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Abstract

Background: Variability in drug efficacy and adverse effects are observed in clinical practice. While the extent of
genetic variability in classic pharmacokinetic genes is rather well understood, the role of genetic variation in drug
targets is typically less studied.

Methods: Based on 60,706 human exomes from the ExAC dataset, we performed an in-depth computational
analysis of the prevalence of functional variants in 806 drug-related genes, including 628 known drug targets. We
further computed the likelihood of 1236 FDA-approved drugs to be affected by functional variants in their targets
in the whole ExAC population as well as different geographic sub-populations.

Results: We find that most genetic variants in drug-related genes are very rare (f < 0.1%) and thus will likely not be
observed in clinical trials. Furthermore, we show that patient risk varies for many drugs and with respect to
geographic ancestry. A focused analysis of oncological drug targets indicates that the probability of a patient
carrying germline variants in oncological drug targets is, at 44%, high enough to suggest that not only somatic
alterations but also germline variants carried over into the tumor genome could affect the response to
antineoplastic agents.

Conclusions: This study indicates that even though many variants are very rare and thus likely not observed in
clinical trials, four in five patients are likely to carry a variant with possibly functional effects in a target for
commonly prescribed drugs. Such variants could potentially alter drug efficacy.
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Background

About three in five Americans aged 20 years and above
take prescription drugs every month [1] and many either
encounter adverse drug reactions or reduced treatment
efficacy [2]. The strong genetic component of altered drug
response in patients is well known [3] and attributed to
variants affecting drug pharmacokinetics (PK) and
pharmacodynamics (PD) [4]. Methods to identify these
genetic determinants have been developed in population-
stratified [5–7] or individualized settings [4, 8]. Particu-
larly, the vast amount of genetic information now available
has opened up the possibility to systematically study

inter-individual differences in drug response using
genome-wide association (GWA) studies [9, 10]. Results
of these efforts have so far led to the pharmacogenomics
labeling of 170 drugs by the Food and Drug Administration
(FDA) [11] and the establishment of pharmacogenomics
screening in many large hospitals in the US [12] and Eur-
ope [13].
However, typical pharmacogenomics GWA studies

struggle with study sizes that are only large enough to
detect common variants with an effect on the pheno-
type, but are unable to statistically pick up signals from
rare variants with a functional effect [9, 10]. Thus, data
from recent genetic population catalogs such as the
1000 Genomes project [14] and the NHLBI Exome
Sequencing Project (ESP) have been used to determine
the spectrum of variation in pharmacokinetics-related
genes. Especially variants considered to be on the rare
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end of the spectrum (minor allele frequency < 0.5%) were
found to be abundant in genes associated with drug
absorption, distribution, metabolism, and excretion
(ADME) [15, 16] as well as in potential drug targets [17].
Based on these surveys, it was estimated that at least 97%
of individuals carry actionable high-risk pharmacological
variants affecting drug ADME in their genome [12, 18].
However, the role of genetic variation in pharmacologic-
ally established drug targets is less well studied.
The Exome Aggregation Consortium (ExAC) [19] has

aggregated data from several large sequencing studies
comprising exome sequencing data of 60,706 indivi-
duals—nearly an order of magnitude larger than the
public population catalogs mentioned above. Using a co-
hort of this size, it now becomes possible to study even
very rare variants in drug target and ADME genes and
to calculate the overall risk of containing a functional
variation for each patient. Furthermore, even though
geographic ancestry is a known confounding factor for
drug response and has been incorporated in clinical
decision-making in the absence of individual genotype
data [20], a comprehensive inventory of functional
genetic variation in drug-associated genes across popula-
tions is still lacking. A cohort of the size of the ExAC
catalog now allows determining the allele frequency
(AF) of very rare variants in distinct population sub-
groups and comparing their prevalence.
In this study, we provide a comprehensive analysis of

genetic variation predicted to result in altered protein
function (“functional variants”) in 806 drug-related genes
including 628 drug targets (163 targeted by cancer thera-
peutics). We further describe how this may affect the
likelihood of 1236 FDA-approved drugs being affected
by functional variants in their targets and how this likeli-
hood varies between different populations. Even though
variants in non-coding regions, copy number alterations,
and chromosomal structural changes as well as epigenet-
ics may further contribute to drug PK and PD variability
[21], such alterations were not part of this study.

Methods

Data selection and handling

Known pharmacogenomics associations between drugs
and genetic variants were retrieved from PharmGKB
[22]. Data about drugs and drug-related genes were
collated from DrugBank 5 [23]. Information about drug
approval status, ATC code, and details about the drug–
gene relationship (target, pharmacological action, and
action type) were extracted from the xml file using
python. We further obtained a list of the top 100 most
prescribed drugs of 2013 from drugs.com [24] and the
list of WHO essential medicines by parsing the Index of
the 19th WHO Model List of Essential Medicines [25].
Drugs obtained from the top 100 list and WHO essential

medicines catalog were mapped to DrugBank com-
pounds and those where this was not possible were
excluded. Relations between hyaluronic acid and human
gene targets as well as between dihydropyridines and
skeletal CACNA1S were removed because the literature
in the database entry did not support the pharmaco-
logical involvement of these pairs. We further removed
ethanol from the list of WHO essential medicines
because it is listed as a surface disinfectant and thus not
dependent on the patient’s cellular targets.
Drug target genes were extracted from the drug–gene

relationships in DrugBank by filtering this set for only
those relations with an established pharmacological ac-
tion flag and in which the gene is annotated as the drug
target. Based on previous studies, a list of pharmaco-
logically relevant cellular receptors, metabolic enzymes,
and nuclear receptors was obtained from the supple-
mental material of recent pharmacogenomics surveys
[15, 26], which comprise the set of ADME genes.
Genetic variant information including variant types,

