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Abstract

The timing of puberty is highly variable1. We carried out a genome-wide association study for age

at menarche in 4,714 women and report an association in LIN28B on chromosome 6 (rs314276,

minor allele frequency (MAF) = 0.33, P = 1.5 × 10−8). In independent replication studies in

16,373 women, each major allele was associated with 0.12 years earlier menarche (95% CI =

0.08–0.16; P = 2.8 × 10−10; combined P = 3.6 × 10−16). This allele was also associated with earlier

breast development in girls (P = 0.001; N = 4,271); earlier voice breaking (P = 0.006, N = 1,026)

and more advanced pubic hair development in boys (P = 0.01; N = 4,588); a faster tempo of height

growth in girls (P = 0.00008; N = 4,271) and boys (P = 0.03; N = 4,588); and shorter adult height

in women (P = 3.6 × 10−7; N = 17,274) and men (P = 0.006; N = 9,840) in keeping with earlier

growth cessation. These studies identify variation in LIN28B, a potent and specific regulator of

microRNA processing2, as the first genetic determinant regulating the timing of human pubertal

growth and development.

Puberty, the transition from childhood to adult body size and sexual maturity, is a complex

multistaged process involving growth acceleration, weight gain and the appearance of

secondary sexual physical features over a 2- to 3-year period1. Early onset and progression

of puberty is seen in some overweight and obese children. In addition to its psycho-social

and public health implications, early puberty is associated with increased long-term risk for

diseases including obesity, diabetes and cancer3. The stages of puberty and their transitions

are difficult to measure accurately1. Epidemiological studies often use age at menarche, the

onset of the first menstrual period in girls, to indicate the timing of puberty, as this distinct

event is often well recalled many years later1. Girls with earlier menarche are heavier and

taller than other girls during childhood; they remain heavier but are shorter as adults3,

reflecting their earlier cessation of growth. Twins studies estimate that 44–95% of the

variance in age at menarche may be heritable1. However, specific common genetic variants

that influence the timing of puberty have not yet been convincingly demonstrated4.

To identify common variants associated with the timing of puberty, we conducted a

genome-wide association (GWA) study for age at menarche in 4,714 women from two

general population studies and one obese case study using the same Affymetrix GeneChip

500K array (Supplementary Note online). Only one SNP, rs314276 in intron 2 of LIN28B

on chromosome 6 (MAF 0.33), reached genome-wide statistical significance (P = 1.5 ×

10−8, Supplementary Fig. 1 online). In these GWA studies overall each major C allele at

rs314276 was associated with a mean 0.22 years (95% CI = 0.14–0.29) earlier age at

menarche.

SNP rs314276 lies in a region of high linkage disequilibrium (LD); although no other SNPs

in this region were directly genotyped in these arrays, imputation to HapMap build 35

revealed a further 11 SNPs in LIN28B that were associated with age at menarche at P < 0.5

× 10−7 (Fig. 1). The minor allele at a neighboring SNP, rs314277, 337 bp downstream of

rs314276, was recently robustly associated with taller adult height5. In our GWA studies

imputed rs314277 genotypes showed only nominal association with age at menarche (P =

0.005). However, as there was low LD between rs314276 and rs314277 (r2 = 0.23; D = 1.0)

we took both SNPs forward to initial replication.

Study of mothers from the ALSPAC cohort (N = 6,456) confirmed the association between

rs314276 and age at menarche (P = 6.6 × 10−5). Each common C allele was associated with

a mean 0.10 years (95% CI = 0.07–0.13) earlier menarche, the association seemed to be

linear (Supplementary Fig. 2 online) and rs314276 explained 0.2% of the variance in age at

menarche. In contrast, the adjacent SNP rs314277 was not associated with age at menarche

(P = 0.08). In multiple regression analysis including both SNPs, rs314276 (P = 0.0006), but
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not rs314277 (P = 0.6), was associated with age at menarche. The association between

rs314276 and age at menarche was further confirmed in women from the EPIC-Norfolk

cohort (P = 8.7 × 10−6, N = 8,411), the MRC National Study of Health and Development

