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Abstract

Assessing the impact of the social environment on health and disease is challenging. As

social effects are in part determined by the genetic makeup of social partners, they can be

studied from associations between genotypes of one individual and phenotype of another

(social genetic effects, SGE, also called indirect genetic effects). For the first time we quanti-

fied the contribution of SGE to more than 100 organismal phenotypes and genome-wide

gene expression measured in laboratory mice. We find that genetic variation in cage mates

(i.e. SGE) contributes to variation in organismal and molecular measures related to anxiety,

wound healing, immune function, and body weight. Social genetic effects explained up to

29% of phenotypic variance, and for several traits their contribution exceeded that of direct

genetic effects (effects of an individual’s genotypes on its own phenotype). Importantly, we

show that ignoring SGE can severely bias estimates of direct genetic effects (heritability).

Thus SGEmay be an important source of “missing heritability” in studies of complex traits in

human populations. In summary, our study uncovers an important contribution of the social

environment to phenotypic variation, sets the basis for using SGE to dissect social effects,

and identifies an opportunity to improve studies of direct genetic effects.

Author Summary

Daily interactions between individuals can influence their health both in positive and neg-

ative ways. Often the mechanisms mediating social effects are unknown, so current

approaches to study social effects are limited to a few phenotypes for which the mediating

mechanisms are known a priori or suspected. Here we propose to leverage the fact that

most traits are genetically controlled to investigate the influence of the social environ-

ment. To do so, we study associations between genotypes of one individual and phenotype

of another individual (social genetic effects, SGE, also called indirect genetic effects).

Importantly, SGE can be studied even when the traits that mediate the influence of the
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social environment are not known. For the first time we quantified the contribution of

SGE to more than 100 organismal phenotypes and genome-wide gene expression mea-

sured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) explains

up to 29% of the variation in anxiety, wound healing, immune function, and body weight.

Hence our study uncovers an unexpectedly large influence of the social environment.

Additionally, we show that ignoring SGE can severely bias estimates of direct genetic

effects (effects of an individual’s genotypes on its own phenotype), which has important

implications for the study of the genetic basis of complex traits.

Introduction

Social interactions contribute to health and disease (e.g. peer smoking increases one’s risk of

taking up smoking). So far, quantifying social effects has required a clear hypothesis about the

mechanisms mediating the influence of the social environment (in the example above peer

smoking is the trait that mediates the social influence). For many phenotypes however, such

hypotheses do not exist. Therefore we propose an alternative strategy to study social effects: we

investigate effects on an individual’s phenotype that arise from genotypes of social partners

(social genetic effects, SGE, also called indirect genetic effects[1, 2]). SGE constitute the genetic

basis of social effects and can be detected without prior knowledge of the phenotypes through

which the social influence is exerted. SGE have been reported for interactions between moth-

ers and offspring (maternal genotypes indirectly affect offspring phenotypes)[3–8] and more

recently for interactions between adult individuals, in livestock and wild animals[2, 9–17] For

example, growth rate in farm pigs has been found to be in part determined by the genetic

makeup of the other pigs in the pen[2]. However, the extent to which SGE explain variation in

biomedical traits is largely unknown.

If SGE do contribute to such traits, they are a promising approach to quantify effects of the

social environment. Additionally, they provide an anchor to investigate causal paths and dis-

sect the mechanisms underlying social effects. Finally, in studies of direct genetic effects car-

ried out by the broad community, SGE may be used to account for social environmental

effects.

Our study aimed at quantifying the contribution of SGE to multiple biomedical traits. We

uncover unexpectedly large social genetic effects on multiple organismal and molecular

phenotypes.

Results

To investigate whether SGE explain variation in biomedical traits, we considered two experi-

ments in laboratory mice involving complementary genetic designs, and assessed both organ-

ismal and gene expression traits.

Experiment with two inbred strains

We first carried out an experiment with two inbred strains. We chose C57BL/6J (B6) and

DBA/2J (D2), the progenitor strains of the largest mouse reference population, the BxD

recombinant inbred panel[18]. We co-housed 86 mice at weaning as B6/B6, B6/D2 or D2/D2

pairs. After a period of six weeks during which the mice interacted undisturbed in their home

cages, we collected 50 organismal phenotypes relevant to unconditioned anxiety, helplessness

(a measure of depressed mood), general locomotor activity, stress, social dominance, wound
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healing and body weight (Fig 1A, S1 Table). We also profiled genome-wide gene expression in

the prefrontal cortex (PFC). The PFC was selected because it is involved in coordinating beha-

vioural responses based on sensorimotor information, motivation and affect, all of which may

be affected by the social environment; as a result individual differences in PFC expression lev-

els may reflect behavioural responses to the social environment [19–21].

In this design with two inbred strains there are three potential genetic sources of phenotypic

variation: differences in the strain of the focal (i.e. phenotyped) mice (DGE), differences in

the strain of their cage mates (SGE) and an interaction between the two, whereby the effect

of the strain of the cage mate depends on the strain of the focal mouse (Fig 1B, S1 Fig and

Methods). Variance partitioning and model selection (see Methods) provided evidence that

interactions between DGE and SGE are common across traits (S2 Fig), with SGE typically

affecting a specific trait in one strain (B6 or D2) but not the other (e.g. Fig 1B, S3 Fig). Thus,

for each trait, we modeled the measurements collected in B6 mice and D2 focal mice sepa-

rately (S1 Fig).