allele frequencies, and deleterious prediction scores were
extracted from the ExAC VCF file (release 0.3) down-
loaded from the ExAC FTP server [19]. Multi-allelic
variants were split using vcflib breakmulti (https://
github.com/vcflib/vcflib) and synonymous variants were
excluded. We then calculated for each variant the allele
frequency (AF) in the full cohort (n = 60,706) as well as in
each ExAC population separately by dividing the allele
count (AC) by the allele number (AN). The following in-
formation about ancestry was used: AFR =African/African
American (n = 5203), SAS = South Asian (n = 8256), EAS
= East Asian (n = 4327), FIN = Finnish (n = 3307), NFE =
Non-Finnish European (n = 33,370), AMR= admixed
American/Latino (n = 5789), excluding OTH = other
(n = 545) from the study. We further excluded variants
whose loci were not observed at least once in every geo-
graphic population and in 50% of all possible samples (i.e.,
minimal allele number of 60,706). We removed duplicated
variants using a unique identifier based on chromosome
position, reference, and mutant allele.
Identifier mapping, filtering, and annotation were per-

formed using the Konstanz Information Miner (KNIME)
workflow system [27] and the Python programming lan-
guage (Python Software Foundation, https://www.py
thon.org/).

Variant subsets

To evaluate variants with functional effects in the ExAC
catalog, we created subsets of variants with functional
effects (“functional variants”): 1) loss-of-function vari-
ants affecting stop codons, splice sites, and shifts in the
reading frame as annotated by the Loss-Of-Function
Transcript Effect Estimator (LOFTEE) tool [28] in the
ExAC VCF file; and 2) variants predicted to have a
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damaging effect on the protein as predicted unanimously
by PolyPhen-2 [29] (“possibly damaging” or “probably
damaging”) and SIFT [30] (“deleterious”) as annotated in
the ExAC VCF file. Functional variants with AFs above
0.5 were excluded from this set after observing annota-
tion or reference genome mapping problems.
Deleteriousness predictors exhibit varying degrees of

incorrect predictions, both false positive and false nega-
tive, but nevertheless show agreement on most predic-
tions [19, 31–33]. To decrease the likelihood of false
positive predictions, we combined SIFT and PolyPhen-2
into a consensus predictor as described above. In order
to estimate the extent of false positive predictions of this
consensus predictor, we calculated the intersection of
the set of damaging variants with predictions by two
independent predictors (CADD [34] and EVmutation
[33]). Prediction scores for genes covered in ExAC were
obtained from the tools’ websites (http://cadd.gs.wa
shington.edu/download, https://marks.hms.harvard.edu/
evmutation/human_proteins.html). For CADD, the thresh-
old of a scaled score > 20 for classifying a variant as
damaging was chosen based on the conservative
recommendation from the corresponding publication
[34]. For each gene we calculated the fraction of com-
mon (AF ≥ 0.1%) and rare (AF < 0.1%) alleles.

Computation of cumulative probabilities for drugs and

their related genes

To quantify the risk of an individual person in the popu-
lation carrying functional variants in a particular gene,
we define the “cumulative allele probability” (CAP) stat-
istic, which captures both the number of functional vari-
ants and their allele frequencies per gene. Formally, this
score is the probability for an individual to carry at least
one variant allele a of the observed alleles A in a gene g:

CAP gð Þ ¼ 1−
Y

a∈A

1− AF að Þð Þ2

Two types of CAP scores were calculated, one for all
functional variants in a drug-related gene and one based
only on loss-of-function (LoF) variants.
To estimate how much each drug can be affected by

functional variants in its target genes, we further define
the drug-specific “drug risk probability” (DRP) score by
combining the CAP scores for all drug target genes. For-
mally, the DRP score is defined as:

DRP Dð Þ ¼ 1−
Y

g ∈G

Y

a∈Ag

1− AF að Þð Þ2

Here G is the set of all target genes for drug D, as doc-
umented in DrugBank, and Ag the set of all variant
alleles observed in gene g.

Correlation analysis of the DRP scores with the number
of targets was performed using linear regression with ordin-
ary least squares fitting using the Python package statsmo-
dels [35] to compute the coefficient of determination r2.

Statistical analysis of population differences

Population comparisons for CAP and DRP scores were
performed using the absolute risk difference (RD) metric:

RD ¼ jP event in group 2ð Þ−P event in group 1ð Þj

The RD for a drug was calculated by subtracting the
score for the population with the smallest DRP score
from the score for the population with the highest DRP.
To identify for which drugs a population has above or
below average risks, we further calculated all pairwise
risk differences between populations from which we
then computed the population-specific mean RDs.

Detailed variant analyses in case studies

Protein structures for the porcine TUBB1 homologue
(PDB IDs 1tub [36], 3j6g [37]), ADRB2 (PDB ID 2rh1
[38]), PTGS1 (PDB ID 3n8w [39]), and NOS2 (PDB ID
4nos [40]), were obtained from the Protein Data Bank.
Recently published homology models for VKORC1 were
downloaded from the supplement of the respective
publications [41, 42]. Co-evolution analysis of residues
was done using plmc-based EVcouplings [43] and based
on jackhmmer [44] alignments created with the UniProt
entries of the respective protein as queries against the
Uniref100 database [45] (release 01/2017). Alignment
columns with more than 70% gaps and sequences with
more than 50% gaps were excluded from the model.
Functional impact was predicted using EVmutation [33]
and, in the case of VKORC1, compared to experimental
warfarin binding data [42]. Protein structures were
analyzed and rendered using the UCSF Chimera package
from the Computer Graphics Laboratory, University of
California, San Francisco [46].