(NSHD) (P = 0.02; N = 948) and the British 1958 Birth Cohort (B58C) (P = 0.007; N = 558;

Fig. 2 and Supplementary Fig. 2). In a meta-analysis of all replication studies (total N =

16,373 women), each rs314276 C allele was associated with 0.12 years earlier menarche

(95% CI = 0.08–0.16; P = 2.8 × 10−10; Fig. 2). Notably, the pooled regression coefficient in

the replication studies was only around half of that in the GWA studies (heterogeneity

between initial and replication studies: P = 0.02; Fig. 2), likely reflecting the ‘winner's

curse’ phenomenon.

Although menarche represents the completion of female sexual maturation and attainment of

reproductive capacity, the onset of puberty in girls typically occurs 2-3 years earlier and is

manifested by the onset of breast growth and acceleration in height and weight gain. To

explore its association with the timing of pubertal onset, we genotyped rs314276 in various

childhood studies (see Table 1 for summary).

In ALSPAC girls (N = 4,271), the common C allele at rs314276 was associated with earlier

onset of breast development (Fig. 3, log-rank test: P = 0.001). At age 10.75 years each C

allele was associated with a 20% increased likelihood of breast development (odds ratio

(OR) = 1.20, 95% CI = 1.06–1.35; P = 0.003). In the cross-sectional European Youth Heart

Study (EYHS), across all age groups from 9 to 16 years the common C allele at rs314276

was associated with more advanced breast stage in girls (OR = 1.26, 95% CI = 1.05–1.52; P

= 0.006; N = 1,044) (Table 1 and Supplementary Table 1 online). In ALSPAC girls, the

rs314276 C allele was associated with a faster tempo of growth in height between ages 7 and

11 years (P = 0.00008), and relative acceleration in weight (P = 0.0003) and body mass

index (BMI) (P = 0.03) (Fig. 4).

In boys, the onset and progression of puberty are manifested by a gradual enlargement of the

external genitalia and the spread of pubic hair. By convention these characteristics are

categorized into five stages of sexual maturation; however, in epidemiological studies these

stages are difficult to assign accurately. Equivalent to menarche in girls, voice breaking in

boys represents a distinct event, which typically occurs abruptly in late puberty6. In NSHD

men (N = 1,027) at age 15 years the common C allele at rs314276 was associated with more

advanced pubic hair stage (P = 0.05), more advanced voice breaking status (P = 0.006) and

also more advanced tempo of height growth (P = 0.03), but no apparent difference in genital

size (Table 1 and Supplementary Table 2 online). In ALSPAC boys (total N = 4,588), the C

allele at rs314276 was associated with more advanced pubic hair at age 13 years (OR for a

one-stage advance in pubic hair stage per C allele = 1.19, 95% CI = 1.04–1.35; P = 0.01),

and with a faster tempo of growth in height between ages 7 and 11 years (P = 0.03;

Supplementary Fig. 3 online). In the smaller sample of EYHS boys (total N = 910, no

association was found with genital or pubic hair stages at ages 9–11 years or 14–16 years

(Supplementary Table 1).

In contrast to their relatively taller stature during childhood, men and women with early

puberty are shorter as adults, owing to their earlier cessation of growth, but they remain

heavier and more overweight3. Consistent with its associations with earlier puberty, the

rs314276 C allele was also associated with shorter adult height in ALSPAC mothers (mean

± s.e.m. difference: −0.37 ± 0.12 cm per C allele, P = 0.002), EPIC-Norfolk women (−0.36

± 0.10 cm, P = 0.0002) and EPIC-Norfolk men (−0.30 ± 0.11 cm, P = 0.006). In multiple

regression among ALSPAC mothers including both rs314276 and rs314277, rs314276 (P =

0.003) but not rs314277 (P = 0.3) was associated with adult height. In contrast to the
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findings with adult height, rs314276 showed no association with adult weight, BMI, waist

circumference or percentage body fat (all P > 0.10, see Supplementary Table 3 online)

Several candidate genes, encoding regulators of sex steroid secretion and action, have been

proposed to regulate the timing of puberty; however, no common variants have yet been

established4. In our GWA studies, SNPs in FGFR1, GOLT1A, KISS1, LEPR and SHBG

showed modest associations with age at menarche (0.01 < P < 0.05; Supplementary Table 4

online). Our study therefore reinforces the merits of the genome-wide compared to the

candidate gene approach, although much larger studies will be needed to identify the likely

large number of SNPs associated with timing of puberty.

