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Background/Aims—The Alzheimer’s Disease Sequencing Project (ADSP) aims to identify 

novel genes influencing Alzheimer’s Disease (AD). Variants within genes known to cause 

dementias other than AD have been previously associated with AD risk. We describe evidence of 

co-segregation and association between variants in dementia genes and clinically-diagnosed AD 

within the ADSP.

Methods—We summarize the properties of known pathogenic variants within dementia genes, 

describe the co-segregation of variants annotated as “pathogenic” in ClinVar and new candidates 

observed in ADSP families, and test for association between rare variants in dementia genes in the 

ADSP case-control study. Participants were clinically evaluated for AD, and represent European, 

Caribbean Hispanic, and Dutch-isolate populations.

Results—Pathogenic variants in dementia genes were predominantly rare and conserved coding 

changes. Pathogenic variants within ARSA, CSF1R, and GRN were observed, and candidate 

variants in GRN and CHMP2B nominated in ADSP families. An independent case-control study 

provided evidence of association between variants in TREM2, APOE, ARSA, CSF1R, PSEN1, 

and MAPT and risk of AD. Variants in genes which cause dementing disorders may influence the 

clinical diagnosis of AD in a small proportion of cases within the ADSP.
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Introduction

Alzheimer’s disease (AD; [MIM:104300]) is genetically heterogeneous, and shares 

phenotypic characteristics with other dementias. Autosomal dominant early-onset AD is 

caused by rare variants in APP[1], PSEN1[2], and PSEN2[3,4]. Common variants in dozens 

of genes are associated with late-onset AD[5–7]. The APOE ε4 allele has the strongest and 

most consistent evidence for association with increased risk of both sporadic and familial 

AD[6,7], and has been independently associated with cognitive function[8,9] and other 

dementing disorders[10,11]. Variants within genes causing other dementing disorders have 

also been associated with AD risk, including MAPT[12–14], PRNP[15], GRN[14], and 

TREM2[16,17]. Patients with variants in these genes can meet the clinical diagnostic criteria 

for AD, such as observed in GRN[18,19] and frontotemporal lobar degeneration (FTLD-

TDP; [MIM: 607485])[20–22], MAPT[23–26] and frontotemporal dementia (FTD; [MIM: 

600274])[23], and PRNP and prion diseases[27,28]. It can be challenging to differentiate 

AD from other causes of dementia using clinical criteria alone[29,30], while even the 

defining neuropathological features of AD may be observed in patients with other dementias 

and cognitively-normal controls[15,31]. These shared features suggest shared etiologies 

across dementing disorders.

It is possible that pathogenic variants in dementia genes may explain the genetic cause of 

dementia among carriers within the Alzheimer’s Disease Sequencing Project (ADSP). 

Targeted sequencing of the early-onset AD genes, GRN, and MAPT among persons 

diagnosed with AD have identified known pathogenic variants in PSEN1[32–34], 
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PSEN2[35], and GRN [33], and candidate variants in APP[33,34], PSEN1[34–36], 

PSEN2[34,36], and both MAPT and GRN[32–34,36]. When family data is available, these 

candidate variants rarely explain the cause of AD throughout a given family[33], possibly 

due to genetic heterogeneity or incomplete penetrance. Alternatively, the candidate variants 

may represent neutral variation and have no relationship to AD risk.

Known pathogenic variants in dementia genes may provide useful characteristics for 

filtering candidate variants for AD. For Mendelian traits, it is common to prioritize rare, 

coding changes[37] predicted to be deleterious by a bioinformatics algorithm, such as the 

CADD score[38] or a measure of conservation like the GERP score[39,40]. It is not clear 

that the same selective pressures behind these assumptions hold for complex and late-onset 

traits like AD[39,41]. It would hasten the discovery of novel AD variants if bioinformatics 

scores could accurately predict the pathogenicity of such a variant.

We hypothesize that variants within 35 dementia-related genes (Table 1) might be associated 

with the risk of a clinical diagnosis of AD. We describe variants reported to be pathogenic in 

dementia genes and define criteria for prioritizing candidate variants. We identify these 

variants, and candidate variants sharing their characteristics, in families sequenced by the 

ADSP. Finally, we summarize the evidence of association between AD and variants within 

dementia genes from the ADSP case-control study. These results suggest that variants within 

genes causing dementias distinct from AD may yet play a role in clinically-diagnosed AD.

Materials and Methods

Subjects and samples

The Alzheimer Disease Sequencing Project (ADSP)—The ADSP has generated 

whole genome sequence (WGS) data from members of multiplex AD families and whole 

exome sequence (WES) data for a large case-control cohort[42]. Briefly, WGS data was 

collected on 582 individuals from 111 multiplex AD families of European or Caribbean 

Hispanic ancestry, favoring families with multiple cases across generations and relatively 

few copies of the APOE ε4 allele, as described elsewhere[42]. Among these 582 individuals, 

498 were clinically diagnosed with probable or definite AD (~11% neuropathologically-

confirmed AD) [42–44]. These genomes represent families with European-American (NC, 

UM, UP prefixes), Caribbean Hispanic (CU prefix), and Dutch (ERF prefix) ancestry. These 

families were ascertained from multiple sites, including contributors to the Alzheimer 

Disease Genetics Consortium (ADGC), and the neurology working group of the Cohorts for 

Heart and Aging Research in Genomic Epidemiology consortium (CHARGE). The WES 

case-control study prioritized individuals with European ancestry by their low estimated risk 

of AD, and neuropathologically-confirmed controls when available[42]. A balanced number 

of 5,107 cases (~38% neuropathologically-confirmed AD) and 4,976 controls were selected 

for WES. These data are available through the database of Genotypes and Phenotypes 

(dbGaP; Study Accession: phs000572.v7.p4). All subjects have provided informed consent, 

and this study was approved by the institutional review boards of participating institutions.