Statistical analysis and code availability

Statistical analysis of the data set was performed in
jupyter/IPython notebooks [47] using pandas [48] and
other packages of the SciPy stack [49]. The code used
to analyze the data set and produce the figures is
available on github (https://github.com/debbiemark
slab/variants_pharmacogenes).

Results
Drug-related genes show a high extent of genetic

variability across 60 K individuals

To explore the extent of non-synonymous genetic vari-
ation in drug-related genes in the human populations,
we analyzed single-nucleotide variants in 60,706 human
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individual exomes from ExAC [19] in a set of 806 drug-
related genes collated from DrugBank [23] and other
sources [15, 26] (Fig. 1a; Supplementary Table found at
doi: 10.6084/m9.figshare.5631751). The AF distribution
of non-synonymous variants in drug-related genes is
almost identical to that of all genes (n = 17,758) and
97.5% of observed non-synonymous variants have an
allele frequency < 0.1% (sometimes termed a “rare vari-
ant” [19]) (Fig. 1b; Additional file 1: Figure S1). Of note,
71% of the variants in the human exome, including
drug-related genes, have not been observed previously in

public repositories such as dbSNP and therefore can be
considered novel (Additional file 1: Figure S1).
To identify variants that are most likely to affect the

gene function (functional variants), we filtered the set of
non-synonymous variants for those resulting in the
complete loss of the protein’s primary biological function
(LoF) by affecting splice sites or stop codons or resulting
in frameshifts [19] or predicted to be “damaging” by
PolyPhen-2 [29] and SIFT [30]. This resulted in 61,134
functional variants in 806 drug-related genes (of which
767 genes included at least one LoF variant). Variants

Allele frequency of 
drug-related genes

b

c
Allele frequency of 
functional-variants

Drug-related variants workflow
a

806
drug-related

genes

Computation

6,872,489
variants

Top 100
most prescribed

drugs in US

60,607
individuals

1,236
FDA approved

drugs

Candidate functional-variants

in drug-related genes

605
drug target

genes 

178
ADME
genes

23

Fig. 1 Analysis of genetic variation in drug-related genes. a The analysis pipeline consisted of collation of exome data from ExAC [19], identification of
drug–gene relationships from DrugBank [23] and prescription information [24], followed by filtering steps and subsequent computational analysis to
investigate drug-specific risks of pharmacogenetic alterations in patients. b Comparison of the allele frequency distribution between non-synonymous
variants of all human genes (n = 17,758) and non-synonymous variants in drug-related genes (n = 806) collated from ExAC. c Comparison of the allele
frequency distribution between functional variants as predicted by LOFTEE [28], Polyphen-2 [29], and SIFT [30] and all non-synonymous variants in the
drug-related genes
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predicted to be damaging by SIFT and PolyPhen further
agree with those predicted to have damaging effects with
high sensitivity (90.4%) and specificity (68.8%) by the
complementary prediction tools CADD [34] and EVmu-
tation [33] (Additional file 1: Figure S2).
Not surprisingly, these functional variants tend to have

lower AFs than all other non-synonymous variants
(98.7% have an AF < 0.1%; Fig. 1c). Nevertheless, 43% of
the drug-related genes with predicted functional variants
have at least one functional variant with AF ≥ 0.1%. The
drug-related genes with the most frequent functional
variants are membrane transporter genes related to drug
>efflux and uptake such as ABCB5 (three LoF, six dam-
aging), SLC22A1 (nine damaging), and SLC22A14 (eight
damaging). In the clinically highly important poly-
morphic cytochrome P450 enzyme CYP2D6 eight
damaging variants have been identified (Additional file
2: Table S1). Since the ExAC cohort contains an order of
magnitude more individuals than previously available, it
also allowed us to identify genes with many different
functional variants even though each variant may be
individually rare. The ADME genes with the most func-
tional variants per residue reflect similar findings from
smaller cohort studies and include the glutathione
S-transferase sodium/bile transporter SLC10A1 (0.36
variants/residue), GSTA5 (0.31 variants/residue), and
some cytochrome P450s such as CYP1A1 (0.30 variants/
residue) and CYP2C19 (0.28 variants/residue) [15].
Furthermore, our analysis revealed drug target genes
with comparable numbers of functional variants per
residue, including the dofetilide target KCNJ12 (0.31
variants/residue) and the target for the rheumatoid
arthritis drug niflumic acid, PLA2GLB (0.30 variants/
residue) (Additional file 2: Table S2).
While both metrics described above may be useful to

evaluate the extent of genetic variation in the human
population, they do not quantify the risk of an individual
person in the population carrying functional variants in
a particular gene. In order to estimate this risk, we
define a statistic, the cumulative allele probability (CAP),
which captures both the number of functional variants
and their allele frequencies per gene (“Methods”;
Additional file 2: Table S1). We want to emphasize that
the CAP score of a gene does not necessarily reflect the
extent to which the variants change the pharmacological
behavior of the drug and therefore should be regarded
as a score solely indicating a potential pharmacogenetic
risk. Amongst the genes with the highest CAP scor-
es—that is, the highest probability of being affected by a
functional variant—are both ADME genes and drug
targets. The ADME genes with the highest CAP scores
include NAT2 (81%, involved in metabolizing arylamine
and hydrazine drugs), CYP2D6 (59.6%, involved in the
metabolism of 20% of most prescribed drugs in the US

[50]), and the transporter gene SLCO1B1 (26.0%, a high
risk gene for simvastatin-related myopathy/rhabdomyolsis
[51]). The drug target genes with comparable high CAP
scores include tyrosinase (TYR; 62.4%, targeted by the
acne drug azelaic acid), the alpha-4 subunit of the GABAA

receptor GABRA4 (53%, targeted by benzodiazepines),
and F5 (20.1%, targeted by drotrecogin alpha, which was
withdrawn from the market due to unacceptable high
numbers of adverse drug reactions) (Fig. 2). We calculated
an additional score, CAPLoF, based on LoF variants only.
Again, genes with the highest CAPLoF scores are ADME
and target genes, including CYP2F1 with CAPLoF of
38.4%, GSTT2 (26.9%), and FCGR2A (19.6%).
The major proportion of the CAP score for these highest