A recent GWA study for adult height identified rs314277 as one of ten loci with robust

associations (P = 5.9 × 10−9 in 15,821 individuals), whereas rs314276 showed far weaker

association (P ~ 1 × 10−4); however, rs314276 was not directly genotyped in many of those

samples5. In our study, where both SNPs were directly genotyped, the effects of rs314277

on height were explained by rs314276. rs314276 lies in a large LD block of around 200 kb

that covers the 5′ region and first three exons of LIN28B. Imputation revealed a further 11

SNPs that were in complete LD with rs314276 and that also reached genome-wide

association with age at menarche. Fine mapping studies in similar populations of European

ancestry are therefore unlikely to be able to distinguish the causal variant(s) from other

linked variants. LIN28B has two isoforms7 distinguished by the presence or truncation of a

highly conserved cold-shock domain (CSD), which is crucial for protein function2. Different

LIN28B isoforms could therefore contribute to the heritability of the timing of growth and

development.

LIN28B shows high sequence, structural and functional homology with LIN28 on

chromosome 1 (ref. 7); however, we found no association with 12 directly genotyped or

imputed SNPs in LIN28 (all P > 0.2; see Supplementary Table 4). Both LIN28B and LIN28

show similar sequence homology to the heterochronic gene lin-28 in Caenorhabditis

elegans7. Deleterious mutations in lin-28 produce an abnormal rapid tempo of development

through larval stages to adult cuticle formation8. Conversely, enhancement of lin-28

expression by deletion of regulatory elements delays larval stage progression9. Both

LIN28B and LIN28 encode potent and specific regulators of pre-processing of the let7

family of microRNAs2 and regulate cell pluripotency10 and cancer growth7.

In conclusion, we have identified SNP rs314276, or another related variant within LIN28B,

as the first genetic marker associated with the timing of pubertal growth and development

and in both girls and boys. Our findings suggest the conservation of a fundamental cell

regulatory system that controls the tempo of somatic development and also suggest a

physiological role for microRNA processing in the timing of human growth and

development.

METHODS

Genome-wide association samples

EPIC-Norfolk Obesity Case-Cohort—The control cohort comprised 2,566 individuals

(1,364 women) randomly selected from the EPIC-Norfolk study of 25,663 men and women

of European descent. The case cohort comprised 1,685 obese individuals (718 women),

defined as BMI index >30 kg/m2, randomly selected from the obese individuals within

EPIC-Norfolk. Participants were aged 39–79 years and were recruited in Norfolk, UK

between 1993 and 1997 (ref. 11). Following exclusions due to quality control criteria and

missing data, on 625 obese and 1,215 control women were available for genome-wide

analysis.
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Cohorte LAUSannoise (CoLaus)—CoLaus is a cross-sectional study of a random

sample of 6,188 European adults (including 2,976 women), aged 35–75 years, living in

Lausanne, Switzerland12. Following exclusions due to quality control criteria and missing

data, 2,874 women were included in the genome-wide analyses.

In all studies, age at menarche to the nearest completed whole year was ascertained at

baseline by questionnaire. Values ranging from 8 to 18 years were included as these were

deemed to be physiological. All participants gave written informed consent, and project

protocols were approved by the appropriate research ethics committees (Supplementary

Note).

Genome-wide SNP genotyping and quality control

All GWA studies were genotyped using the Affymetrix GeneChip 500K array set, and

genotypes were called using the BRLMM algorithm. Each study applied genotyping quality

control criteria and conducted tests for population stratification: 352,700 SNPs passed

quality control in EPIC-Norfolk and 390,631 in the CoLaus cohort. In CoLaus correction for

population substructure was done by principal components. The genomic control inflation

factors (lGC) for each GWA study were <1 for EPIC-Norfolk control cohort and obese cases

and 1.016 in CoLaus, indicating that the extent of residual population substructure is

modest, and no further genomic control corrections were applied.