For eleven out of 50 organismal phenotypes we found significant SGE in either B6 or D2

mice (P< 0.05, FDR< 43%—see Methods; Table 1, S2 and S3 Tables). Strain-specific differ-

ences existed as different measures were affected by SGE in B6 and D2 mice. Of these eleven

phenotypes, two were measures of stress and six were measures of anxiety, providing evidence

that variation in the genetic makeup of cage mates causes variation in stress-related pheno-

types. The direction of effect was consistent across the six measures of anxiety (S3 Fig). We

also detected strong SGE on the rate of wound healing (measured from an ear punch, P = 6.6

10−3, Q = 0.36), showing that SGE are not limited to behaviors. (Table 1). Importantly, SGE

Fig 1. Experiment with two inbred strains. (A) Phenotypes collected in this experiment. Organismal phenotypes were measured on each of the 86 mice;
after quality control, gene expression data was available for 79 mice (Methods). (B) Example phenotype (Wound area, from an ear punch, a measure of the
rate wound healing) showing that phenotypic variation arises from variation in the strain of the focal (i.e. phenotyped) mouse (direct genetic effects, DGE),
variation in the strain of its cage mate (social genetic effects, SGE), and an interaction between the two whereby the effect of the strain of the cagemate
depends on the strain of the focal mouse. B6: C57BL/6J, D2: DBA/2J.

doi:10.1371/journal.pgen.1006498.g001
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explained a considerable proportion of phenotypic variance (up to 18%), showing that social

effects of genetic origin are important contributors to phenotypic variation in these two

strains.

We also found evidence that SGE affect gene expression in the PFC. A gene set enrichment

analysis based on the contribution of SGE to gene expression levels (see Methods) revealed

“integrin-mediated signaling pathway”(P = 2.5 10−6, Q = 0.024) and “regulation of dopamine

metabolic process” (P = 7.0 10−4, Q = 1) as the most significant Gene Ontology (GO) terms in

D2 and B6 mice respectively (Table 2). The latter enrichment, although statistically less robust,

is strikingly consistent with our finding that SGE affect dopamine levels measured by HPLC in

B6 mice (Table 1). Our results therefore converge to show that variation in the genetic makeup

of cage mates causes variation in behavioral, biochemical, and gene expression traits relevant

to stress. Although the large number of tests limits the statistical power to detect SGE on indi-

vidual genes (12,898 genes tested), we identified three genes with significant effects (Srsf2,

Phlpp2, and Ppid; FDR< 33%; S4 Table).

Table 1. Organismal phenotypes significantly affected by SGE in the experiment with inbred strains (P < 0.05). B6 and D2 focal mice were analysed
separately. SGEQ value: see Methods. SGE variance (%): Percentage of phenotypic variance explained by SGE +/- standard error (see Methods). * the
expression in the PFC and in B6 focal mice of genes associated with the regulation of dopamine metabolism is also affected by SGE (Table 2).

Focal mice Phenotype Measure of SGE P value SGE Q value SGE variance (%)

B6 Wound area Wound healing 6.6 10−3 0.36 18 +/- 12

B6 Midbrain concentration of noradrenaline Stress 7.2 10−3 0.36 15 +/- 10

B6 Midbrain concentration of dopamine* Stress 2.6 10−2 0.38 10 +/- 9

D2 Time spent not moving in center first min (AC) Anxiety 1.1 10−2 0.38 15 +/- 11

D2 Total arm entries (EPM) Locomotor activity 1.6 10−2 0.38 12 +/- 10

D2 Ratio time spent not moving periphery/center min 2 to 5 (AC) Anxiety 2.6 10−2 0.38 14 +/- 11

D2 Ratio time spent not moving periphery/center min 6 to 30 (AC) Anxiety 3.2 10−2 0.38 11 +/- 9

D2 Number immobility bouts first 2 min (FST) Helplessness 3.4 10−2 0.38 8 +/- 8

D2 Ratio time spent periphery/center min 2 to 5 (AC) Anxiety 3.5 10−2 0.38 12 +/- 10

D2 Ratio ambulatory time periphery/center min 6 to 30 (AC) Anxiety 3.8 10−2 0.38 9 +/- 8

D2 Proportion of entries in open arms (EPM) Anxiety 4.8 10−2 0.43 10 +/- 9

doi:10.1371/journal.pgen.1006498.t001

Table 2. Gene set enrichment analysis based on the contribution of SGE to gene expression in the prefrontal cortex (PFC) in the experiment with
inbred strains. The analysis was carried out in B6 and D2 focal mice separately. Enrichment was calculated based on the contribution of SGE to gene
expression variance (see Methods). The 5 most significant GO terms for each of strain are shown. * dopamine measured by HPLC in the midbrain is also
strongly affected by SGE (Table 1).