ADSP sequence data was generated at Baylor University, the Broad Institute, and 

Washington University. Sequencing, variant calling, and quality control (QC) methods are 
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detailed elsewhere [45]. Read data were aligned to the GRCh37-Lite reference genome 

using the Burrows Wheeler Aligner (BWA, v0.6.2[46]).Variants were called using both the 

Genome Analysis Tool Kit (GATK)-HaplotypeCaller[47–49] and Atlas V2[50] pipelines. 

The QC pipeline was built upon the CHARGE consortium’s QC protocol[51]. Discrepancies 

between the GATK and Atlas V2 calls were reconciled by the ADSP QC Working Group to 

create the “consensus” data set. This QC protocol involved the development of scripts in the 

Python, Perl, and R (v2.15 and v3.1.1) languages, as well as the software programs PLINK 

(v1.07 and v1.9[52]) and PedCheck(v1.2[53]). APOE genotypes were provided by the 

contributing centers; the necessary genotypes did not pass QC in the WGS data set.

Single nucleotide variants (SNVs) within the canonical transcripts of the dementia genes 

were extracted from the consensus-called WGS data dated May 18, 2015 (Table 1)[45]. The 

ADSP Annotation Working group provided consistent annotation of all variants (WGS v1 

annotation files [54]). The genomic context and consequence of variants was provided by the 

Ensembl Variant Effect Predictor tool (VEP v80[55,56]) and SeattleSeq Annotation 138 

(http://snp.gs.washington.edu/SeattleSeqAnnotation138/), including allele frequencies from 

the Exome Sequencing Project (ESP[57]), 1000 genomes[58], and the Exome Aggregation 

Consortium (ExAC[59]). Variant-specific metrics of predicted pathogenicity or severity 

included SIFT[60], PolyPhen2[61], GERP[62], and CADD[38] scores.

Variant inclusion criteria, analysis parameters, and association test results from the ADSP 

WES data set is described elsewhere [63]. Subject-level QC identified unrelated samples 

with minimal missing genotype data and either European or Caribbean Hispanic ancestry 

(5,740 cases, 5,096 controls). SNVs and insertions/deletions were extracted from the Atlas 

V2 genotype call set, and included in association testing if they passed QC, were predicted 

to cause a moderate (ex., missense) or high (ex., stop-gain) impact consequence, and were 

rare (minor allele frequency, MAF<5%).

Center for Precision Diagnostics sample—The Center for Precision Diagnostics 

(CPD) at the University of Washington provided targeted sequence data for 48 

neuropathologically-confirmed controls with self-reported European ancestry (50% female). 

The 48 controls represent cognitively-normal elderly adults enrolled in Alzheimer’s Disease 

Centers who did not meet neuropathological criteria for AD or Parkinson’s disease upon 

their death at age ≥ 54 years[64]. The CPD used a targeted capture approach to sequence a 

panel of genes known to cause neurodegenerative disorders, including the dementia panel 

listed in Table 1, with >99% of targeted coding regions and canonical splice sites sequenced 

to >20X coverage. Current information about this panel and sequencing methods are 

available online (http://uwcpdx.org/neurodegenerative-panel/). DNA fragments were 

captured using the Exome v1.0 (Integrated DNA Technologies) system, paired-end 

sequencing was performed using Illumina technologies, including the rapid run v2.0 

chemistry and a HiSeq 2500 sequencer. Reads were aligned to the hg19 reference genome 

using BWA and variant calling was performed by GATK. This research was approved by the 

Veterans Affairs Puget Sound institutional review board (MIRB #00088).
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Analysis Methods

We focus analysis on the 35 genes listed in Table 1, which represented the dementia gene 

panel provided by the CPD, a CLIA-certified lab for diagnostic genetic testing. Variants 

within these genes were downloaded from ClinVar (12/22/2015), and converted from build 

GRCh38 sequence positions to GRCh37 using the LiftOver tool from the UCSC Genome 

Browser[65,66]. We restricted analyses to “consequential” variants: those annotated as 

pathogenic, likely pathogenic, risk variant, or protective in ClinVar, and use their reported 

consequences (ex., missense). Consequential variants observed in the ADSP were evaluated 

by literature review on a variant-by-variant basis, including the AD & FTD Mutation 

Database[67] (www.molgen.ua.ac.be/admutations/), Online Mendelian Inheritance in 

Man[68,69] (OMIM; https://omim.org/) and AlzForum[70] (alzforum.org/mutations) 

databases. SNVs within the dementia genes were extracted from the 1000 genomes phase 3 

data (release v1.3, cadd.gs.washington.edu) and the CPD controls using VCFtools 

(v0.1.14[71]). SNVs within dementia genes extracted from ClinVar, 1000 genomes, and 

CPD data were annotated with VEP (v84), ANNOVAR[72], and GEMINI (v0.18.0[73]). 