“risk” genes derives from common genetic variants, many
of which have been observed previously. Nevertheless, for
many genes a non-negligible proportion of the score is con-
tributed by rare functional variants, which were identified
through the sufficiently large cohort size (see the lines in
light purple and light blue in Fig. 2a and b, respectively, and
Additional file 2: Table S1). In addition, we estimate that
more than 60% of the drug-related genes in our set are
putative novel candidates for pharmacogenomic research,
so far missing relevant information from clinical studies
(Additional file 1: Figure S3) [22].

Cancer drug target genes have many germline functional

variants

Especially in cancer therapy, genetic variation in drug
targets has been recognized to play a crucial role for treat-
ment success [52, 53]. While some cancer drugs do not
act in the tumor tissue, the cancer drug’s primary site of
action usually is in the tumor, whose genome contains
tumor-specific somatic variants as well as a subset of
patient-specific germline variants [54]. Information on
somatic variants from tumor samples is thus increasingly
used to enable research on drug design and to implement
stratified or personalized cancer therapy. However, the
patient’s germline genome is routinely masked in these
tumor sequencing analysis protocols [52, 53].
We thus wanted to assess whether target genes of

drugs used in cancer therapy contain germline variants
in the population that may affect the drug action and
may be missed by current tumor sequencing analysis
protocols. More than 15% of the drugs in this report
(193 of the 1236) are used in oncology (as defined by the
WHO ATC code [55]) and between them have 163 gene
targets. Several of these targets have high probabilities of
having a functional variant in the germline (Additional
file 2: Table S1). For some of these targets the germline
risk directly corresponds to potential altered treatment
effects. This is the case for the kinase KDR (also known
as VEGFR2; CAP = 25%), which is targeted by sorafenib
and sunitinib to inhibit vascularization of the tumor site
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[56]. Other drug targets for cancer therapeutics with
high CAP scores include MAP4 (60%) and TUBB1

(30%), which are targets of paclitaxel, MAP1A (42%), a
target of estramustine, CD3G (39%), a target of muro-
monab, and PARP1 (37%), a target of olaparib (Fig. 2).
Overall, 40 cancer drug target genes, including 34 target
genes with kinase domains, show CAP scores > 1%. For
these examples, functional germline variants are only
relevant for treatment response if the tumor genome
also carries them. While there is not a complete overlap
between both germline and tumor genome due to loss
of heterozygosity and other alterations in carcinogenesis
[54], our analysis suggests that a large percentage of the
population may contain functional variants in cancer
therapeutic targets in the germline that may carry over
to the cancer genome and could be easily overlooked by
current analysis protocols.

Aggregating risk for functional variants in targets by drug

highlights drug candidates for future pharmacogenomics

research

About 70% of the FDA-approved drugs analyzed here do
not have any pharmacogenomics data associated with
them in public repositories [22]. However, our analysis

shows that there are many functional variants in their
target genes (Fig. 3a). To estimate how much each drug
can be affected by functional variants in its target genes
and to highlight possible candidates for future research,
we computed the probability of containing a functional
variant in any number of its reported targets in Drug-
Bank [23] by combining the CAP scores of the drug’s
target genes to a “drug risk probability” (DRP; see
“Methods” for details). For all FDA-approved drugs con-
sidered here (n = 1236), 43% have a DRP greater than 1%
(Additional file 2: Table S3). The DRPs are weakly corre-
lated to the number of targets (linear regression, r2 =
0.28), leaving many drugs with few targets but higher
than expected DRPs (determined by root mean square
errors (RMSE), of the model; red circles in Additional
file 1: Figure S4). For instance, one of the two human
targets of azelaic acid, tyrosinase (TYR) is highly mu-
tated in the population, causing a DRP of 62.5% for this
drug, which results in an RMSE of 0.34.
Drugs with the top DRP scores are paclitaxel and

docetaxel (82%), quinacrine (70%), azelaic acid (63%),
triazolam, and other benzodiazepines (>50%) (Additional
file 2: Table S3). This means that any individual in the
population has a probability of more than 50% to carry a

Drug-related genes with highest numbers of functional-variants 
in population

a1

b2

a2

b1

a1: Rank 1 - 20 Target genes a2: Rank 41 - 60 Target genes

b1: Rank 1 - 20 ADME genes b2: Rank 41 - 60 ADME genes

a

b

Fig. 2 Drug-related genes with highest probability of having functional variants. a Protein-centered cumulative allele probability (CAP) scores for the
100 drug targets with highest scores (purple) and the contribution of CAP scores as determined from rare variants alone (light purple). Box a1, the top
20 target genes with highest CAP score; box a2, examples of target genes with lower CAP scores. b One-hundred ADME genes with highest CAP
scores (blue) and the corresponding CAP score determined from rare variants alone (light blue). Box b1, the top 20 ADME genes with highest CAP
scores; box b2, examples of ADME genes with lower CAP scores. Bubble size corresponds to the number of functional variants observed for the
respective gene
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functional variant that may affect the medication out-
come of these drugs. Several of the drugs with high
DRPs are considered “essential medicines” by the WHO
[25]. In addition to paclitaxel and docetaxel, these
include the opioid methadone (13.6%), the diuretic
amiloride (11.7%), and the local anesthetic lidocaine
(11.4%). For instance, the drug methadone targets the D-
and M-type opioid receptors (OPRD1, OPRM1), and

whilst some non-coding variants and a single coding
variant (rs1799971) have previously been associated with
required dose adjustments and treatment response, we
observe another 132 functional variants in these target
genes, which could therefore be candidates for further
testing. Since variants with predicted damaging effects
dominate especially the rather high DRPs, we filtered
the variants for only those resulting in LoF (DRPLoF).