Genome-wide analyses and meta-analyses

Age at menarche showed a normal distribution. In each GWA study, linear regression was

carried out (assuming an additive model) to test the association between each SNP and age

at menarche using PLINK (CoLauS) or SAS/Genetics 9.1 (EPIC-Norfolk). Subsequently,

summary statistics of the SNP-menarche age associations of each GWA study were

combined in meta-analyses using the inverse variance–weighted method with a fixed-effects

model using SAS 9.1. The overall results of the meta-analysis were visualized using

HAPLOVIEW.

Imputation of genotypes

To increase genomic coverage, polymorphic HapMap CEU SNPs were imputed using

IMPUTE. Associations with age at menarche were subsequently tested with these imputed

SNPS using linear regression under additive genetic assumptions.

Replication samples

Initial replication of the top hit rs314276 and adjacent rs314277 was done in mothers from

the Avon Longitudinal Study of Parents and Children (ALSPAC). This population-based

study recruited pregnant women with expected delivery dates between April 1991 and

December 1992 from Bristol, UK13. Genotypes for rs314276 and rs314277 and recalled

menarche data were available for 6,456 mothers. Replication samples were also available

from a further 10,824 women in the EPIC-Norfolk Study, excluding women who had been

analyzed in the GWA study. rs314276 was directly genotyped in 10,453 women, of whom

8,411 had valid data on age at menarche. SNP rs314276 was genotyped in a further 948

women with a valid age at menarche from the MRC National Survey of Health and

Development (NSHD), a prospective birth cohort study comprising a stratified sample of all

births in England, Scotland and Wales in one week in March 1947 (ref. 14). A further 558

women from the 1958 British Birth Cohort (B58C), a prospective birth cohort originally

consisting of all births in England, Wales and Scotland during one week in 1958, had

rs314276 genotypes and age at menarche data available.
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Replication genotyping and quality control

Genotyping of rs314276 and rs314277 was conducted using TaqMan (Applied Biosystems)

(EPIC and NSHD) or by KBiosciences (ALSPAC). Genotype data from B58C was obtained

using an Affymetrix GeneChip Human Mapping 500K Array. Genotype frequencies were in

Hardy-Weinberg equilibrium (all P > 0.2), and call rates were all >90%.

Statistical analyses in replication studies

Associations between SNPs and age at menarche (women only), height, weight, BMI, waist

circumference and percentage body fat were conducted in men and women separately using

linear regression assuming an additive genetic model and adjusting for age. In ALSPAC

mothers, multiple regression models were performed including both rs314276 and rs314277

to identify the independent effects of each SNP on age at menarche and height. Summary

statistics were meta-analyzed with the initial GWA study sets using the inverse variance–

weighted method. Analyses were performed using Stata/s.e.m. 9.2 for Windows (StataCorp).

Childhood studies

We analyzed 8,859 ALSPAC children (4,588 boys and 4,271 girls) to examine the

association between rs312726 genotype and timing of adolescent growth (between ages 7 to

11 years), pubic hair stage in boys and breast development in girls. Data on pubertal

development (voice breaking status and pubic hair stage) at age 15 years were available for

NSHD men (N = 1,026). We analyzed 1,964 individuals from the Danish and Estonian

cohorts of the cross-sectional European Youth Heart Study (EYHS) to determine the

association between rs312726 and pubertal stage.

Childhood studies genotyping and quality control

rs314276 was genotyped using TaqMan SNP genotyping assay (Applied Biosystems)

(EYHS) or by KBiosciences (ALSPAC). Genotype frequencies were in Hardy-Weinberg

equilibirum (all P > 0.1), and call rates were all >96%.