Annotation included allele frequencies in the ESP, 1000 genomes, and ExAC, and 

PolyPhen2 (HDIV), SIFT, GERP (++RS), and CADD (phred scaled) scores[74]. Variants 

with PolyPhen2 scores ≥ 0.957, SIFT scores < 0.05, or CADD scores (phred scaled) ≥15 

were predicted to be deleterious/pathogenic, while GERP scores ≥3 were considered 

conserved[75,76].

Gene-based tests were performed using SKAT-O[77] separately for the European-ancestry 

and Caribbean Hispanic subjects, then meta-analyzed using skatOMeta[78,79] . Only the 

results of the meta-analyses under models 0 (covariates include sequencing center and 

population-specific principal components) and 2 (covariates include model0 plus age, sex, 

principal components, and dosage of APOE ε2 and ε4 alleles) are presented herein[63]. 

Results from an intermediate model, model 1, were excluded for simplicity. Summary 

statistics were generated in R (v 3.2.5).

Results

Characteristics of known consequential SNVs in dementia genes

Consequential SNVs in dementia genes reported in ClinVar were overwhelmingly rare 

missense variants with evidence of conservation and predicted pathogenicity. Although start/

stop and splice site variants were represented (Figure 1), all reported consequential SNVs in 

nine dementia genes were missense: EIF2B3, EIF2B5, MAPT, PDGFB, PDGFRB, PSEN1, 

PSEN2, SLC25A12, and VCP. In contrast, most of the consequential SNVs in GRN were 

either start/stop or splice site variants. Most consequential SNVs reported in ClinVar were 

rare, with 492/496 = 99.2% of SNVs with MAF <0.001 in independent reference 

populations. Among the 64 consequential SNVs observed in reference data sets, 60 had 

MAF < 0.001. Three of the remaining four SNVs were in APOE: rs7412 and rs429358 

define the ε2 and ε4 alleles provided by the ADSP contributors and associated with 

protection or risk of AD[80], while rs769455 had MAF < 1% in reference populations and 

was observed four times as often in European-American AD cases vs. controls[80]. 
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Homozygotes for the remaining variant, rs5848, (MAF = 0.42 in the 1000 genomes) have 

increased risk of both FTD[81] and AD[82].

Most consequential SNVs reported to ClinVar within the dementia genes were predicted to 

be pathogenic or conserved, unlike the SNVs observed in reference or control data sets 

(Figure 2). Where annotation was available, the observed distribution of CADD and GERP 

scores better discriminate between the consequential ClinVar variants and the reference data 

sets (Figure 2). Most consequential SNVs had high GERP or CADD scores: 91% of 

consequential SNVs had GERP scores ≥3, and 84% had CADD scores (phred scaled) ≥15.

ClinVar pathogenic SNVs observed in the ADSP family WGS data

Within the ADSP family WGS data, seven SNVs within six dementia genes were annotated 

as pathogenic in ClinVar (Table 2). Four of the SNVs cause recessive disorders but were 

only observed in heterozygotes (rs28940893, rs80358257, rs113994049, rs147313927) and 

are therefore unlikely to cause their corresponding dementias in these heterozygotes. The 

remaining three SNVs in GRN, CSF1R, and ARSA could potentially influence the dementia 

phenotype in their carriers.

Dominant variants in GRN cause FTD (Table 1). However, the homozygous alternate 

genotype at GRN variant rs5848 is associated with both increased risk of FTD (OR = 

3.18[81]) and AD (OR = 1.31[82] and 1.386[83]). Within the ADSP WGS data, 65 

homozygotes (45 cases) were observed within 35 families. These cases met clinical criteria 

for either probable or definite AD, and are therefore not likely to have FTD, although 

comprehensive imaging data for these subjects are not available to formally exclude FTD 

pathology.

Dominant variants in CSF1R cause hereditary diffuse leukoencephalopathy with spheroids 

(HDLS; [MIM:221820]), a dementia which can mimic AD[84] (Table 1). A 

pathogenic[84,85] SNV in CSF1R, rs281860278, was observed in a member of family 

UM0304F diagnosed with probable AD at age 72 years. However, rs281860278 does not 

segregate with dementia in this family; this SNV was not observed in the carrier’s sequenced 

relatives, including a sibling diagnosed with definite AD at age 73 years, a sibling diagnosed 

with probable AD at age 75 years, and a niece at-risk of AD at age 55 years. External 

sequence data revealed the SNV was observed in two additional siblings who were not 

clinically diagnosed with AD at the time of their deaths at ages 91 and 94 years.

