-
cluded 12,882 European inflammatory bowel disease (Crohn dis-
ease and ulcerative colitis) cases and 21,770 European controls.
Imputation was performed with the HapMap3 reference panel (3).

After quality control, 1,252,901 SNPs were available for analysis.
Publicly available association results were obtained from www.
ibdgenetics.org/downloads.html. Available results were restricted to
P ≤ 0.01; thus, we could not examine enrichment at the P ≤

0.05 threshold.
Negative control phenotype: Parkinson Disease GWAS Consortium

Parkinson Disease. Study details are provided in the work by
Pankratz et al. (9). The meta-analysis consisted of 4,238 Euro-
pean Parkinson disease cases and 4,239 European controls.
Imputation was performed with the HapMap2 reference panel
(6). After quality control, 2,525,705 SNPs were available for
analysis. Full association results were obtained from ref. 9.

Replication Datasets. Swedish Schizophrenia Study. This GWAS (10)
included 5,001 schizophrenia cases and 6,243 controls from a
population-based sampling frame in Sweden (n = 11,244). Samples
were genotyped in six batches using Affymetrix 5.0 (3.9%), Affy-
metrix 6.0 (38.6%), and Illumina OmniExpress (57.4%) chips. After
quality control and imputation with the 1000 Genomes Project
Phase 1 reference panel, we analyzed association result from
allelic dosages for 9,871,789 high-quality polymorphic SNPs.
PGC2 ADHD. This meta-analysis included data from a total of nine
cohorts [Cardiff: 641 cases and 1,752 controls; Chinese: 1,012
cases and 930 controls; Germany: 494 cases and 1,297 controls;
International Multicenter ADHD Genetics project phase 2
(IMAGE2): 787 cases and 7,082 controls; Spain: 591 cases and
432 controls; Children’s Hospital of Philadelphia (CHOP): 358
trios; Canada: 170 trios; International Multicenter ADHD Ge-
netics project phase 1 (IMAGE1): 866 trios; Pfizer-funded study
from the University of California, Los Angeles, Washington
University, and the Massachusetts General Hospital (PUWMA):
702 trios]. The IMAGE1, IMAGE2, PUWMA, and CHOP trios
constituted the PGC1 set described in the work by Neale et al. (4).
The Cardiff, Chinese, Germany, Spain, and Canada cohorts con-
stituted the independent replication sample. Imputation was per-
formed with the HapMap3 reference panel (3). After quality
control, 1,384,810 SNPs were available for analysis.
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Fig. S1. Enrichment results for analyses limited to SNPs that were directly genotyped in the amphetamine response dataset. Significant enrichment is seen for

schizophrenia- and attention deficit hyperactivity disorder (ADHD)-associated SNPs among amphetamine response associations computed with directly gen-

otyped SNPs (nonimputed). The black dots represent the observed count of trait-associated SNPs among associations with d-amphetamine response. The

histograms represent the number of SNPs that occurred among association results from 1,000 random permutations. GIANT, Genetic Investigation of An-

thropometric Traits; IBD, inflammatory bowel disease; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; PGC1, Psychiatric Genomics

Consortium phase 1; SCZ, schizophrenia. *P < 0.05.
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Fig. S2. SNPs associated with the euphoric response to d-amphetamine are enriched among SNPs associated with protection from bipolar disorder. A shows

a schematic representation of the enrichment analysis. There was no significant enrichment of SNPs that were nominally associated with bipolar disorder from

the PGC1 bipolar disorder sample among SNPs nominally associated with the euphoric response to d-amphetamine at either P value threshold. The black dots

represent the observed number of overlapping SNPs. The histograms represent the null distribution of overlapping SNPs generated from 1,000 random per-

mutations of the amphetamine data. B shows the same analysis as A, except that SNPs were only considered if they were concordant (Upper) or discordant

(Lower) in direction. These results indicate an enrichment for discordant SNPs. AMPH, d-amphetamine; PGC1, Psychiatric Genomics Consortium phase 1. *P < 0.05.
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Fig. S3. SNPs associated with the euphoric response to amphetamine overlap with SNPs associated with decreased risk for schizophrenia and decreased risk

for ADHD. We examined the SNPs that were overlapping between the three dopaminergic phenotypes: euphoric response to d-amphetamine, schizophrenia,

and ADHD. A shows the results for the overall nominally significant enrichment for SNPs that overlap between the three phenotypes (P = 0.062). (A and B)

The red dots represent the observed number of overlapping SNPs. The histograms represent the null distribution of overlapping SNPs generated from

1,000 random permutations of the amphetamine data. B shows the results for the concordant SNPs (SNPs associated with increased euphoria and increased

schizophrenia and ADHD risk) and the discordant SNPs (SNPs associated with increased euphoria and decreased risk for schizophrenia and ADHD). We only

observed enrichment for the discordant SNPs. AMPH, d-amphetamine; PGC1, Psychiatric Genomics Consortium phase 1; SCZ, schizophrenia. *P < 0.05.
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Table S1. Description of enrichment samples

Sample Ref. Sample size Other information

Genetics of Amphetamine 1 325

Genetic Association Information

Network Schizophrenia

2 1,351 cases; 1,378 controls Subset of PGC1 Schizophrenia sample

PGC1 Schizophrenia 3 9,394 cases; 12,462 controls

PGC1 ADHD 4 896 cases; 2,455 controls; 2,064 trios

PGC1 Bipolar Disorder 5 7,481 cases; 9,250 controls

Genetic Investigation of

Anthropometric Traits Height

6 133,653

IIBDGC Inflammatory Bowel

Disease

7 12,882 cases; 21,770 controls

Parkinson Disease GWAS

Consortium Parkinson Disease

8 4,238 cases; 4,239 controls

Swedish Schizophrenia 9 5,001 cases; 6,243 controls Replication sample

PGC2 ADHD — 2,738 cases; 4,411 controls; 170 trios Replication sample

GWAS, genome-wide association study; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; PGC1, Psychiatric Genomics Consortium

phase 1; PGC2, Psychiatric Genomics Consortium phase 2.
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Table S2. Numbers of SNPs available from each dataset for the enrichment analysis

Dataset

P ≤ 0.01 P ≤ 0.05

Total no. of SNPs

No. of SNPs available

to overlap with GAP Total no. of SNPs

No. of SNPs available

to overlap with GAP

Genetic Association Information

Network Schizophrenia

9,154 8,938 41,928 40,924

PGC1 Schizophrenia 29,687 26,824 101,642 92,673

Swedish Schizophrenia 20,704 18,431 82,614 74,890

PGC1 Schizophrenia + Swedish

Schizophrenia meta-analysis

35,750 32,386 112,207 101,942

PGC1 ADHD 13,489 12,648 63,807 59,970

PGC2 ADHD 16,727 15,283 75,767 67,989

PGC1 ADHD + PGC2 ADHD

meta-analysis

15,527 14,228 72,719 65,704

PGC1 Bipolar Disorder 43,729 40,415 168,699 155,924

Genetic Investigation of

Anthropometric Traits Height

72,893 66,200 186,092 170,137

IIBDGC Inflammatory Bowel

Disease

14,377 13,713 — —

Parkinson Disease 27,200 23,939 128,484 115,096

Because of differences in which SNPs were genotyped and imputed between the amphetamine response dataset [Genetics of Amphetamine (GAP)] and the

various datasets listed below, a slightly smaller number of SNPs was available for the enrichment analysis. IIBDGC, International Inflammatory Bowel Disease

Genetics Consortium; PGC1, Psychiatric Genomics Consortium phase 1; PGC2, Psychiatric Genomics Consortium phase 2.
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