Statistical analyses in childhood studies

Height, weight and BMI measurements in each individual were converted to s.d. scores

(SDS) adjusted for sex and age. Growth tempo, a measure of child's current height relative

to height potential, was calculated as the child's height SDS minus their mean parental

height SDS15. Associations between rs314276 and changes in growth tempo, weight and

BMI SDS between ages 7 to 11 years were calculated using time series analyses (repeated

measures ANOVA). Association between rs314276 and the onset of pubertal breast

development in girls was calculated using a log-rank test. Cross-sectional associations

between rs314276 and pubertal stage in girls and boys were done by ordinal logistic

regression. All analyses assumed an additive genetic model, and were done using SPSS v.14

for Windows.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Regional plot of the locus around LIN28B associated with age at menarche. SNPs are

plotted by position on chromosome 6 against GWAS association with age at menarche

(−log10 P value). SNP rs314276 is shown in blue, labeled with its stage 1 P value. Estimated

recombination rates (from HapMap) are plotted in cyan to reflect the local LD structure. The

directly genotyped or imputed SNPs surrounding rs314276 are color-coded to reflect their

LD with rs314276 as in the inset (taken from pairwise r2 values from the HapMap CEU

database). Genes and their directions of transcription are noted at the bottom of the plot.
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Figure 2.

A forest plot showing the meta-analysis of the effect of each C allele at rs314276 in LIN28B

on earlier age at menarche in the GWA populations, the replication cohorts and in all

groups.
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Figure 3.

Kaplan-Maier plot of survival in pre-pubertal status (Tanner breast stage 1) by age and

LIN28B rs314276 genotype in ALSPAC girls (N = 3,233). P = 0.001, log-rank test for

genotype difference.
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Figure 4.

Adolescent growth in ALSPAC girls by LIN28B rs314276 genotype. (a–c) Mean (± s.e.)

standard deviation scores (SDS) for tempo of growth (child's height SDS minus mean

parental height SDS) (a), weight (b) and BMI (c) are plotted against age from 7 to 11 years

by genotype. P values (0.00008, 0.0003 and 0.03 for height, weight and BMI, respectively)

are from time-series analyses (repeated measures ANOVA) for the change in SDS over time

by genotype (additive genetic models).
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Table 1

Summary of the pubertal and growth phenotype associations with LIN28B rs314276 genotype

Variable Estimated effect per C allele
mean/odds ratio (95% CI)

P value Study population

Girls/Women

 Earlier menarche −0.12 years (−0.08 to −0.16) 2.8 × 10−10 ALSPAC mothers,
EPIC-Norfolk, NSHD, B58C

 More likely breast development at 10 yearsa OR = 1.20 (1.06 to 1.35) 0.003 ALSPAC girls

 More advanced breast stage at ages 9 to 16 yearsb OR = 1.26 (1.05 to 1.52) 0.006 EYHS

 Faster height tempo at age 10 yearsc 0.074 SDS (0.042 to 0.106) 0.02 ALSPAC girls

 Shorter adult height −0.37 cm (−0.51 to −0.22) 3.6 × 10−7 ALSPAC mothers,
EPIC-Norfolk

Boys/Men

 More advanced voice breaking status at age 15 yearsd OR = 1.26 (1.07 to 1.50) 0.006 NSHD

 More advanced pubic hair stage at age 13 yearse OR = 1.19 (1.04 to 1.35) 0.01 ALSPAC boys

 More advanced pubic hair stage at age 15 yearsf OR = 1.18 (0.99 to 1.40) 0.05 NSHD

 Faster height tempo at age 10 yearsc 0.085 SDS (0.054 to 0.116) 0.005 ALSPAC boys

 Shorter adult height −0.30 cm (−0.41 to −0.19) 0.006 EPIC-Norfolk

a
Breast development was defined as Tanner stage 2 or greater.

b
Breast stage was defined by the five-point Tanner scale.

c
Height tempo was calculated as height s.d. score minus parental height s.d. score.

d
Voice breaking status was categorized using the following scale: 1, no; 2, starting to break; 3, completely broken.

e
Pubic hair stage was defined by the five-point Tanner scale.

f
Pubic hair stage was categorized using the following scale: 1, no; 2, yes, sparse; 3, yes, profuse.
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