Homozygous genotypes for each of two SNVs, rs6151429 (Table 2) and ARSA missense 

variant rs2071421[86], lead to arylsufatase A pseudodeficiency[86–89], which can cause 

metachromatic leukodystrophy ([MIM:250100]) if inherited with another ARSA missense 

variant[90,91]. Homozygotes for both rs6151429 and rs2071421 were observed in three 

ADSP families, although none carried an additional ARSA missense variant: CU0044F, 

CU0049F, and NC0205F. WGS data were available for 11 individuals diagnosed with 

probable AD and one individual at-risk of AD within family CU0044F. Within family 

CU0044F, two siblings diagnosed with probable AD at ages 71 and 86 years were 

homozygous for both rs6151429 and rs2071421. These two siblings are the offspring of a 

consanguineous marriage between avuncular relatives, suggesting they inherited both copies 
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of the ARSA SNVs identical-by-descent. External sequence data revealed that 0/3 additional 

at-risk members of CU0044F were homozygous for rs6151429 and rs2071421, WGS data 

were available for 6 individuals diagnosed with probable AD and one at-risk individual in 

family CU0049F. The only individual homozygous for both rs6151429 and rs2071421 from 

family CU0049F was the individual at-risk of developing AD at age 60 years. This at-risk 

individual is the offspring of parents who were diagnosed with probable AD, with no 

sequence data available. Within family NC0205F, WGS data were available for one 

individual diagnosed with definite AD, one diagnosed with probable AD, one diagnosed 

with possible AD, and one individual with unknown phenotype. The two homozygotes 

observed in family NC0205F included a subject diagnosed with definite AD at age 75 years 

and their sibling diagnosed with possible AD at age 80 years, but not their cousins at-risk of 

AD or diagnosed with possible AD at age 70 years. Most homozygotes for the two ARSA 
SNVs were clinically diagnosed with AD, but do not represent all relatives diagnosed with 

AD within their families. External autopsy and imaging data were unavailable for any 

individual homozygous for both rs6151429 and rs2071421.

Rare SNVs observed in the ADSP family WGS data that share properties with 
consequential ClinVar SNVs

Two SNVs in the ADSP WGS family data share characteristics with known pathogenic 

variants in the dementia genes: reference MAF < 0.001, CADD (phred scaled) ≥15, and 

GERP ≥ 3 (Table 2). The GRN missense SNV, rs141111290, has previously been associated 

with AD[34] and is observed in ADSP families CU0012F and CU0042F. Within CU0012F, 

rs141111290 carriers include a subject diagnosed with probable AD at age 73 years and 

their sibling diagnosed with possible AD at age 58 years, but not their siblings diagnosed 

with probable AD at ages 61 and 63 years. Within family CU0042F, the rs141111290 

heterozygote was at-risk of AD as of age 69 years, but the SNV is not observed in their 

sequenced relatives diagnosed with either probable (age 86 and 91 years) or possible (age 73 

years) AD. In contrast, the CHMP2B SNV rs149380040 was observed in both sequenced 

cases from family CU0021F, diagnosed with probable AD at ages 77 and 83 years. This 

SNV causes a p.Ser194Leu change in the canonical transcript of CHMP2B and falls outside 

the conserved snf7 domain containing variants thought to cause FTD[92]. Although other 

variants in CHMP2B cause FTD, the ADSP cases carrying the p.Ser194Leu variant met the 

clinical criteria for probable AD, and did not show clinical evidence of FTD.

Gene-based association testing in the ADSP case-control exome data

Gene-based tests of rare variants revealed evidence of association between six dementia 

genes and risk of AD in the ADSP case-control analysis (p<0.05, Table 3): APOE, ARSA, 

CSF1R, MAPT, PSEN1, and TREM2. TREM2 was significantly associated with AD under 

model 0 after controlling for the number of dementia genes tested (p = 1.82E-11). For each 

of these genes, the frequency of carrying at least one rare variant allele with a predicted 

moderate or high impact was low (Table 3), suggesting that rare variants in these genes may 

play a small but important role in the risk of clinically-diagnosed AD.
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Discussion

We provided evidence that SNVs within AD genes (APOE[93], PSEN1[2,94], 

TREM2[16,17,95]), genes causing dementias which may mimic AD (MAPT[12–14,23–25], 

CSF1R[96–99]), and genes causing distinct dementias (ARSA) possibly influence the 

phenotype for a small number of cases of AD in the ADSP. Detailed phenotype and 

pathologic data are necessary to determine what role, if any, these SNVs play in AD, which 

is unavailable for most carriers of these SNVs in the ADSP data set. However, a few of these 

SNVs have strong evidence in the literature supporting their pathogenic role in dementia, 

including rs5848 in GRN[82,83] and rs141111290 in CHMP2B[34] which have previously 

demonstrated strong statistical associations with risk of AD.

Among the genes causing non-AD dementias, pathogenic SNVs in both ARSA and CSF1R 
were observed in the family-based ADSP WGS data set and gene-based association testing 

in the large case-control cohort. CSF1R is differentially expressed in mouse models of 

AD[100,101] and surrounding Aβ plaques in human cases of AD[102]. Inhibiting CSF1R in 

mouse models of AD ameliorates memory loss and synaptic degeneration[103]. That 

inhibition can be done pharmacologically[103], suggesting CSF1R may be a promising drug 

candidate for AD. The connection between ARSA and AD is more tenuous. ARSA is down-

regulated in sex-specific analyses of cells derived from sporadic AD patients[104]. 

