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Abstract

Introduction: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to

the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and

a modest reduction in risk of breast cancer in women age ≤50 years.

Methods: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of

47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping

of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine

whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.

Results: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found

no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were

OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (Ptrend = 0.02). There was

no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche

in controls (Ptrend = 0.005) but not cases (Ptrend = 0.97). Consequently the association between rs10235235 and breast

cancer risk differed according to age at menarche (Phet = 0.02); the rare allele of rs10235235 was associated with a

reduction in breast cancer risk for women who had their menarche age ≥15 years (ORhet = 0.84, 95% CI 0.75, 0.94;

ORhom = 0.81, 95% CI 0.51, 1.30; Ptrend = 0.002) but not for those who had their menarche age ≤11 years (ORhet = 1.06,

95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; Ptrend = 0.29).

Conclusions: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both

breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche

and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.

Introduction
Family history is a well-established risk factor for breast can-

cer. First-degree relatives of women with breast cancer have

an approximately twofold increased risk of developing the

disease relative to the general population [1]. Twin studies

are consistent with this familial clustering having, at least in

part, a genetic origin [2,3]. Mutations in high-risk suscepti-

bility genes (mainly BRCA1 and BRCA2) explain most large

multiple-case families, but account for only 15 to 20% of the

excess familial risk [4]. Genome-wide association studies

[5,6] have identified more than 70 common variants that are

associated with breast cancer susceptibility but they account

for only another approximately 15% of the excess familial

risk. The so-called ‘missing heritability’ may be explained by

common variants with very small effects and/or by rarer

variants with larger effects, neither of which can be identi-

fied by current genome-wide association studies. A statisti-

cally efficient alternative is to increase power by trying to

identify variants associated with known quantitative pheno-

typic markers of susceptibility to breast cancer [7], and then

to test them for association with breast cancer risk. This

approach might also improve our understanding of the bio-

logical mechanisms involved in breast cancer pathogenesis.

Endogenous sex hormones are well-established risk

factors for breast cancer in postmenopausal women [8];

the evidence in premenopausal women is less consistent,

with some, but not all, studies suggesting an association

between higher circulating levels of estrogens and in-

creased breast cancer risk [9-17]. Genetic factors influ-

ence the levels of endogenous sex hormones [18] and

therefore single nucleotide polymorphisms (SNPs) in

genes regulating these hormonal pathways are good can-

didates for being breast cancer predisposition variants.

We have previously studied 642 SNPs tagging 42 genes

that might influence sex hormone levels in 729 healthy

premenopausal women of European ancestry in relation

to cyclic variations in oestrogen levels during the men-

strual cycle. We found that the minor allele of rs10273424,

which maps 50 kb 3′ to CYP3A5, was associated with a

reduction of 22% (95% confidence interval (CI) = –28%, –

15%; P = 10−9) in levels of urinary oestrone glucuronide, a

metabolite that is highly correlated with serum oestradiol

levels [19]. Analysis of 10,551 breast cancer cases and

17,535 controls of European ancestry demonstrated that

the minor allele of rs10235235, a proxy for rs10273424

(r2 = 1.0), was also associated with a weak reduction in
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breast cancer risk but only in women aged 50 years or

younger at diagnosis (odds ratio (OR) = 0.91, 95% CI =

0.83, 0.99; P = 0.03) [19].

The aim of the present study was to further investigate

an association between rs10235235 and breast cancer risk

using a much larger set of subjects – the Breast Cancer

Association Consortium (BCAC) – comprising data from

49 additional studies, and to assess whether there was evi-

dence of effect modification by age at diagnosis, ethnicity,

age at menarche or tumour characteristics.

Materials and methods
Sample selection

Samples for the case–control analyses were drawn from

52 studies participating in the BCAC: 41 studies from

populations of predominantly European ancestry, nine

studies of Asian ancestry and two studies of African-

American ancestry. The majority were population-based

or hospital-based case–control studies, but some studies

were nested in cohorts, selected samples by age, over-

sampled for cases with a family history or selected sam-

ples on the basis of tumour characteristics (Table S1 in

Additional file 1). Studies provided ~2% of samples in

duplicate for quality control purposes (see below). Study

subjects were recruited on protocols approved by the In-

stitutional Review Boards at each participating institu-

tion, and all subjects provided written informed consent

(Additional file 2).