Focal mice GO term ID GO term # annotated genes P value Q value

B6 GO:0042053 regulation of dopamine metabolic process* 12 7.0 10−4 1

B6 GO:0045216 cell-cell junction organization 127 2.8 10−3 1

B6 GO:0072376 protein activation cascade 20 2.8 10−3 1

B6 GO:1902017 regulation of cilium assembly 15 3.3 10−3 1

B6 GO:0042987 amyloid precursor protein catabolic process 19 3.4 10−3 1

D2 GO:0007229 integrin-mediated signaling pathway 57 2.5 10−6 0.024

D2 GO:0043269 regulation of ion transport 431 1.7 10−4 0.81

D2 GO:0030001 metal ion transport 543 1.4 10−3 1

D2 GO:1900006 positive regulation of dendrite development 59 1.5 10−3 1

D2 GO:0008542 visual learning 43 1.9 10−3 1

doi:10.1371/journal.pgen.1006498.t002

Social / Indirect Genetic Effects and Biomedical Traits

PLOSGenetics | DOI:10.1371/journal.pgen.1006498 January 25, 2017 4 / 25



Reanalysis of a large outbred mice dataset

We next investigated SGE in a dataset from outbred (Heterogeneous Stock) mice[22–24]. This

design better represents traditional mouse housing conditions (groups of four, five and six

mice mostly rather than pairs; S4 Fig) and genetic variation in natural populations (high

genetic diversity and genetically unique individuals rather than two inbred strains). The data-

set comprises more than 100 organismal phenotypes measured in 2,448 mice (S5 Table), and

gene expression in hippocampus for a subset of 457 mice. To accommodate the genetic design

of this study, we fitted random effects models with variance components for DGE, SGE and

their covariance. Our models are inspired from models published in the literature[2, 25] yet

differ in some important ways, which we explain and justify in S1 Note. Because genome-wide

genotypes were not available for a subset of mice (526 out of 2,448), we used pedigree informa-

tion to estimate pairwise genetic covariance for the mice with no genotype information (see

Methods). We found that the results obtained using both pedigree and genotype data for esti-

mation of genetic similarity were in agreement with those obtained using genotype data only

from the subset of mice that were in cages where all mice had been genotyped (S5 Fig). All

models were fitted using LIMIX[26, 27].

Simulations showed that DGE and SGE were unbiased (S6 Fig and S7 Fig). Of the 117

organismal phenotypes available in this dataset, 43 were significantly affected by SGE

(P< 0.05, FDR< 5.7%; Table 3, S5 Table). SGE explained up to 29% of phenotypic variation

and an average of 8.9% across the 43 significantly affected traits. Importantly, the estimated

contribution of SGE was greater than that of DGE for 8 of the 43 traits.

Among the organismal phenotypes most significantly and strongly affected by SGE in this

dataset were measures of lymphocyte activation (in particular size and number of CD4+ T

cells and B cells, collected by fluorescence-activated cell sorting and full blood count, Table 3).

In contrast, measures related to other leucocytes (neutrophils, basophils and monocytes) and

natural killer T cells. Altogether, these results indicate that genotypes of cage mates influence

humoral immunity, although this is unlikely that this represents spread of a disease as the mice

were kept in a clean mouse facility.

In addition, rate of wound healing, the measure most significantly and strongly associated

with SGE in the experiment with two inbred strains, was also significantly affected by SGE in

the outbred dataset (P = 1.6 10−3, Q = 3.7 10−3).

Three measures of body weight (collected on weeks 6 and 7) also figured among the traits

significantly affected by SGE. Other measures of body weight, collected at weeks 9 and 10,

showed no SGE (S5 Table). The two sets of measures likely reflect a different phenotype as the

normal physiology of the mice was disrupted between weeks 7 and 9 by aggressive phenotyp-

ing (tests of conditioned anxiety involving foot shocks, airway sensitization by allergen, intra-

peritoneal injection of glucose). Another potential but unlikely explanation for the higher

contribution of SGE on earlier body weight measures is a sharp decrease in social effects

between weeks 7 and 9.

Finally, a subset of measures of anxiety, blood biochemistry, and lung function were also

affected by the genotypes of cage mates.

In contrast, there was no statistical evidence for SGE on gene expression levels in the hippo-

campus (smallest nominal P value 4.1 10−5 corresponding to a Q value of 64%, S6 Table). This

is most likely the result of a much smaller sample size (457 or 5% of mice) for expression traits,

and is consistent with published power analyses[28].

We next explored whether studies focused on DGE can safely ignore SGE, focusing on the

estimation of the collective effect of additive DGE on phenotypic variation (narrow-sense heri-

tability). In the outbred dataset, cage mates are genetically more similar to each other than

Social / Indirect Genetic Effects and Biomedical Traits
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Table 3. Organismal phenotypes significantly affected by SGE in the outbredmice dataset (P < 0.05). Q value: see Methods. STE: standard error.
Bold text highlights eight phenotypes for which the contribution of SGE is greater than that of DGE (contribution of SGE–STE > contribution of DGE + STE).

Measure Measure of SGE P

value

SGE Q

value

SGE variance

(%)

DGE variance

(%)

CD4 fluorescence intensity Lymphocyte function <1.00 10-16 <1.00 10-16 29 +/- 5 21 +/- 2

Glycemia before glucose injection Basal glycemia 1.30 10-10 3.20 10-09 11 +/- 4 11 +/- 2

Size of CD4+ cells (forward scatter) Lymphocyte function 2.50 10-08 4.40 10-07 27 +/- 6 5 +/- 1

Size of B cells (forward scatter) Lymphocyte function 4.00 10-08 5.20 10-07 25 +/- 6 5 +/- 1

Size of CD8+ cells (forward scatter) Lymphocyte function 8.00 10-08 8.20 10-07 27 +/- 6 4 +/- 1

Chloride Blood biochemistry 7.70 10-07 6.60 10-06 17 +/- 5 4 +/- 2

Calcium Blood biochemistry 9.90 10-07 7.30 10-06 18 +/- 5 5 +/- 2

Absolute number of lymphocytes Lymphocyte function 3.60 10-06 2.30 10-05 7 +/- 4 9 +/- 3