Furthermore, the pathogenic SNV observed in the ADSP WGS data set, rs6151429, was 

observed in 34% of postmortem brain samples from AD cases, much higher than the 

frequency in related populations[105]. These findings are intriguing, though the potential 

relationship between ARSA and AD requires further study before conclusions could be 

drawn.

Descriptive analyses of consequential SNVs in ClinVar have revealed several patterns which 

may help identify novel variants driving dementing disorders in these genes. Our results 

suggest that coding changes in dementia genes with low (MAF<0.001) frequencies in 

reference populations and high CADD and/or GERP scores should be prioritized when 

nominating candidate variants for these disorders. Strict application of these filters to the 

ADSP WGS data prioritized an additional missense variant in GRN previously associated 

with AD risk[34] and a missense variant in CHMP2B observed in both sequenced cases 

diagnosed with probable AD in a single pedigree. Further analysis of each of these SNVs is 

required to evaluate their potential contribution to AD risk.

Variants in known dementia genes do not appear to explain the AD phenotype in the 

majority of the ADSP. However, rare pathogenic SNVs, or those sharing similar properties, 

may influence the phenotype in 1% of subjects within the ADSP family WGS data set 

diagnosed with either definite or probable AD; this percentage increases to 11% when the 

common GRN risk variant is included. Where observed, SNVs annotated as “pathogenic” by 

ClinVar in known dementia genes would explain no more than half the AD cases in a single 

family, consistent with the known genetic heterogeneity of AD[5,94]. This suggests that 

novel AD genes remain to be uncovered in the ADSP sequence data set.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Robert Friedland, MD; Matthew P. Frosch, MD PhD; Douglas R. Galasko, MD; Marla Gearing, PhD; David S. 
Geldmacher, MD; Peter St. George-Hyslop, MD FRCP; Daniel H. Geschwind, MD PhD; Bernardino Ghetti, MD; 
Carey Gleason, PhD; Rodney C.P. Go, PhD; Alison M. Goate, D.Phil; Teresa Gomez-Isla, PhD; Rebecca 
Gottesman, MD PhD; Thomas Grabowski, MD; Neill R. Graff-Radford, MD MBBCh; Robert C. Green, MD; 
Patrick Griffith, MD; John H. Growdon, MD; Harry E. Gwirtsman, MD; Jonathan L. Haines, PhD; James R. Hall, 
PhD; Kara L. Hamilton-Nelson, MPH; John Hart, MD; Michelle Hernandez, CRC; Jayanadra J. Himali, PhD; Edith 
Hofer, PhD; Albert Hofman, MD PhD; Lawrence S. Honig, MD PhD; Ryan M. Huebinger, PhD; Matthew J. 
Huentelman, PhD; Christine M. Hulette, MD; Bradley T. Hyman, MD PhD; Kamran Ikram, MD PhD; Gail P. 
Jarvik, MD PhD; James Jaworski, MPH; Suman Jayadev, MD; Lee-Way Jin, MD PhD; Kim Johnson, PhysD; Leigh 
Johnson, PhD; Sterling Johnson, PhD; WT Longstreth, Jr, MD; Gyungah R. Jun, PhD; M. Ilyas Kamboh, PhD; 
Anna Karydas, BA; Jeffrey A. Kaye, MD; C. Dirk Keene, MD PhD; Aisha Khaleeq, MD; Ronald Kim, MD; Janice 
Knebl, DO; David Knopman, MD; Olena Korvatska, PhD; Peter J. Koudstaal, MD PhD; Neil W Kowall, MD; Joel 
H. Kramer, PsyD; Walter A. Kukull, PhD; Lewis H. Kuller, MD; Brian W. Kunkle, PhD MPH; Alexander Kurz, 
MD; Laura J. Lacritz, PhD; Frank M. LaFerla, PhD; James J. Lah, MD PhD; Rafael Lantigua, MD; Eric B. Larson, 
MD MPH; W. William Lee, PhD; Allan I. Levey, MD PhD; Ge Li, MD PhD; Andrew P. Lieberman, MD PhD; 
Ricahrd B. Lipton, MD; Mark Logue, PhD; Oscar L. Lopez, MD; Kathryn L. Lunetta, PhD; Constantine G. 
Lyketsos, MD MHS; Douglas Mains, DrPH; Jennifer Manly, PhD; Daniel C. Marson, JD PhD; Eden R. Martin, 
PhD; Paul Massman, PhD; Richard Mayeux, MD; Wayne C. McCormick, MD MPH; Susan M. McCurry, PhD; 
Ann C. McKee, MD; Martin Medrano, MD; Marsel Mesulam, MD; Bruce L. Miller, MD; Carol A. Miller, MD; 
Abhay Moghekar, MBBS; John C. Morris, MD; Thomas H. Mosley, PhD; Shubhabrata Mukherjee, PhD; Trung 
Nguyen, MD/PhD; Sid O?Bryant, PhD; Thomas Obisesan, MD; John M. Olichney, MD; Marcia Ory, PhD/MPH; 
Ruth Ottman, PhD; Raymond Palmer, PhD; Joseph E. Parisi, MD; Henry L. Paulson, MD PhD; Valory Pavlik, PhD; 
David Paydarfar, MD; Victoria Perez, CRC; Margaret A. Pericak-Vance, MD PhD; Elaine Peskind, MD; Ronald C. 
Petersen, MD PhD; Helen Petrovitch, MD; Aimee Pierce, MD; Marsha Polk, MMEd; Wayne W. Poon, PhD; Luigi 
Puglielli, MD PhD; Mary Quiceno, MD; Joseph F. Quinn, MD; Ashok Raj, MD; Farid Rajabli, PhD; Gerhard 
Ransmayr, MD; Murray Raskind, MD; Wendy Raskind, MD PhD; Eric M. Reiman, MD; Barry Reisberg, MD; Joan 
S. Reisch, PhD; Christiane Reitz, MD; Dolly Reyes-Dumeyer, BS; KatieRose Richmire, BA; Robert A. Rissman, 
PhD; Fernando Rivadeneira, MD PhD; Erik D. Roberson, MD PhD; Monica Rodriguear, MA; Ekaterina Rogaeva, 
PhD; Howard J. Rosen, MD; Roger N. Rosenberg, MD; Jerome I. Rotter, MD FACP FACMG; Donald R. Royall, 
MD; Yasaman Saba, BSc; Marwan Sabbagh, MD; A. Dessa Sadovnick, PhD; Martin Sadowski, MD PhD; Mark A. 
Sager, MD; David P. Salmon, PhD; Mary Sano, PhD; Andrew J. Saykin, PsyD; Daniel Schaid, MD; Gerard D. 
Schellenberg PhD, PhD; Michael Schmidt, PhD; Julie A. Schneider, MD; Lon S. Schneider, MD; Nicole Schupf, 
PhD; Bill Scott, PhD; William W. Seeley, MD; Scott Small, MD; Amanda G. Smith, MD; Janet Smith, BS; Robert 
A. Stern, PhD; Yaakov Stern, PhD; Alan Stevens, PhD; Robert A Sweet, MD; Russell H. Swerdlow, MD; Rudolph 
E. Tanzi, PhD; Linda Teri, PhD; Jeffrey L. Tilson, PhD; Sarah E Tomaszewski Farias, PhD; Giuseppe Tosto, MD; 
John Q. Trojanowski, MD PhD; Juan C. Troncoso, MD; Magda Tsolaki, MD PhD; Debby W. Tsuang, MD; Andre 
G. Uitterlinden, PhD; Vivianna M. Van Deerlin, MD PhD; Linda J. Van Eldik, PhD; Jeffery M. Vance, MD PhD; 
Badri Vardarajan, PhD; Harry V. Vinters, MD; Dina Voijnovic, MD MS; Jean Paul Vonsattel, MD; Jen Chyong 
Wang, PhD; Sandra Weintraub, PhD; Kathleen A. Welsh-Bohmer, PhD; Shawn Westaway, PhD; Charles C. White, 
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PhD; April Wiechmann, PhD; Kirk C. Wilhelmsen, MD/PhD; Benjamin Williams, MD/PhD; Henrick Wilms, MD/
PhD; B. Gwen Windham, MD MHS; Thomas S. Wingo, MD; Thomas Wisniewski, MD; David A. Wolk, PhD; 
Frank J Wolters, MD MSc; Randall L. Woltjer, MD PhD; Martin Woon, PhD; Steven G. Younkin, MD PhD; Chang-
En Yu, PhD; Lei Yu, PhD.