Genotyping and post-genotyping quality control

Genotyping for rs10235235 was carried out as part of a

collaboration between the BCAC and three other con-

sortia (the Collaborative Oncological Gene-environment

Study (COGS)). Full details of SNP selection, array de-

sign, genotyping and post-genotyping quality control

have been published [5]. Briefly, three categories of SNPs

were chosen for inclusion in the array: SNPs selected on

the basis of pooled genome-wide association study data;

SNPs selected for the fine-mapping of published risk

loci; and candidate SNPs selected on the basis of previ-

ous analyses or specific hypotheses. rs10235235 was a

candidate SNP selected on the basis of our previous ana-

lyses [19].

For the COGS project overall, genotyping of 211,155

SNPs in 114,225 samples was conducted using a custom

Illumina Infinium array (iCOGS; Illumina, San Diego,

CA, USA) in four centres. Genotypes were called using

Illumina’s proprietary GenCall algorithm. Standard quality

control measures were applied across all SNPs and all

samples genotyped as part of the COGS project. Samples

were excluded for any of the following reasons: genotypi-

cally not female XX (XY, XXY or XO, n = 298); overall

call rate <95% (n = 1,656); low or high heterozygosity

(P < 10−6, separately for individuals of European, Asian

and African-American ancestry, n = 670); individuals not

concordant with previous genotyping within the BCAC

(n = 702); individuals where genotypes for the duplicate

sample appeared to be from a different individual (n = 42);

cryptic duplicates within studies where the phenotypic data

indicated that the individuals were different, or between

studies where genotype data indicated samples were dupli-

cates (n = 485); first-degree relatives (n = 1,981); phenotypic

exclusions (n = 527); or concordant replicates (n = 2,629).

Ethnic outliers were identified by multidimensional

scaling, combining the iCOGS array data with the three

Hapmap2 populations, based on a subset of 37,000 un-

correlated markers that passed quality control (includ-

ing ~1,000 selected as ancestry informative markers).

Most studies were predominantly of a single ancestry

(European or Asian), and women with >15% minority

ancestry, based on the first two components, were ex-

cluded (n = 1,244). Two studies from Singapore (SGBCC)

and Malaysia (MYBRCA; see Table S1 in Additional file 1

for all full study names) contained a substantial fraction of

women of mixed European/Asian ancestry (probably of

South Asian ancestry). For these studies, no exclusions for

ethnic outliers were made, but principal components ana-

lysis (see below) was used to adjust for inflation in these

studies. Similarly, for the two African-American studies

(NBHS and SCCS), no exclusions for ethnic outliers were

made.

Principal component analyses were carried out separ-

ately for the European, Asian and African-American

subgroups, based on a subset of 37,000 uncorrelated

SNPs. For the analyses of European subjects, we in-

cluded the first six principal components as covariates,

together with a seventh component derived specific to

one study (LMBC) for which there was substantial infla-

tion not accounted for by the components derived from

the analysis of all studies. Addition of further principal

components did not reduce inflation further. Two princi-

pal components were included for the studies conducted

in Asian populations and two principal components were

included for the African-American studies.

For the main analyses of rs10235235 and breast can-

cer risk, we excluded women from three studies

(BBCS, BIGGS and UKBGS) that were genotyped in the

hypothesis-generating study (n = 5,452) [19] and women

with non-invasive cancers (ductal carcinoma in situ/lobular

carcinoma in situ, n = 2,663) or cancers of uncertain status

(n = 960)). After exclusions there were 47,346 invasive

breast cancer case samples and 47,570 control samples

from 49 studies (38 from populations of predominantly

European ancestry, nine Asian and two African-American)

used in the analysis (Tables S1 and S2 in Additional file 1).

After quality control exclusions (above) the call rate for

rs10235235 was 100% (one no call in 94,916 samples), and

for the controls there was no evidence of deviation from
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Hardy–Weinberg equilibrium in any of the contribut-

ing studies (Table S2 in Additional file 1).