Functional-variants in targets of 1,236 FDA approved drugsa

Warfarin target: VKORC1b c Docetaxel target: TUBB1

novel

R53S
known 

D36Y

Warfarin Mutation sites

novel 

R307C

known

Q43P

novel

R359W

151

with variants in

other genes

132

with variants in their

target genes

(238 variants)

Documented association of genetic variation 

with altered response for 1,236 drugs

93

with only

non-coding variants

862

without

data

Functional-variants in drug target genes in 

60,706 individuals

42,024

variants in drug targets

for previously undocumented

drugs

4,750 additional variants in

target genes with documented

association

14,360 variants in

target genes for drugs with

documented association

in other genes

Docetaxel Mutation sites

Fig. 3 Knowledge gap between observed genetic variants in the population and documented pharmacogenomics data. a Availability of documented
pharmacogenetic associations for 1236 FDA-approved drugs in public repositories such as the PharmGKB database [22] (left) is less abundant than
functional variants observed in the population for the drug target genes (right). b, c Examples of known and novel genetic variants (green) in the target
genes of warfarin and taxanes that could affect drug efficacy due to effects on the binding site (ligand highlighted in orange)
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Restricting to these high-confidence variants, the DRP
decreases below 10% and the drugs with the highest
DRPLoF include the anti-cancer drug marimastat
(DRPLoF = 8.3%), the anti-ulcer medication sulfacrate
(DRPLoF = 8.2%), the anti-flu drug oseltamivir (DRPLoF =
6.0%), which targets human CES1 for activation, and
several liptins used for diabetes that inhibit DPP4

(DRPLoF = 5.6%) (Additional file 2: Table S3).
We then focused our analysis on the top 100 most

prescribed medications in the US (from 2013 [24]),
which resulted in a list of 77 unique drug compounds
for further investigation. Of these drugs, 42% have a
DRP for a functional variant of greater than 1% and the
probability of an individual carrying a functional variant
in any of the targets for these 77 top prescribed drugs is
81%. For some of these drugs it is already well estab-
lished that there is some genetic component to drug re-
sponse, even if the details are debated [57]. For instance,
five of the top 15 most prescribed drugs in the US are
asthma drugs (budesonide, salbutamol, salmeterol, fluti-
casone, and tiotropium). Whilst each of the DPRs is not
particularly high (ranging from 0.06 to 0.25%), their
widespread prescription rate (>100 million prescriptions
in 2013) still results in thousands of individuals who
may be affected by a functional variant. Similarly, statins
(e.g., atorvastatin and rosuvastatin) are prescribed to
nearly one in five adults in the US [1] and primarily
target HMGCR. Due to genetic variation in this target
gene, statins have a DRP of 0.18%. This means that of
the 40 million individuals who are prescribed a statin in
the US, more than 80,000 individuals could be at risk of
altered PD of statin treatment due to a functional variant
in the target HMGCR. This finding is underlined by
previous pharmacogenetic studies showing that HMGCR

is the most important polymorphic gene for treatment
success of statins [58].
Overall, the genetic variability of drug targets of many

of the top 100 prescribed drugs has not been systematic-
ally annotated so far (Additional file 1: Figure S5), in-
cluding the Alzheimer’s drug memantine (DRP = 7.2%),
the pain-medication acetaminophen (DRP = 4.7%), and
the proton-pump inhibitor esomeprazole (DRP = 3.1%),
which all have high DRPs. While these drugs, to our
knowledge, are not associated with functional variants in
drug targets with regard to their action, clinical studies
show that certain proportions of patients treated with
them do not respond to treatment. The extent of this
non-response is reflected by the number needed to treat
(NNT) [59]. For instance, for every one patient success-
fully treated for Alzheimer’s diseases with memantine,
between two and seven patients do not respond to treat-
ment [60] (NNT = 3 to 8). Similarly, the NNT for
acetaminophen and its indication of pain is five [61] and
for esomeprazole and reflux disease is 54 [62].

Drug-related genes show geographic difference in

genetic variability

It is known that individuals with different geographic
ancestry carry genetic variants with different frequen-
cies [63]. The six populations differentiated in ExAC
are of African, South Asian, East Asian, Finnish,
Non-Finnish European, and Admixed American (Latino)
ancestry [19]. About half of all functional variants in drug-
related genes (M = 54%, SD = 15.2%) are unique to only
one of the six populations and only 0.1% of functional
variants occur with an AF ≥ 0.1% across all populations.
Consequently, this results in drug-related genes that have
a high risk of functional variants depending on geographic
ancestry.
For instance, using a cutoff of CAP > 1%, we found

that 231 drug-related genes have functional variants in
the cohort of European ancestry compared to 298 genes
with functional variants for the cohort of African
ancestry.
Nevertheless, 114 drug-related genes showed a CAP

score above 1% in each population, indicating that there
are genes with a similar world-wide pharmacogenetic
relevance.
Not surprisingly, amongst those genes with the highest