Weight at 6 weeks of age Body weight 5.30 10-06 3.00 10-05 7 +/- 4 11 +/- 2

Sodium Blood biochemistry 5.90 10-06 3.00 10-05 17 +/- 5 2 +/- 2

Alanine transaminase Liver function 1.00 10-05 4.70 10-05 11 +/- 4 2 +/- 2

White blood cells Lymphocyte function 3.50 10-05 0.00014 6 +/- 4 7 +/- 3

Mean startle (following bang only) before conditioning with foot
shock

Unconditioned
anxiety

0.00011 4.00 10-04 15 +/- 4 24 +/- 4

Weight before food hyponeophagia test (7 weeks) Body weight 0.00015 0.00052 12 +/- 4 6 +/- 2

Glycemia 15 minutes after glucose injection Glucose tolerance 0.00035 0.0011 9 +/- 4 9 +/- 3

High density lipoprotein Blood biochemistry 0.00046 0.0014 8 +/- 4 35 +/- 3

Proportion of CD3+ T-cells that are CD4+ Lymphocyte function 0.00049 0.0014 7 +/- 5 9 +/- 3

Red blood cell distribution width Red blood cell
function

0.00053 0.0014 6 +/- 4 28 +/- 4

Weight after food hyponeophagia test Body weight 0.00093 0.0024 10 +/- 4 7 +/- 2

Percentage of B220+ cells Lymphocyte function 0.0011 0.0027 10 +/- 5 32 +/- 4

Wound (ear hole) area Wound healing 0.0016 0.0037 6 +/- 3 32 +/- 3

Expiratory time (after metacholine) Lung function 0.0018 0.0039 3 +/- 3 11 +/- 3

Enhanced pause (before metacholine) Lung function 0.0019 0.0041 10 +/- 4 9 +/- 3

Distance traveled in the center of the EPM Unconditioned
anxiety

0.0021 0.0043 4 +/- 3 27 +/- 4

Mean startle (following tone + bang) before conditioning with
foot shock

Unconditioned
anxiety

0.0032 0.0063 9 +/- 4 25 +/- 4

Percentage of CD8+ cells Lymphocyte function 0.0039 0.0073 4 +/- 3 48 +/- 4

Distance traveled in the closed arms of the EPM Locomotor activity 0.0042 0.0077 2 +/- 3 18 +/- 3

Distance traveled in the open arms of the EPM Unconditioned
anxiety

0.0057 0.01 2 +/- 3 19 +/- 3

Number of entries into the open arms of the EPM Unconditioned
anxiety

0.0063 0.011 2 +/- 3 19 +/- 3

Albumin Blood biochemistry 0.0066 0.011 5 +/- 4 4 +/- 2

Number of KI67+ cells Adult neurogenesis 0.01 0.017 4 +/- 6 38 +/- 7

Measured mean cell hemoglobin concentration Red blood cell
function

0.012 0.019 7 +/- 4 15 +/- 3

Beam breaks from ambulation in home cage during last 5
minutes

Locomotor activity 0.013 0.02 2 +/- 3 11 +/- 3

Faecal steroids in males and females Stress 0.015 0.022 6 +/- 5 8 +/- 4

Time spent in the open arms of the EPM Unconditioned
anxiety

0.015 0.022 1 +/- 3 17 +/- 3

Aspartate transaminase Blood biochemistry 0.023 0.032 4 +/- 4 2 +/- 2

Alkaline phosphatase Blood biochemistry 0.026 0.036 1 +/- 3 44 +/- 3

Creatinine Blood biochemistry 0.027 0.036 5 +/- 5 2 +/- 3

Glucose Basal glycemia 0.032 0.041 11 +/- 4 9 +/- 3

(Continued)
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average (S8 Fig). As a result, DGE and SGE are correlated (an example of gene-environment

correlation). Thus, we hypothesized that failing to account for SGE would bias estimates of

DGE. We also hypothesized that fitting cage effects might be sufficient to eliminate this bias.

To investigate both hypotheses, we compared DGE estimates obtained using a linear mixed

model for DGE that does not account for cage effects nor SGE, a model that accounts for DGE

and cage effects, and one that accounts for DGE, SGE, corresponding social environmental

effects, and cage effects (“full model”). Models that did not account for SGE led to substantially

larger DGE estimates, and estimates from the model with DGE and cage effects were interme-

diate between those from the model with DGE only and those from the full model. In simu-

lated traits based on the real genotypes and generated from DGE, SGE and cage effects (see

Methods), we found that models that did not account for SGE yielded inflated DGE estimates,

whereas joint modeling of DGE, SGE and cage effects resulted in unbiased estimates (Fig 2C

and S6 Fig). Importantly, fitting cage effects but no SGE did not eliminate the bias. The simula-

tion results strongly suggest that, in the real data, the estimates obtained from the full model

are most accurate, and that models that ignore SGE overestimate heritability. This problem is

particularly acute when direct and social random genetic effects are positively correlated (i.e.

sADS
> 0, see Methods; Fig 2A and 2B). The problem we highlight here is general and likely to

affect other studies in which social partners are related, including twin and family studies used

to estimate heritability in humans (see Discussion).