We did not test for an association between rs10235235

and age at menarche in our hypothesis-generating study

[19]. Therefore, to maximise our power to detect an as-

sociation, we included menarche data from BBCS cases

(n = 2,508) and controls (n = 1,650) and from UKBGS

cases (n = 3,388) and controls (n = 4,081) in this ana-

lysis. Age at menarche was not available for samples

from BIGGS. Full details of genotyping of rs10235235

in BBCS and UKBGS samples have been published

previously [19]. Briefly, genotyping was carried out

using competitive allele-specific polymerase chain reac-

tion KASPar chemistry (KBiosciences Ltd, Hoddesdon,

Hertfordshire, UK). Call rates were 98.0% (BBCS) and

96.6% (UKBGS); there was no evidence for deviation from

Hardy–Weinberg equilibrium (P = 0.29 (BBCS); P = 0.92

(UKBGS)), and the duplicate concordance based on a 1%

(BBCS) and 5% (UKBGS) random sample of duplicates

was 100% for both studies.

Statistical analysis

We estimated per-allele and genotypic log odds ratios

(ORs) for the European, Asian and African-American

subgroups separately using logistic regression, adjusted

for principal components and study [5]. To test for de-

parture from a multiplicative model we compared multi-

plicative and unconstrained models using a one degree

of freedom likelihood ratio test. Heterogeneity in ORs

between studies within each subgroup (European, Asian

and African-American), and between subgroups, was assessed

using the Cochrane Q statistic and quantified using the

I2 measure [20].

Analyses stratified by oestrogen receptor status (+/–),

progesterone receptor status (+/–), morphology (ductal

or lobular), grade (1,2,3), lymph node involvement (+/–)

or age at diagnosis (≤50 and >50 years) were restricted

to studies of European ancestry due to the small number

of studies of Asian and African-American ancestry. In

addition, studies were excluded if they had selected cases

on the basis of the stratifying variable, or had collected

data on that variable for less than 5% of cases or less

than 10 cases in total. Availability of data for each of the

stratifying variables in each study is shown in Table S3

in Additional file 1. To assess the relationship between

each of the stratifying variables and genotype, stratum-

specific ORs were calculated using logistic regression.

Cases in each stratum were compared with all control

subjects, adjusted for study and principal components.

Case-only logistic regression was used to test for hetero-

geneity between strata (binary stratifying variables) or

across strata (stratifying variables with three or more

strata). P values were estimated using likelihood ratio

tests with one degree of freedom.

We assessed whether rs10235235 was associated with

age at menarche in cases and controls separately. Studies

that had not collected data on age at menarche in both

cases and controls were excluded (Table S4 in Additional

file 1). We used linear regression, adjusted for principal

components and study, to estimate the relationship be-

tween age at menarche (years) and rs10235235 genotype

(0, 1, 2 rare alleles) and logistic regression adjusted for

principal components and study to estimate the associ-

ation between age at menarche and breast cancer risk.

To test for effect modification of an association between

rs10235235 and breast cancer risk by age at menarche,

we used logistic regression adjusted for principal compo-

nents, study and age at menarche (grouped as ≤11, 12,

13, 14 and ≥15 years) with and without an interaction

term(s). We considered four models: no interaction

(zero interaction terms); assuming a linear interaction

between genotype and menarche group (one interaction

term); assuming a linear interaction between genotype

and menarche group but allowing the linear term to dif-

fer between women who were heterozygous and those

who were homozygous for the rare allele (two inter-

action terms); and one interaction term for each possible

genotype/menarche group combination (eight interaction

terms). Nested models were compared using likelihood

ratio tests. All statistical analyses were performed using

STATA version 11.0 (StataCorp, College Station, TX,

USA). All P values reported are two-sided.