difference in CAP score between populations are many
cytochrome P450s and phase II enzymes (Additional
file 2: Table S4), as noted in previous studies with
smaller population sizes [26]. Similarly, we observe
drug target genes with markedly different CAP scores
across populations. Among the target genes with the
highest absolute CAP score difference are VWF (which
is targeted by antihemophilic factor), SIRT5 (targeted
by suramin for treating sleeping sickness), and the
gastric lipase LIPF (targeted by orlistat for obesity
treatment). The latter has 65 functional variants and
the most frequent variants differ especially between
African and East Asian cohorts (CAP 8 vs 51%).
Target genes with high subpopulation differences also
include several targets for antineoplastic agents, such
as the olaparib-target PARP1, for which the CAP score
ranges from 10.2% in patients of African ancestry to
69.6% in Latino patients. While the efficacy of olaparib
depends on the tumor genome and not the germline,
the risk to carry germline-originated variants in the
tumor should not be ignored. We also observed popu-
lation differences in the nucleoside transporter
SLC28A1. While the CAP score is 4% in Non-Finish
Europeans, individuals with an East Asian ancestry
have a risk of 60%. Interestingly, several variants in
SLC28A1 have been associated with different out-
comes in non-small cell lung cancer and breast cancer
[64, 65] when treated with gemcitabine, suggesting
that variant differences across the populations may be
involved.
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Analysis of the DRP score reveals a population-specific

risk for several drugs

Of the 1236 FDA approved drugs considered, 241 have
more than 10% absolute difference in DRP scores
between at least two sub-population cohorts and 24 of
these have more than 30% difference (Additional file 2:
Tables S5 and S6). Out of this subset of drugs, 11 belong
to the 100 most prescribed drugs in the US and 28 are rec-
ommended worldwide by the WHO for their therapeutic

use, including oxcarbazepine, amobarbital, and dolasetron.
Of the 1236 drugs, 312 have a high risk (DRP > 1%) in all
six sub-populations (Fig. 4a; the DRP top 20 drugs stratified
by population are illustrated in Fig. 4b).
Well-known differences, such as response to disulfiram

(treatment for chronic alcoholism), are recapitulated in
the data (Fig. 4b). Specifically, the genetic variant E487K
in the disulfiram target ALDH2 (rs671) is seen in the
ExAC East Asian population at similarly high frequencies

a

b

Fig. 4 Variability of drug risk probabilities across populations. a Number of drugs with shared (black) or separate (colored) drug risk probabilities
(DRP) for functional variants in their pharmacological target genes greater than 1%. DRP scores were calculated by aggregating the risk of
functional variation across all documented pharmacological target genes of that drug. b Drugs with highest (top) or lowest (bottom) mean DRP
difference compared to all other populations, indicating which population is at higher/lower risk of encountering functional variation in the
target for a drug and thus higher/lower impact on drug effect
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as seen in previous genetic studies [66]. Similarly,
population-specific AFs in ExAC significantly correlate
with AFs described in CPIC guidelines for other well
studied drug-related genes, such as TPMT and CYP2D6

[67, 68] (Additional file 2: Table S7).
The different responses with the asthma-medication

salbutamol and the blood-thinner warfarin have been
attributed to variants in their respective drug targets,
including R16G in ADRB2 (rs1042713) for salbutamol
[69] and 1639G > A (rs9923231) in VKORC1 for warfarin
[70]. Since the well-known response-altering variants
were not annotated by mutation prediction software as
functional variants, we did not expect to see the drugs
appear high in our ranked list of risk differences across
the populations (see “Discussion”). Nevertheless, our
analysis shows that salbutamol still has a high risk ratio
between populations, caused by 29 variants with a domin-
ant contribution from one variant separating the individ-
uals of Finnish ancestry from those of African ancestry
(rs201257377, N69S, AFFIN = 0.01). To our knowledge this
variant has not been functionally characterized or previ-
ously associated with salbutamol response. Similarly, we
observe 19 functional variants in the warfarin target
VKORC1 that are population-specific, including a func-
tional variant observed most frequently in individuals of
Non-Finnish European or Latino ancestry, (rs61742245,
D36Y, AFNFE = 0.003, AFLatino = 0.001), which has been
previously associated with predisposition for warfarin
resistance [71]. However, 16 of the functional variants
may be novel risk factors, including a functional variant
primarily observed in individuals of East Asian ancestry
(R53S, ENST00000394975.2:c.157C > A, AFEAS = 0.001).
Using a recent protein 3D model [41, 42] of VKORC1, we
mapped the R53S variant to the putative warfarin binding
pocket (Fig. 3b). Furthermore, analysis of coevolution in
the protein using EVfold [43] shows that R53 is strongly
coupled to other residues in the protein and changes in
this site are predicted by EVmutation [33] to affect protein
fitness due to epistatic variant effects (Additional file 1:
Figure S6). Together, this suggests that this mutation
might be negatively associated with warfarin binding.
Triflusal, a treatment for stroke re-occurrence, targets

four genes (PTGS1 (also known as Cox-1), NOS2,
NFKB1, and PDE10A) that together have more func-
tional variants in the African population than in any
other population (DRPAFR = 37%; Fig. 4b). This differ-
ence between populations is mainly due to a SNP in
NOS2, which occurs in the population of African ances-
try with higher than average frequency (rs3730017,
AFAFR = 19% vs AFglobal = 4%) and while not functionally
characterized, has been associated with protection
against cerebral malaria [72]. In PTGS1, three functional
variants have AFs above 0.1% in the cohort of African
ancestry. The most frequent variant (rs5789, L237M,

AFAFR = 0.5% vs AFglobal = 1.7%) lies on the dimer inter-
face and has previously been associated with reduced
metabolic activity of the enzyme [73]. A second variant
is an indel which is predicted to result in the total loss
of protein function (AFAFR = 0.3% vs AFglobal = 0.02%).
The effects of the third functional variant common in
the African cohort (rs139956360, E259A, AFAFR = 0.2%
vs AFglobal = 0.02%) on enzyme activity or drug binding
is less clear from the three-dimensional structure of the
protein and would require further exploration. Since
triflusal is prescribed for prophylactic use in the same
way as aspirin for stroke prevention, it is clearly worth
further investigating the effects of these observed func-
tional variants.