Discussion

Using two complementary genetic designs–one using two mouse inbred strains and one using

outbred mice—we estimated the contribution of social genetic effects to a variety of organis-

mal phenotypes and gene expression traits. The experiment with two inbred strains was

designed to investigate SGE and focused on behaviours (anxiety and helplessness), as there is

strong evidence that behaviours are socially affected[29–33]. To test whether SGE can be

detected in outbred populations and survey a broader range of phenotypes, we re-analysed a

large dataset from outbred mice and quantified the contribution of SGE to more than 100 phe-

notypes. The design of our study raises important questions: are positive results (i.e. evidence

of SGE) in the experiment with two inbred strains expected to replicate in the outbred dataset?

Are some phenotypes expected to be affected by SGE and some not? We now discuss these

points.

Some phenotypes were measured in both experiments with similar protocols. Wound area,

the measure of wound healing, was collected in both experiments using the exact same proto-

col. It is significantly affected by SGE in both experiments. The protocols for measuring body

and adrenal gland weight are fairly simple thus reducing technical variation between experi-

ments, and body weight was measured at about the same time point (around 50 days of age) in

both experiments. There was strong evidence for SGE on body weight in the outbred dataset

but no evidence in the experiment with two inbred strains. No SGE on adrenal gland weight

Table 3. (Continued)

Measure Measure of SGE P

value

SGE Q

value

SGE variance

(%)

DGE variance

(%)

Time freezing during cue Conditioned anxiety 0.034 0.042 7 +/- 4 15 +/- 4

Percentage of CD3+ cells Lymphocyte function 0.034 0.042 5 +/- 4 31 +/- 4

Respiratory rate (after metacholine) Lung function 0.04 0.048 1 +/- 3 17 +/- 4

Expiratory time (before metacholine) Lung function 0.049 0.057 2 +/- 3 15 +/- 3

doi:10.1371/journal.pgen.1006498.t003

Social / Indirect Genetic Effects and Biomedical Traits

PLOSGenetics | DOI:10.1371/journal.pgen.1006498 January 25, 2017 7 / 25



were detected in either dataset. Finally, a partially overlapping set of measures of uncondi-

tioned anxiety was significantly affected by SGE in both experiments. While reviewing results

Fig 2. Ignoring SGE leads to biased estimates of DGE (heritability) in the outbredmice dataset. (A,B) DGE estimates for all organismal
phenotypes. The colour of the dots indicates the sign of the covariance sADS

between DGE and SGE (blue: negative; red: positive; see Methods); the

intensity of the colour indicates the magnitude of SGE. (A) Comparison of DGE estimates frommodel with DGE only (x-axis) and full model with DGE,
SGE, (y-axis). (B) Comparison of DGE estimates frommodel with DGE and cage effects (x-axis) and full model (y-axis). (C) Difference between
estimated and simulated DGE. The contribution of SGE to simulated phenotypes varied and is shown on the x-axis. See Methods for values given to
other parameters. Simulations were analyzed with three different models: DGE only (red), DGE + cage effects (green), DGE + SGE + cage effects
+ social environmental effects (blue).

doi:10.1371/journal.pgen.1006498.g002
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from the two experiments in parallel is informative, positive results in one experiment are not

strictly expected to replicate in the other. Indeed, although the variants that give rise to SGE in

the experiment with two inbred strains also segregate in the outbred population (the two

strains used in our experiment were among the eight founders of the outbred population),

they have recombined with many additional variants from the six other founders. Moreover,

the housing conditions were very different in the experiment with inbred strains and outbred

experiment (group size of 2 vs. 2 to 7 respectively, and unfamiliar mice vs. familiar mice

housed together). Therefore, one should not expect the overall contribution of SGE be the

same in the two experiments. Rather, combining the two experiments provides a first hint at

the generalizability of our results. Published studies of SGE provide additional information on

this matter, and suggest that SGE may contribute to variation in body weight across species[2].

That social genetic effects contribute to variation in anxiety probably does not come as a

surprise but their contribution to wound healing maybe more so. This result is however sup-

ported by significant p-values in both experiments of our study and large effect sizes (18 and

6%). When interpreting this result, it is important to bear in mind that social effects on wound

healing can (and will, necessarily) be mediated by traits of cage mates that are different from

wound healing. For example, social effects on wound healing could be mediated by social

grooming, which could either mechanically disrupt the healing process or chemically enhance

it[34]. Any traits of cage mates that may induce a systemic stress response in the focal animal

could also mediate social effects on wound healing[35, 36]. Thus, social effects on wound heal-

ing are not unlikely, and, similarly, social effects may affect any phenotype (e.g. by through the

induction of a systemic stress response,).

Because any phenotype may a priori be affected by social effects and the mechanisms at play

are rarely known, SGE offer an attractive alternative to investigate social effects. First, as we

have shown, they can be used to quantify social effects, effectively providing a lower bound

estimate of social effects (as only the genetic component is captured). Second, SGE can be used

to test whether a particular trait of social partners has an effect on a phenotype of interest.

Establishing a causal relationship between two phenotypes is always difficult because of the

risk of reverse causation and independent action of hidden confounders on both traits; SGE

provide an anchor to test causality.