Results
The case–control analysis comprised genotype data for

47,346 invasive breast cancer cases and 47,569 controls

from 49 studies, including 80,518 (84.8%) subjects of self-

reported European ancestry, 12,419 (13.1%) of self-

reported Asian ancestry and 1,978 (2.1%) of self-reported

African-American ancestry. The mean (± standard devi-

ation) age at diagnosis was 56.1 (± 11.6) years for European

cases, 51.1 (± 10.5) years for Asian cases and 53.1 (± 10.7)

years for African-American cases. There were ethnic

differences in the estimated minor allele frequency

(MAF) of rs10235235 (Q = 7317.1, two degrees of free-

dom; P for heterogeneity (Phet) = 0). The overall MAF

for European control women was 0.089 (95% CI = 0.087,

0.091), but with strong evidence of between-study hetero-

geneity (Phet = 1 × 10−22) that was accounted for by the

three Finnish studies (HEBCS, MAF = 0.15; KBCP, MAF =

0.21; and OBCS, MAF = 0.15; Phet = 0.01); no evidence

of heterogeneity remained after taking account of these

studies (MAF = 0.087 (95% CI = 0.085, 0.089); Phet = 0.23).

Relative to Europeans, the overall MAF was higher for

African-Americans (0.213, 95% CI = 0.195, 0.232; Phet =

0.26) but much lower for Asians (0.002; 95% CI =

0.001, 0.002), with strong evidence of between-study

heterogeneity for the latter (Phet = 4 × 10−14).
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The case–control analysis was consistent with a modest

association between rs10235235 and breast cancer risk for

women of European ancestry, with an estimated per-allele

OR of 0.96 (95% CI = 0.93, 0.99; P for linear trend (Ptrend) =

0.02). Genotype-specific ORs were 0.98 (95% CI =

0.94, 1.01; P = 0.21) for AG versus AA (Figure 1A) and

0.80 (95% CI = 0.69, 0.93; P = 0.004) for GG versus AA

(Figure 1B), with no evidence of between-study hetero-

geneity for either OR estimate (Phet = 0.44, I2 = 1.9%

and Phet = 0.76, I2 = 0.0% for heterozygote and homo-

zygote OR estimates respectively). There was, however,

marginally significant evidence that the genotypic OR esti-

mates departed from those expected under a multiplicative

model with the inverse association of the GG genotype be-

ing more than the square of that of the AG genotype (test

for deviation from multiplicative model, P = 0.04).

Data for rs10235235 in women of Asian or African-

American ancestry were more limited, with just two

African-American studies (1,046 cases and 932 controls)

and nine Asian studies (5,795 cases and 6,624 controls).

In addition, this SNP was sufficiently rare in Asian pop-

ulations (MAF = 0.002) that we were unable to estimate

the heterozygote OR in two Asian studies (SEBCS, one

carrier among 1,114 cases and no carriers among 1,129

controls; TWBCS, one carrier among 236 controls and no

carriers among 774 cases; Table S2 in Additional file 1)

and we could not estimate a homozygote OR for any

Asian study (Table S2 in Additional file 1). There was no

clear evidence that this SNP was associated with breast

cancer risk for women of Asian ancestry (heterozygote

OR = 1.06, 95% CI = 0.76, 1.49) or African-American

ancestry (heterozygote and homozygote ORs were OR =

1.09, 95% CI = 0.90, 1.32 and OR = 0.94, 95% CI = 0.62,

1.42 respectively; Figure S1 in Additional file 1). This ana-

lysis, however, had low power to detect associations in

non-Europeans and these OR estimates were not incon-

sistent with the magnitude of the observed OR estimates

for European women (Phet = 0.51).

Stratifying cases by oestrogen receptor (Phet = 0.83) or

progesterone receptor (Phet = 0.19) status, tumour grade

(Phet = 0.63) or nodal involvement at diagnosis (Phet = 0.51)

showed no evidence of effect modification (Table 1). There

was some evidence of effect modification by morphology

(Phet = 0.03). For ductal cancers we estimated a very

modest reduction of risk for heterozygotes (ORhet =

0.98, 95% CI = 0.93, 1.02; P = 0.30) and a stronger, sig-

nificant reduction for homozygotes (ORhom = 0.74, 95%

CI = 0.61, 0.90; P = 0.003). For lobular cancers there was

no such trend (ORhet = 1.07, 95% CI = 0.98, 1.17; P = 0.14

and ORhom = 0.91, 95% CI = 0.64, 1.27; P = 0.57).