Members of the Alzheimer’s Disease Sequencing Project (ADSP) include: Shahzad Amad, PhD MSc; Najaf Amin, 
PhD; Lucinda Antonacci-Fulton, MS; Elizabeth Appelbaum, BA; Eric Banks, PhD; Sandra Barral, PhD; Gary 
Beecham, PhD; Alexa Beiser, PhD; Michelle Bellair, MS; Jennifer E. Below, PhD; David A Bennett, MD ; Joshua 
C. Bis, PhD; Elizabeth Blue, PhD; Eric Boerwinkle, PhD; Jan Bressler, PhD; Lisa Brown, PhD; Will Bush, PhD; 
Mariusz Butkiewicz, PhD; Laura Cantwell, MPH; Yuning Chen, MS; Micah Childress, AS; Seung Hoan Choi, 
PhD; Yi Fan Chou, MS; Jaeyoon Chung, MS; Carlos Cruchaga, PhD; Adrienne Cupples, PhD; Rebecca Cweibel, 
MA; Tyler Day, MS; Phillip L De Jager, MD PhD; Anita DeStefano, PhD; Huyen Dinh, BS; Harsha Doddapeneni, 
PhD; Michael Dorschner, PhD; Shannon Dugan-Perez, BA; Josee Dupuis, PhD; Adam English, PhD; Kelley Faber, 
MS; John Farrell, PhD; Lindsay Farrer, PhD; Michael Feolo, PhD; Myriam Fornage, PhD; Tatiana Foroud, PhD; 
Robert S. Fulton, PhD; Stacey Gabriel, PhD; Prabhakaran Gangadharan, MS; Richard A. Gibbs, PhD; Alison 
Goate, DPhil ; Namrata Gupta, PhD; Jonathan Haines, PhD; Kara Hamilton-Nelson, MPH; Yi Han, PhD; Andrea R 
Horimoto, MSc PhD; Jianhong Hu, PhD; M Afran Ikram, MD PhD; James Jaworski, MPH; Joy Jayaseelan, ; 
Xueqiu Jian, PhD; Divya Kalra, MS; Manav Kapoor, PhD; Ziad Khan, ; Daniel C. Koboldt, MS; Viktoriya 
Korchina, BS; Brian Kunkle, PhD MPH; Amanda Kuzma, PhD; Dan Lancour, BS; David E. Larson, PhD; Lenore J. 
Launer, PhD; Sandra Lee, PhD MSN; Yuk Yee Leung, PhD; Han-Jen Lin, MS; Honghuang Lin, PhD; Ching Ti Liu, 
PhD; Xiaoming Liu, PhD; Xiuping Liu, ; Yue Liu, ; Kathy Lunetta, PhD; Yiyi Ma, PhD; John Malamon, BSE; 
Edoardo Marcora, PhD; Eden Martin, PhD; Richard Mayeux, MD; Elisabeth Mlynarski, PhD; Thomas H. Mosley, 
PhD; Donna Muzny, MS; Rafael Nafikov, PhD; Adam Naj, PhD; Waleed Nasser, PhD; Alejandro Q Nato Jr., PhD; 
Pat Navas, PhD; Hiep Nguyen, BS; Devanshi Patel, MS; Margaret Pericak-Vance, PhD; Bruce Psaty, MD MPH 
PhD; Liming Qu, MS; Farid Rajabli, PhD; Christiane Reitz, MD PhD; Alan Renton, PhD; Dolly Reyes, BS; 
Kenneth Rice, PhD; Mohamad Saad, PhD; William Salerno, PhD; Jireh Santibanez, BS; Chloe Sarnowski, PhD; 
Claudia Satizabal, PhD; Gerard Schellenberg, PhD; Helena Schmidt, PhD; Michael Schmidt, PhD; Reinhold 
Schmidt, MD; Sudha Seshadri, MD; Evette Skinner, ; Sandra Smieszek, PhD; Harkirat Sohi, BS; Yeunjoo Song, 
PhD; Adam Stine, MS; Fangui Jenny Sun, PhD; Timothy Thornton, PhD; Giuseppe Tosto, MD PhD; Debby 
Tsuang, MD; Otto Valladares, MS; Sven van der Lee, MD; Cornelia van Duijn, PhD; Ashley Vanderspek, MSc 
PhD; Badri Vardarajan, PhD; Jason Waligorski, BS; Bowen Wang, MS; Weixin Wang, PhD; Li-San Wang, PhD; 
Simon White, MSc; Ellen Wijsman, PhD; Richard K. Wilson, PhD; Daniela Witten, PhD; Kim Worley, PhD; Li 
Charlie Xia, PhD; Nancy Zhang, PhD; Xiaoling Zhang, MD PhD; Yi Zhao, MS; Yiming Zhu, MS.