Independent of their relevance for studying social effects, we show that ignoring SGE can

lead to biased estimates of heritability (i.e. the collective effect of DGE). In our study (outbred

dataset), DGE and SGE are correlated by design (mice that share a cage are more genetically

similar than average), and we show that this correlation leads to biased estimates of heritability

if unaccounted for. Fitting cage effects, which has the primary goal of accounting for environ-

mental effects shared by cage mates (e.g. noise levels), does not eliminate the bias. Our results

are of interest to the broad genetics community as DGE and SGE are correlated in most if not

all experimental designs traditionally used to estimate heritability in humans and model

organisms, and SGE may thus have caused widespread bias. For example, in twin designs, MZ

twins not only share 100% of their genotypes but they also share 100% of the genotypes of

their sibling; DZ twins in comparison share both 50% of their genotypes and 50% of the geno-

types of their sibling. Thus, SGE can contribute to increased concordance between MZ twins

compared to DZ twins. If SGE are not modelled, heritability may be overestimated and appear

“missing” when compared to genome-wide association results obtained from unrelated indi-

viduals[37]. Note that when the covariance sADS
between direct and social random genetic

effects is negative (competition effects), ignoring SGE may lead to underestimating heritability.

SGE in humans were considered once before (“sibling effects” [38]) but were never, to the best

of our knowledge, modelled in heritability studies. Because we found that fitting cage effects
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was not sufficient to eliminate the bias due to SGE, we suspect that accounting for a “common

environment” shared by family members, as is commonly done in human studies[39–41], will

not eliminate SGE-induced bias.

It is not the first time that unaccounted for gene-environment correlations are put forward

as potential causes of bias (e.g. Conley et al. investigated the correlation between genetics and

urban setting [42]). However, the impact of the correlation between DGE and SGE is likely to

be particularly severe as we have shown that SGE affect a wide range of phenotypes and DGE

and SGE are correlated in most experimental designs used to estimate heritability.

Our study sheds light on an important component of the genetic architecture of complex

traits, one that lies outside the individual, in social partners. Social genetic effects have already

been shown to play an important role in artificial selection of livestock[43] and have important

evolutionary consequences[44, 45]. Our results provide evidence that SGE are also an impor-

tant component of health and disease.

Methods

Experiment with inbred strains

Animals and experimental design. Forty-five C57BL/6J (B6) and 45 DBA/2J (D2) about

3-weeks-old (±3 days) were shipped from The Jackson Laboratory. Mice were weaned on the

day they were shipped and littermates were shipped together so as to minimise novel social

interactions prior to experiments. Three D2 mice died during shipment and to maintain bal-

ance one B6 mouse was excluded. On arrival at UTHSC, mice were transferred to standard (75

square inches) mouse cages and allowed to recover overnight with their original littermates.

Ears were punched for identification, and mice were transferred to new cages. Mice were co-

housed in pairs to make up sixteen B6/D2 (BD) cages, 14 B6/B6 (BB) cages, and 13 D2/D2

(DD) cages assembled using mice from 15 B6 and 15 D2 litters (3 mice per litter originally).

Littermates were never paired in BB and DD cages so cage mates were always unfamiliar with

each other at the beginning of the experiment. Littermates were distributed across the three

groups (BB, BD, and DD), and the cages ordered as successive BB, BD, and DD triplets on the

shelves. Mice were housed in standard mouse cages with corncob bedding and a cardboard

shelter on a fixed 12:12 hour light: dark cycle with ad libitum access to food and water. Pheno-

types were collected after six weeks of co-housing.

Phenotyping. All protocols were approved by the UTHSC Institutional Animal Care and

Use Committee. Mice were phenotyped between 7am and 2pm, in a random order different

for each test. The order in which tests were performed, as well as the measures collected in

each test, are summarised in S1 Table.

Elevated plus maze: We used an elevated plus maze (Columbus Instruments) with a surface

~30 cm above the floor that contained four 51-cm long, 11.5 cm-wide arms arranged at right

angles. Closed arms had opaque walls 30 cm high, extending the length of the arm. Each

mouse was placed in the center of the maze facing an open arm and allowed 5 minutes to

explore the maze. Each cage mate was tested in turn and precaution was taken so that cage

mates did not interact just after the first cage mate had finished the test and before the second

one was taken to the maze.

Activity chamber: We used six 17" X 17" Plexiglas activity chambers (Med Associates Inc.,

ENV-510) with photobeams around the edge to measure movement. The beams were inter-

faced to a computer to record movement. Each activity chamber was located into a closed sec-

tion of a cupboard, which had white light on. Each mouse was placed in the centre of the

chamber and given 30 minutes to explore the activity chamber. Cage mates were tested at the

same time.
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Tail suspension test: Adhesive tape was wrapped around each tail three quarters of the dis-

tance from the base, and used to attach a suspension hook. Animals were suspended for six

minutes and video recorded from the side. Cage mates were tested at the same time.

Forced swim test: Mice were placed in six cylinders (height: 20 cm, diameter: 15 cm) with

water at about 25˚C for 6 minutes and their behaviour recorded from the side. Upon comple-

tion mice were dried. Cage mates were tested at the same time.

Body weight: Mice were weighed on the day after arrival at UTHSC and every week

thereafter.

Sacrifice, tissue collection, and gland weights: Mice were euthanized by injection of 250

mg/kg Avertin (20 mg/ml; tribromoethanol) followed by cardiac puncture and exsanguination

under deep anaesthesia. The blood was collected in lithium heparin tubes, and an aliquot was

taken in another lithium heparin tube for serotonin quantification. The aliquot was immedi-

ately snap frozen in liquid nitrogen and then stored at -80C.

The brain was dissected and placed in an ice-cold coronal mouse brain matrix. A slab con-

taining the prefrontal cortex (PFC) was removed, and the PFC taken, snap frozen and stored

at -80˚C. The part of the brain caudal to the amygdala was dissected, snap frozen and stored at

-80˚C. Then the midbrain was dissected by letting the brain soften on ice and removing the

cerebellum. The midbrain was stored at -80˚C and shipped on dry ice for analysis by high-

pressure liquid chromatography.