The SNP rs10235235 maps to a locus (CYP3A) that

has been considered an a priori candidate for involve-

ment in determining age at menopause and age at me-

narche [21,22]. Stratifying cases by age at diagnosis (≤50

Overall  (I-squared = 1.9%, phet = 0.436)
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Figure 1 Association of rs10235235 with breast cancer risk for women of European ancestry. Forest plots of the association of the rs10235235

AG (heterozygote) genotype (A) and GG (homozygote) genotype (B) with breast cancer risk for women of European ancestry. Horizontal lines, 95%

confidence intervals (CIs); square boxes, study-specific fixed-effects estimates; diamond, combined, fixed-effects estimate of the odds ratio (OR) and

95% CI. Vertical line, null effect (OR = 1.0); dashed vertical line, estimated heterozygote OR (A) and estimated homozygote OR (B). Homozygote ORs

for six studies (CTS, DEMOKRITOS, kConFab/AOCS, NBCS, NBHS and RPCI) could not be estimated because there were no GG homozygotes among

cases or among controls in each of these studies (see Table S2 in Additional file 1).
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or >50 years) as a proxy for menopausal status at diagno-

sis showed no evidence of effect modification (Phet = 0.89;

Table 2), and excluding cases who were diagnosed between

age 46 and 55 as potentially perimenopausal did not alter

this result (Phet = 0.28). Data on age at menarche were

available for 21,736 cases and 22,686 controls (Table S4 in

Additional file 1); to increase the power of the analysis

we included additional data from BBCS and UKBGS

(5,737 cases, 5,572 controls; Table S4 in Additional file 1)

[19]. There was a 1.5% (95% CI = 0.5%, 2.7%; P = 0.004)

reduction in breast cancer risk associated with each

additional year’s increase in age at menarche. Mean age

at menarche was positively associated with number of

copies of the minor allele of rs10235235 for controls

(Ptrend = 0.005; Table 3) but not for cases (Ptrend = 0.97;

Table 3). Consequently, there was an inverse trend in

the magnitude of the heterozygote and homozygote

breast cancer ORs with mean age at menarche (Phet =

0.02; Table 4); being a carrier of one or two rare alleles

of rs10235235 was associated with an estimated 16%

(ORhet = 0.84, 95% CI = 0.75, 0.94; P = 0.003) or 19%

(ORhom = 0.81, 95% CI = 0.51, 1.30; P = 0.39) (Ptrend =

0.002) reduction in breast cancer risk for women who

had their menarche at ages ≥15 years but there was no

evidence of reduction for those with a menarche at

age ≤11 years (ORhet = 1.06, 95% CI = 0.95, 1.19; P = 0.30

and ORhom = 1.07, 95% CI = 0.67, 1.72; P = 0.78) (Ptrend =

0.29). There was no evidence that the inverse trend in

the magnitude of ORs with mean age at menarche dif-

fered between heterozygous and homozygous carriers

(P = 0.97) and no evidence that the trend was nonlinear

(P = 0.70).

Table 1 Association of rs10235235 with risk of breast cancer for women of European ancestry: stratified analysis