Population differences in functional variants for cancer

drugs

Our results also highlight a large DRP variability of can-
cer drugs between the populations. While for many of
these drugs it is not the germline but the tumor genome
that is relevant for drug action, germline DRPs of these
drugs give an estimate of the population risk to possess
potentially resistance-causing variants in the tumor and
should be screened accordingly. For instance, the DRPs
of taxanes (docetaxel, paclitaxel, and cabazitaxel) are 30
percentage points higher in the cohorts of South Asian
and European ancestry compared to the cohort of
African ancestry (DRPSAS/NFE = 85% vs DRPAFR = 45%)
due to functional variants in the four taxane targets,
TUBB1, MAP2, MAP4, and MAPT. Among these are
three distinct positions in TUBB1 (Q43P/H, R307C,
R359W) that occur with comparably high frequencies in
the South-Asian population. While Q43P (AFSAS = 14%)
has recently been associated with decreased progression-
free survival in urothelial cell carcinoma when treated
with cabazitaxel [74], less is known about the effects of
the other two variants. Mapping the affected residues
onto the 3D structure of docetaxel bound to tubulin
(PDB ID 1tub [36]) shows that R359 interacts with the
drug (Fig. 3c). The effect of R307C is less obvious from
structural observations as it does not lie very close to
the binding site or the interface between the monomers
in the polymer (R307 to K124 < 15 Å, mapped on PDB
ID 3j6g [37]).

Discussion
In this study, we analyzed the extent of functional gen-
etic variation in drug-related genes and its implication
for 1236 FDA-approved drugs in exome sequencing data
of 60,706 individuals. We show that the risk of carrying
functional variants not only in ADME-related genes but
also in drug targets is high for an individual patient. For
ADME genes this observation is in line with previous
studies [12, 15, 18], but it is novel for drug-target genes.
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We observed functional variants in 98% of the drug-
related genes and at least one high confidence LoF vari-
ant in 93% of the genes. The prevalence of functional
variants in drug-related genes is thus higher than previ-
ously shown [18]. When considering drug target genes
for the 100 most prescribed medications in the US the
probability of carrying at least one functional variant is
above 80% for each patient. Together with the high risk
for clinically actionable variants in ADME genes (98%
[12]) these findings indicate that genetic variability may
contribute significantly to observed differences in drug
response between patients.
While individualized cancer therapies often focus on

the somatic variants present only in tumor tissue, we
can show that functional germline variants, which are
routinely masked out in the analysis of somatic variants,
are common in many cancer drug targets. By excluding
germline variants that the tumor inherited from its
progenitor cell from cancer genome analysis in the con-
text of therapeutic decision-making may thus result in
the oversight of important determinants for treatment
response or resistance development. To what extent the
tumor genome varies from the germline genome is
dependent on patient and cancer type. Loss of heterozy-
gosity, where the germline allele is lost in the disease
progression, and copy number alterations can indeed
result in drastic changes between genetic variants
observed in the normal tissue of a patient and the cancer
[54, 75]. The high prevalence of variants in systemic
cancer therapy targets, such as KDR for sorafenib, fur-
ther indicates that the germline variants of target genes
in addition to ADME genes should be considered for
clinical decision-making.
Geographic ancestry is a well-established confounding

factor for drug response, but few drugs have been
assessed for efficacy across global populations. Even
where clinical trials have been carried out in different
populations, particularly non-European and non-Asian
individuals remain understudied. By calculating risk
probabilities for drugs and different populations, we
showed that the frequency of functional variants in
drug-related genes varies widely across populations.
Even for drugs where population differences in response
are observed, additional patient groups may be at high
risk of altered PD due to genetic variants in drug targets.
Especially for drugs commonly used around the world,
such as those on the WHO essential medicines list, this
could result in large numbers of patients with reduced
drug efficacy in some, but not all, of the populations
where they are applied.
The analysis in this study relied on external data for

drug variant annotation and drug–gene associations.
Even though it was possible to estimate the burden of
functional variation in drug-related genes and quantify

to what extent individual drugs may be affected, there
remain certain limitations. First of all, even manually
curated drug–target associations and pharmacogenomics
data are susceptible to spurious annotations. For
example, some subunits of the GABA receptors, includ-
ing GABRA4, are generally thought to give rise to recep-
tors resistant to classic benzodiazepines such as
diazepam [76] but have been annotated as targets for
some benzodiazepines. Comparison to a different, inde-
pendently curated set of drug–target associations [77]
further shows that annotation of drug–target pairs does
not always agree. Furthermore, to quantify the real risk
for a drug, drug-specific ADME gene relations should be
incorporated into the DRP calculation. For example,
optimal warfarin dosing is known to be dependent on
variants in CYP2C9 in addition to VKORC1 [78] and
variants in the ADME gene UGT1A1 are documented to
contribute to different responses to the cancer drug
irinotecan around the globe [79]. Unfortunately, com-
prehensive inclusion of ADME genes in the DRP calcu-
lations is currently not possible because sufficient data
for ADME genes is lacking for most FDA-approved
drugs, including the relative contribution of each
enzyme. Our DRP estimates thus probably still under-
estimate the drug-specific risk of functional variation as
well as population differences.
The vast majority of variants in drug-related genes con-