Both preputial glands were dissected and weighed together, as were both gonads. Right and

left adrenal glands were weighed separately.

High-pressure liquid chromatography: Brain samples were weighed frozen. They were then

crushed in 1,5 ml of 10-3MHCl containing sodiummetabisulfite and ascorbic acid (antioxi-

dants), and centrifuged at 22,000 g for 20min at 5˚C. The supernatants were collected and fil-

tered through a10-kDa membrane (Nanosep, Pall) by centrifugation at 7,000 g. Then, a 20 μl

aliquot of sample was analyzed for serotonin by fluorometric detection[46]. The amounts of

catecholamines (dopamine and noradrenaline) and their metabolites (DOPAC, HVA, VMA)

as well as the serotonin metabolite 5HIAA were measured by electrochemical detection on a

serial array of coulometric flow-through graphite electrodes (CoulArray, ESA)[47]. The analy-

sis, data reduction and peak identification were fully automated.

Ten μl of blood were used for serotonin quantification. Serotonin was extracted by adding

400 μl of 10−3MHCl, followed by 2 centrifuge runs including one on Nanosep 10 kD. Quanti-

fication was carried out as for brain serotonin.

Size of ear hole: At sacrifice the ear that was clipped on arrival was cut and placed in forma-

lin. It was then mounted on a glass slide, scanned, and the resulting image analysed with Ima-

geJ. The scale was set once using the size of the slide. The hole was delimited using the

freeform drawing tool.

Pre-processing of organismal phenotypes. All collected phenotypes were quantitative.

Individual phenotypes were normalized using the parametric Box-Cox power transformation

[48], using R’s MASS package[49] and a model where strain of the animal, strain of the cage-

mate, and an interaction between the two were included as fixed effects to inform the Box-Cox

fit. Note that this approach does not regress out these genetic effects.

On the Box-Cox transformed data for each phenotype, we tested for association with exper-

imental covariates and regressed out significantly associated covariates that were unrelated to

the measure of interest. The covariates that were accounted for are reported in S1 Table. Signif-

icance of SGE calculated by including covariates in the models rather than regressing them out

are reported in S3 Table.

RNA extraction and sequencing. Total RNA was extracted using a Qiagen Qiacube and

RNeasy mini kit according to the manufacturers protocols and was loaded on a 96-well plate,
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with samples randomly allocated to wells, for shipment to the sequencing centre. The quantity

and quality of the samples was assessed using Agilent high sensitivity R6K screen tape. One

sample (B42) with high degradation was excluded. Two samples (B39, D30) had very low RNA

integrity numbers (RIN, 3.7 and 4.2 respectively), and one sample (B9) had low 28S/18S peak

height ratio but they were included in library preparation and sequencing. All libraries were

prepared according to the dUTP strand-specific protocol, multiplexed in one 85-plex and

sequenced in 5 HiSeq 2500 rapid runs to obtain paired-end, 51 bp reads.

Alignment of sequencing reads and quantification of gene expression. We used SNPs

and indels identified in D2 (Sanger Mouse Project[50], files mgp.v3.snps.rsIDdbSNPv137.vcf

and mgp.v3.indels.rsIDdbSNPv137.vcf, both on GRCm38) to construct a D2 genome and the

corresponding gene annotation file using the software SeqNature[51] (version 1.2). Reads

were aligned using Tophat[52] (Tophat2 version 2.0.11, Bowtie version 2.2.2.0, and Samtools

version 0.1.19.0), considering either the B6 genome (GRCm38) or the D2 genome. High qual-

ity alignments were selected using the following criteria: both reads of the pair had to uniquely

map to the same chromosome and within 2.3 Mb of each other (length of the longest gene).

Expression levels were quantified at the gene level using HTSeq[53] (version 0.6.1), consider-

ing high quality alignments only and UCSC annotations (GRCm38/mm10).

Pre-processing and quality control. Raw expression counts were adjusted for library size

using the R package DESeq2[54] (version 1.2.10). Out of 23,420 genes, we considered 13,271

genes with at least 10 (library size normalized) reads in at least 40% of the samples. Gene

expression levels were normalized using the Box-Cox transformation as done for the organis-

mal phenotypes.

We identified and excluded genes whose expression was affected by the order of sacrifice: at

the end of our experiment, we sacrificed each cage mate in turn with an interval of about 15

minutes between the first and the second cage mate. The cage mate that was sacrificed second

was in the room and we found evidence that the expression of a small number of genes was

activated during this interval (i.e. their expression was correlated with order of sacrifice within

cage mate pair). Some of the affected genes were well-known immediate early genes. In our

experiment, this effect was confounded with potential social genetic effects as B6 mice in BD

cages were always sacrificed first and D2 mice second, while in BB cages some of the B6 mice

were necessarily sacrificed first and others second, and the same applies for D2 mice in DD

cages. To avoid possible false positive SGE, we took a conservative approach and excluded all

genes for which the order of sacrifice within pair, in B6 mice from BB cages and D2 mice from

DD cages, was associated with gene expression levels (P< 0.05 P,> 1% variance explained;

375 genes in total).