Cases Controls ORhet 95% CI P1 ORhom 95% CI P1 Phet

ER status

ER-positive 24,780 38,739 0.99 0.95, 1.03 0.61 0.83 0.70, 0.99 0.04

ER-negative 5,851 38,739 1.02 0.95, 1.10 0.60 0.60 0.43, 0.86 0.005

NK 8,339

Total 38,970a 38,739 0.99 0.95, 1.03 0.74 0.79 0.67, 0.94 0.006 0.83

PR status

PR-positive 18,497 39,033 0.98 0.93, 1.02 0.32 0.82 0.67, 0.99 0.04

PR-negative 8,193 39,033 1.02 0.96, 1.09 0.53 0.74 0.56, 0.98 0.03

NK 12,111

Total 38,801b 39,033 0.99 0.94, 1.03 0.52 0.80 0.67, 0.95 0.01 0.19

Morphology

Ductal 22,123 31,803 0.98 0.93, 1.02 0.30 0.74 0.61, 0.90 0.003

Lobular 3,921 31,803 1.07 0.98, 1.17 0.14 0.91 0.64, 1.27 0.57

Other and NK 5,995

Total 32,039 31,803 0.99 0.95, 1.04 0.64 0.77 0.64, 0.92 0.004 0.03

Grade

Grade 1 5,944 37,285 0.97 0.90, 1.05 0.46 0.86 0.65, 1.15 0.31

Grade 2 13,427 37,285 1.00 0.95, 1.06 0.92 0.80 0.63, 0.98 0.04

Grade 3 8,638 37,285 0.98 0.92, 1.05 0.58 0.61 0.46, 0.82 0.001

NK 8,769

Total 36,778 37,285 0.99 0.95, 1.03 0.56 0.76 0.64, 0.90 0.001 0.63

Nodal status

Node-negative 17,463 37,836 0.98 0.93, 1.03 0.47 0.86 0.71, 1.04 0.12

Node-positive 10,746 37,836 0.98 0.92, 1.04 0.46 0.72 0.57, 0.93 0.01

NK 9,359

Total 37,568 37,836 0.98 0.94, 1.02 0.31 0.81 0.68, 0.96 0.02 0.51

Association of rs10235235 with risk of breast cancer for women of European ancestry stratified by oestrogen receptor (ER) status, progesterone receptor (PR)

status, morphology, grade and nodal status. ORhet, odds ratio comparing rs10235235 AG genotype versus AA genotype; H0, null hypothesis; NK, not known;

ORhom, odds ratio comparing rs10235235 GG genotype versus AA genotype; P1, test of H0 no association between rs10235235 and breast cancer risk; Phet, test of

H0 no difference between stratum specific estimates for variables with two strata or test of H0 no linear trend in stratum specific estimates for variables with three

strata. aExcludes seven studies that selected all ER-negative cases (CTS, DEMOKRITOS, NBCS, NBHS, OSU, RPCI and SKKDKFZS) and one study (PBCS) that selected

all ER-positive cases. bExcludes seven studies that selected all PR-negative cases (CTS, DEMOKRITOS, NBCS, NBHS, OSU, RPCI and SKKDKFZS).
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Discussion
This study of more than 47,000 breast cancer cases and

47,000 controls has confirmed that rs10235235, mapping

to 7q22.1 (CYP3A), is associated with a reduction in breast

cancer risk for women of European ancestry. Previously,

our hypothesis-generating study of 10,000 breast cancer

cases and 17,000 controls found a per-allele OR estimate

of 0.96 (95% CI = 0.90, 1.02; P = 0.2), with marginally sig-

nificant evidence of an inverse association for breast cancer

diagnosed age 50 years or younger (OR = 0.91, 95% CI =

0.83, 0.99; P = 0.03) but no evidence of an association for

breast cancer at later ages (OR = 1.01, 95% CI = 0.93, 1.10;

P = 0.82) [19]. In this considerably larger study, we found a

heterozygote OR estimate of 0.98 (95% CI = 0.94, 1.01;

P = 0.21) and a homozygote OR estimate of 0.80 (95%

CI = 0.69, 0.93; P = 0.004) with marginally significant

evidence that the inverse association for homozygotes is

greater than predicted by a multiplicative model (P = 0.04).

To our knowledge, rs10235235 is the first SNP to be

associated with both breast cancer risk and age at me-

narche, consistent with the well-documented association

between later age at menarche and a reduction in breast

cancer risk [23]. Genome-wide association studies have

identified more than 70 breast cancer risk variants [5,6]

and more than 30 variants associated with age at menar-

che [22], none of which map to the CYP3A locus.