The ascertainment and selection of controls was supported by grant 1I01BX000531 from the Department of 
Veterans Affairs and grants P30 AG008017, P30 AG028383, P30 AG010124, P30 AG010161, P50 NS053488, P50 
AG005131, P50 NS062684, P50 AG005136, P50 AG005133, R01 NS048595, R01 NS065070, R01 AG010845, 
and U01 AG006781 from the National Institutes of Health.

For the Hispanic data: Data collection for this project was supported by the Genetic Studies of Alzheimer’s disease 
in Caribbean Hispanics (EFIGA) funded by the National Institute on Aging (NIA) and by the National Institutes of 
Health (NIH) (5R37AG015473 and RF1AG015473). We acknowledge the EFIGA study participants and the 
EFIGA research and support staff for their contributions to this study.

The Alzheimer’s Disease Sequencing Project (ADSP) is comprised of two Alzheimer’s Disease (AD) genetics 
consortia and three National Human Genome Research Institute (NHGRI) funded Large Scale Sequencing and 
Analysis Centers (LSAC). The two AD genetics consortia are the Alzheimer’s Disease Genetics Consortium 
(ADGC) funded by NIA (U01 AG032984), and the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, and Blood Institute 
(NHLBI), other National Institute of Health (NIH) institutes and other foreign governmental and non-governmental 
organizations. The Discovery Phase analysis of sequence data is supported through UF1AG047133 (to Drs. 
Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr. Seshadri; U01AG049506 to Dr. 
Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate and the Discovery Extension Phase 
analysis is supported through U01AG052411 to Dr. Goate and U01AG052410 to Dr. Pericak-Vance. Data 
generation and harmonization in the Follow-up Phases is supported by U54AG052427 (to Drs. Schellenberg and 
Wang).