sidered in this study have not been seen previously and we
thus lack validated knowledge about their functional
impact on drug efficacy. We therefore had to rely on pre-
dictions of their impact on protein function. The probabil-
ities presented are based on the assumption that the
functional classification is correct and represents enzyme
activity or drug efficacy. The relative risk between genes is
based on the assumption that there has not been a signifi-
cant bias in assessment when genes already have known
deleterious mutations. That these assumptions are not
always correct follows from the fact that variant classifica-
tion tools are not exact, are often trained on disease-
causing variant sets only, have issues with circularity in
the classifier training data, and fail to sub-classify muta-
tions [31]. Overall, variant effect predictors such as SIFT
and PolyPhen lean towards over-prediction of deleterious-
ness [19, 31–33]. In contrast, there are also examples of
false negatives, such as the well-studied pharmacogenetic
variants in the anti-asthmatic target ADRB2 (R16G/
rs1042713, Q27E/rs1042714, and T164I/rs1800888) [69, 80]
that are all misclassified as benign. Although we validated
our consensus predictor approach using the meta-predictor
CADD [34] and the independent predictor EVmutation
[33], the impact of misclassified variants on the CAP and
DRP scores should be considered in subsequent interpret-
ation of the results presented here. Furthermore, the field of
variant effect prediction is rapidly evolving, and especially
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the ability to distinguish between activating and deactivating
effects could prove to be crucial for predicting the down-
stream effects of variants on therapy response.
To increase predictor sensitivity, one could include

additional prediction algorithms, which comes with the
risk of reduced specificity (in some cases more than half
of all non-synonymous variants were classified as func-
tional [15]) as all currently available methods have their
individual drawbacks [81]. Reliable computational classi-
fication methods for variant effects on drug response
remain scarce due to insufficient training data [81], but
may arise in the future if efforts are increased to create
such data—for example, using novel high throughput
methods such as deep mutational scans [82, 83]. For the
present study we chose a conservative approach to
variant annotation that requires the complete loss of the
protein product—which should have a marked impact
on the drug—or the consensus prediction of two inde-
pendent prediction tools at the expense of missing some
known variants (Fig. 3a). It is thus not unlikely that the
effect of the functional variants is still in part underesti-
mated in our study.

Sequencing data

The use of whole exome sequencing data comes with
the intrinsic limitation that only variants in protein cod-
ing regions can be detected, potentially missing pharma-
cologically relevant non-coding variants [84]. Moreover,
we only considered non-synonymous variation in rele-
vant genes, thus excluding additional variant types that
are known to have an effect on drugs, such as pseudo-
genes, epigenetics, structural variants, and copy number
alterations. These variants are known to have an effect
on certain drug-related gene families such as CYP450
[26] and their exclusion may thus result in an underesti-
mation of the pharmacogenomic variability. Further-
more, even at low false-positive rates many called
variants can be inaccurate [85] and several pharmaco-
logically relevant gene families—namely CYPs, HLA,
and UGTs—are at high risk for variant calling errors due
to the complex genetic structure of their loci [86, 87].
While members of the cytochrome P450 family have
indeed been found to be problematic in short-read
sequencing [26], this does not apply to most other drug-
related genes [15, 18]. To reduce the false-positive vari-
ant calls in our survey, we included only variants of
sufficient locus coverage and high quality.
Homozygous occurrence of variants as well as combi-

nations of variants in the drug-related gene may be re-
quired to noticeably alter the drug response in an
individual [88]. While homozygous variant counts were
reported in the ExAC dataset, and were consistently low,
the aggregated format of the data set did not permit the
study of particular haplotypes. Predicted effects of

heterozygous variants may thus be compensated for in
an affected individual and their effect on the phenotype
could be overestimated.
Furthermore, the ExAC cohort is very large in total, but

not all populations are represented equally (Additional file
2: Figure S8) [19]. The power to detect very rare variants
thus differs by an order of magnitude between the individ-
ual populations (from 0.01% AF for the Finnish and East
Asian populations to 0.001% for Non-Finnish European).
Due to legal restrictions in the underlying exome
sequencing projects, sample-specific data, including
haplotype phase, are missing in ExAC. Epistatic effects of
variants could thus not be investigated, even though they
are known to exist. For example, while the single variant
rs12248560 (CYP2C18*17) results in increased CYP2C19

activity, the combination with another variant (rs28399504)
is associated with LoF of the protein (CYP2C19*4B) [15].
Analysis of such haplotype patterns and comparison of
their frequencies in the ExAC cohort to those in previous
sequencing studies was not possible.

Implications

Many major medical institutions have started imple-
menting genotyping protocols for preemptive pharmaco-
genetic testing [89–91]. However, these usually focus on
a small number of ADME genes [12] and often only test
a subset of established actionable variants using microar-
rays [92]. While these arrays facilitate fast and cheap
screening, we show here that the vast majority of vari-
ants in drug-related genes seen in the human population
is not covered. We further want to stress that the num-
ber of genes with pharmacogenomic variants should sys-
tematically include genes implicated in drug mechanism
even though only very few examples have yet been char-
acterized well enough to be part of a dosing guideline.
Furthermore, with allele frequencies below 0.1%, many
functional variants in drug-related genes are so rare that
they cannot be observed in clinical trial cohorts, but
may contribute to adverse events or diffuse lack of effi-
cacy post-marketing. In the future, this information
should be considered in all phases of clinical drug devel-
opment and the effects of genetic variants in genes asso-
ciated with PD and PK of the drug candidate should be
systematically characterized.

Conclusions
Large-scale sequencing efforts can be used to identify
and quantify the extent of genetic variation in genes
relevant for drug action and metabolism. Identification
of such variants is only the first step towards better
treatment decisions. Newly identified variants of phar-
macogenomic importance require validation and ultim-
ately updated dosing guidelines. The development of
quality-controlled and patient-centered software
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solutions to combine available knowledge of pharmaco-
logically actionable variants with a patient’s genome as
well as fast and accurate approaches (experimental and
computational) to functionally classify novel variants will
thus be of high importance for the future of personalized
medicine.
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