rs10235235 was originally identified on the basis of a

highly significant association with hormone levels, ac-

counting for 4.9% of the variation in premenopausal

urinary oestrone glucuronide levels [19]. In this current

analysis, rs10235235 accounted for only 0.01% of the

variation across controls in age at menarche and we esti-

mate that this SNP explains just 0.01% of the familial

excess breast cancer risk. Our data thus illustrate the po-

tential statistical efficiency of studies of intermediate

phenotypes in the identification of rarer (MAF < 10%)

risk alleles with modest associations. Our analysis shows

some inconsistency with a recent genome-wide study of

circulating oestradiol, testosterone and sex hormone-

binding globulin in postmenopausal women [24]. In that

study there was no genome-wide significant association

observed with plasma oestradiol levels in either the pri-

mary analysis of approximately 1,600 postmenopausal

women who were not taking postmenopausal hormones

at blood draw or the secondary analysis that included

approximately 900 current postmenopausal hormone

users. Further studies will be needed to determine whether

the lack of an association between CYP3A variants and

postmenopausal plasma oestradiol levels reflects a differ-

ence in the menopausal status of the study subjects, the

hormone/metabolite that was analysed or chance.

One possible explanation for the apparent effect modi-

fication of the rs10235235–breast cancer risk association

by age at menarche is that this is a function of genotyp-

ing a marker SNP rather than the true causal variant.

For example, if rs10235235 was perfectly correlated with

a causal variant, SNP X, with a MAF substantially lower

than that of rs10235235 (D′ ~ 1.0, r2 < 1.0), then there

would be three types of chromosome in the population:

type i, chromosomes carrying the common allele of

rs10235235 and the common allele of SNP X; type ii,

chromosomes carrying the rare allele of rs10235235 and

the common allele of SNP X; and type iii, chromosomes

carrying the rare allele of rs10235235 and the rare (pro-

tective) allele of SNP X. Only chromosomes carrying the

rare allele of rs10235235 and the rare (protective) allele of

Table 3 Association of rs10235235 with age at menarche for women of European ancestry by case-control status

rs10235235 genotype Cases Age at menarche (years) Ptrend Controls Age at menarche (years) Ptrend

AA 22,954 12.83 23,383 12.95

AG 4,312 12.83 4,627 13.02

GG 207 12.83 248 13.05

Total 27,473 12.83 0.97 28,258 12.96 0.005

H0, null hypothesis; Ptrend, test of H0 no linear trend in age at menarche according to rs10235235 genotype.

Table 2 rs10235235 and risk of breast cancer for women of European ancestry by age at diagnosis

Age at diagnosis Casesa Controlsa ORhet 95% CI P1 ORhom 95% CI P1 Phet

≤ 50 years 11,794 34,988 0.99 0.93, 1.05 0.69 0.68 0.53, 0.86 0.003

> 50 years 23,264 34,988 0.97 0.93, 1.02 0.24 0.84 0.70, 1.00 0.04

NK 554

Total 35,612 34,988 0.98 0.94, 1.02 0.23 0.79 0.67, 0.92 0.003 0.89

aFive studies (ABCFS, MARIE, MEC, MTLGEBCS and SASBAC) that selected all cases on the basis of age at diagnosis (Table S3 in Additional file 1) were excluded

from this stratified analysis; two small studies (CTS and NBCS) that had no heterozygote or rare homozygote cases in one of the age stratum were also excluded.

H0, null hypothesis; NK, not known; ORhet, odds ratio comparing rs10235235 AG genotype versus AA genotype; ORhom, odds ratio comparing rs10235235 GG

genotype versus AA genotype; P1, test of H0 no association between rs10235235 and breast cancer risk; Phet, test of H0 no difference between stratum

specific estimates.
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SNP X (type iii) would be enriched in controls. Genotyp-

ing the marker (rs10235235) rather than the causal variant

leads to misclassification. As the causal variant is associ-

ated with a protective effect on breast cancer risk, the pro-

portion of chromosomes carrying both the rare allele of

the causal variant and the marker (type iii) compared with

the common allele of the causal variant and the rare allele

of the marker (type ii) will be greater in controls than in

cases such that the extent of misclassification will be

greater for cases than controls. This will attenuate the as-

sociation between genotype and age at menarche to a

greater extent in cases than in controls creating an appar-

ent effect modification. Fine mapping and functional stud-

ies will be required to identify the causal variant and to

determine the true relationship between the causal vari-

ant, age at menarche and breast cancer risk.