The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer’s Disease Centers (ADC), the 
Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic (MAYO), Mayo 
Parkinson’s Disease controls, University of Miami, the Multi-Institutional Research in Alzheimer’s Genetic 
Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer’s Disease (NCRAD), the National 
Institute on Aging Late Onset Alzheimer’s Disease Family Study (NIA-LOAD), the Religious Orders Study (ROS), 
the Texas Alzheimer’s Research and Care Consortium (TARC), Vanderbilt University/Case Western Reserve 
University (VAN/CWRU), the Washington Heights-Inwood Columbia Aging Project (WHICAP) and the 
Washington University Sequencing Project (WUSP), the Columbia University Hispanic- Estudio Familiar de 
Influencia Genetica de Alzheimer (EFIGA), the University of Toronto (UT), and Genetic Differences (GD).
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The CHARGE cohorts, with funding provided by 5RC2HL102419 and HL105756, include the following: 
Atherosclerosis Risk in Communities (ARIC) Study which is carried out as a collaborative study supported by 
NHLBI contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, 
HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and 
HHSN268201100012C), Austrian Stroke Prevention Study (ASPS), Cardiovascular Health Study (CHS), Erasmus 
Rucphen Family Study (ERF), Framingham Heart Study (FHS), and Rotterdam Study (RS). CHS research was 
supported by contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, 
N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and 
U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the 
National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by 
R01AG023629, R01AG15928, and R01AG20098 from the National Institute on Aging (NIA). A full list of 
principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health.

The three LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54 HG003273), 
the Broad Institute Genome Center (U54HG003067), and the Washington University Genome Institute 
(U54HG003079).

Biological samples and associated phenotypic data used in primary data analyses were stored at Study Investigators 
institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD, U24AG021886) at Indiana 
University funded by NIA. Associated Phenotypic Data used in primary and secondary data analyses were provided 
by Study Investigators, the NIA funded Alzheimer’s Disease Centers (ADCs), and the National Alzheimer’s 
Coordinating Center (NACC, U01AG016976) and the National Institute on Aging Genetics of Alzheimer’s Disease 
Data Storage Site (NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA, and at the 
Database for Genotypes and Phenotypes (dbGaP) funded by NIH. This research was supported in part by the 
Intramural Research Program of the National Institutes of health, National Library of Medicine. Contributors to the 
Genetic Analysis Data included Study Investigators on projects that were individually funded by NIA, and other 
NIH institutes, and by private U.S. organizations, or foreign governmental or nongovernmental organizations.
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Figure 1. Distribution of consequential ClinVar SNVs across dementia genes
Y axis = number of pathogenic/likely pathogenic/risk variant/protective variants meeting 

inclusion criteria. Black: missense variants, white: start or stop gain or loss or frameshift, 

dark grey: splice donor/acceptor/region variant, light grey: 3’UTR variant.
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Figure 2. Percent of SNVs passing pathogenic/deleterious/conserved thresholds across SNV data 
sets
PolyPhen2: 143/496 SNVs were missing data, SIFT scores: 116/496 SNVs were missing 

data, phred-scaled CADD scores: 85/496 were missing data, GERP scores: 85/496 SNVs are 

missing data. Black: All consequential variants in 1000 genomes, dark grey = consequential 

variants in 1000 genomes with minor allele frequency < 0.001 in 1000 Genomes, Exome 

Sequencing Project, and Exome Aggregation Consortium data sets, white: consequential 

variants reported in ClinVar, light grey: consequential variants in CPD controls.
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Table 1

Genes whose variants cause dementing disorders.

CHR START END GENE MIM

1 11072679 11085549 TARDBP 612069

1 17312453 17338423 ATP13A2 606693

1 45316194 45452394 EIF2B3 603896

1 227058273 227083804 PSEN2 606889

2 27587219 27592919 EIF2B4 603896

2 172639915 172750816 SLC25A12 612949

3 87276413 87304698 CHMP2B 600795

3 183852810 183863099 EIF2B5 603896

5 126112315 126172712 LMNB1 169500

5 149432854 149492935 CSF1R 221820

5 149493402 149535422 PDGFRB 615007

6 41126244 41130924 TREM2 221770

6 170863421 170881958 TBP 607136

8 42273980 42396655 SLC20A2 213600

9 35056065 35072739 VCP 613954, 167320

12 124105570 124118323 EIF2B1 603896

13 48807274 48836232 ITM2B 176500, 117300

14 73603143 73690399 PSEN1 607822, 600274

14 74946643 74960084 NPC2 607625

14 75469612 75476294 EIF2B2 603896

14 88399358 88459615 GALC 245200

15 72635778 72668520 HEXA 272800

16 31191431 31206192 FUS 608030

17 42422491 42430470 GRN 607485

17 43971748 44105699 MAPT 600274

18 21111463 21166581 NPC1 257220

19 10244022 10305755 DNMT1 604121

19 15270444 15311792 NOTCH3 125310

19 36395303 36399211 TYROBP 221770

19 45409039 45412650 APOE 104310

20 4667157 4682234 PRNP 137440, 123400

21 27252861 27543138 APP 104300, 605714

22 24108021 24110141 CHCHD10 615911

22 39619685 39640957 PDGFB 615483

22 51061182 51066601 ARSA 250100

CHR: chromosome, START: gene start position in build hg19/GRCh37 coordinates, END: gene end position in build hg19/GRCh37 coordinates, 
MIM: Mendelian Inheritance in Man identifier.
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