Despite our original finding of a strong association be-

tween rs10235235 and hormone levels, we found no evi-

dence that the association between this SNP and breast

cancer risk differed by the hormone receptor status of the

tumour, and nor did we find any evidence that the associ-

ation differed by stage, grade or lymph node involvement.

There was marginally significant evidence that the associ-

ation between rs10235235 and breast cancer risk differed

between ductal and lobular cancers (Phet = 0.03). Given

the number of stratified analyses that we carried out (six

stratifying variables) and given that there is no biological

basis to support an interaction between rs10235235 and

morphology, this is probably a chance observation.

In contrast to our earlier study [19], we found no evi-

dence of an interaction with age at diagnosis when we

stratified cases by age ≤/>50 years, either including or

excluding cases diagnosed between age 46 and 55 years

as potentially perimenopausal. We used age at diagnosis

as a proxy for menopausal status at diagnosis because

menopausal status at diagnosis is difficult to determine

by questionnaire, especially given the use of hormone

replacement therapies; while information on age at

diagnosis was available for all but 1.4% (n = 554) of

cases, information on age at natural menopause was

missing for 65.6% (n = 26,552) of cases of European

ancestry. Similarly, although rs10235235 is a plausible

candidate for association with age at menopause, we

did not test this due to the limited amount of data on

age at natural menopause for controls of European an-

cestry (n = 11,294, 28.2%) and the difficulty in ascertaining

whether treatment for breast cancer had influenced re-

ported age at menopause for cases.

The strengths of our study include the large size of

this combined analysis, and the availability of informa-

tion on tumour characteristics for the majority of cases

and on age at menarche for the majority of cases and

controls. Limitations include low power of the study to

examine an association between genotype and breast

cancer risk for non-Europeans.

Conclusions
In summary, we have confirmed that rs10235235 is asso-

ciated with breast cancer, have shown for the first time

that rs10235235 is associated with age at menarche in

controls and have suggested a potential mechanism for

these associations. rs10235235, which maps to the

CYP3A locus, probably tags a causal variant that affects

expression of one or more CYP3A genes.
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Additional file 1: Contains Table S1 presenting details of

participating BCAC studies; Table S2 presenting rs10235235

genotypes for breast cancer cases and controls from 49 BCAC

studies; Table S3 presenting availability of data on age at diagnosis,

hormone receptor status, morphology, grade and nodal status for

breast cancer cases from 38 European BCAC studies; Table S4

presenting availability of data on age at menarche for breast cancer

cases and controls from 40 European BCAC studies; and Figure S1

showing association of the rs10235235-AG genotype with breast

cancer risk for women of Asian and African-American ancestry.

Additional file 2: Presents details of ethical committees that

approved each study.

Abbreviations

BCAC: Breast Cancer Association Consortium; CI: confidence interval;

COGS: Collaborative Oncological Gene-environment Study; MAF: minor allele

frequency; OR: odds ratio; Ptrend: P value for linear trend; SNP: single nucleotide

polymorphism.

Table 4 rs10235235 and risk of breast cancer for women of European ancestry by age at menarche

Age at menarche (years) Cases Controls ORhet 95% CI P1 ORhom 95% CI P1 Phet

≤11 4,818 4,749 1.06 0.95, 1.19 0.30 1.07 0.67, 1.72 0.78

12 5,655 5,720 0.92 0.83, 1.02 0.10 0.83 0.54, 1.28 0.41

13 7,308 7,379 0.93 0.85, 1.02 0.11 0.77 0.54, 1.09 0.14

14 5,307 5,743 0.96 0.86, 1.06 0.42 0.69 0.45, 1.06 0.09

≥15 4,385 4,667 0.84 0.75, 0.94 0.003 0.81 0.51, 1.30 0.39

Total 27,473 28,258 0.94 0.90, 0.98 0.007 0.81 0.67, 0.98 0.03 0.02

H0, null hypothesis; ORhet, odds ratio comparing rs10235235 AG genotype versus AA genotype; ORhom, odds ratio comparing rs10235235 GG genotype versus AA

genotype; P1, test of H0 no association between rs10235235 and breast cancer risk; Phet, test of H0 no linear trend in stratum specific estimates.
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