We used a principal component analysis (PCA) to identify outlier samples. The first and

second principal components explained 22% and 9% of variation in gene expression, and were

used to define outliers (S9 Fig). A total of 7 samples were excluded (B39, D13, D30, D9, B30,

D16, D39), two of which also had very low RIN. The final gene expression dataset consisted of

11 pairs of B6 cage mates, 3 B6 mice whose B6 cage mates were not included in the final sam-

ple, 15 pairs of B6/D2 cage mates, 1 B6 mouse whose D2 cage mate was not included in the

final sample, 9 pairs of D2 cage mates, and 4 D2 mice whose cage mates were not included in

the final sample. This amounts to 25, 16, 15, and 22 mice in the BB, BD, DB, and DD groups

respectively.

In addition to removing outlier samples, we used two approaches to adjust for observed

and hidden covariates affecting the expression profiles. First, for significance tests of SGE

on gene expression levels, we used PEER to account for hidden sources of variation[55]; we

ran PEER while including strain, strain of the cage mate, and interaction between them as

observed covariates so as not to remove the genetic signal (see below), and used the expression
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residuals calculated from the first 5 PEER factors for statistical tests. The p-values obtained

with PEER residuals were calibrated whereas other normalization strategies led to severely

deflated test statistics, supporting that the PEER factors accounted for unwanted variation

such as hidden batch effects.

Second, for variance partitioning and model selection, we regressed out observed technical

covariates only as removal of hidden factors can reduce the residual noise. We considered sev-

eral technical covariates: initial RNA concentration (as an indicator of the size of tissue dis-

sected, since the same volume of buffer was added to all), RIN, ratio between heights of 28S

and 18S peaks, proportion of first reads mapping—as they should—to the strand opposite to

the feature (i.e. strand specificity of the protocol, calculated by running htseq-count a second

time with the–-stranded = yes option), insert size, yield, proportion of reads mapped to the

(B6 or D2) genome, proportion of mapped reads that are of high quality (as defined above),

proportion of high quality reads that are exonic, number of alignments with 0, 1, or 2 errors

(as calculated by SAMStat[56] version 1.09), and the following measures calculated from the

output of FastQC[57] (version 0.10.1): average per base sequence quality, average per base

sequence (G nucleotide used) content, average per base GC content, average per sequence GC

content, average per base N content, average per sequence quality scores, average sequence

duplication levels, presence or absence of overrepresented sequences. We calculated the corre-

lation of these covariates with the first principal components, and found that proportion of

selected read pairs that are exonic was significantly correlated with the first principal compo-

nent (Pearson correlation, R2 = 0.66, P = 8.10−12). Therefore we regressed the effect of this

covariate out of the expression of each gene, and used the residuals for variance partitioning

and model selection.

Statistical modelling. Conceptually we distinguish between the focal individual (f),

whose phenotype is the phenotype of interest and the dependent variable in the model, and the

focal individual’s social partners–here its cage mate (cm)–which may influence the phenotype

of the focal individual through a number of unknownmediating phenotypes. No prior knowl-

edge or measurement of these mediating phenotypes is required as they are captured through

their genetic and environmental components (social genetic effects, SGE, and social environ-

mental effects, SEE, respectively).

Genetic effects considered in this experiment include:

• direct genetic effects (DGE, effects of the strain of the focal animal on its own phenotype–the

phenotype of interest). This component is only relevant when both B6 and D2 focal mice are

analysed together.

• social genetic effects (SGE, effects of the strain of the cage mate on the focal animal’s pheno-

type; SGE act through mediating phenotypes of the cage mate).

• an interaction between DGE and SGE (whereby the effect of the strain of the cage mate

depends on the strain of the focal individual). This component is only relevant when both

B6 and D2 focal mice are analysed together.

Genetic effects were modelled as fixed effects.

“Environmental” (i.e. unexplained or residual) variance may arise from:

• direct environmental effects (DEE, effects of the “environment” of the focal animal on its

own phenotype)

• social environmental effects (SEE, effects of the environment of the cage mate on the focal

animal’s phenotype; SEE are the environmental component of the mediating phenotypes, so

whenever social effects are considered both SGE and SEE need to be accounted for)
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• cage effects (which affect the phenotype of interest of all mice sharing a cage in the same

way)

Environmental effects were modelled as random effects.

The model of phenotypic variation that includes all of the genetic and environmental effects

listed above (note: a simpler model was effectively used for analysis, as explained next) is the

following:

yf ¼ AD;f þ AS;cm þ AD;f : AS;cm þ eD;f þ Zf eS þ Wf c

where yf is the phenotype of interest of the focal animal f; AD,f and AS,cm respectively refer to

additive DGE of the focal individual and additive SGE from the cage mate cm; AD,f : AS,cm

refers to the interaction between AD,f and AS,cm; Zf is a row of the matrix Z that indicates cage

mates (importantly Zi,i = 0); eD is the vector of random DEE and eS the vector of random SEE.

Wf is a row of the matrix W that indicates cage assignment and c the vector of cage effects.

The joint distribution of the environmental random effects is defined as:
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The covariance sEDS
between the random direct and social environmental effects exists

because an environmental factor may influence both the phenotype of interest and the mediat-

ing traits, in which case it will influence the phenotype of interest both in a direct (eD) and an

indirect (eS) manner. Depending on 1) the direction of the environmental effect on the pheno-

type of interest, 2) the directions of the effects on the mediating traits, and 3) the signs of the

correlations between mediating traits and phenotype of interest, sEDS
may be positive or

negative.

The environmental covariance is:

cov ðei; ejÞ ¼ s2

ED
þ s2

ES
þ s2

C if i ¼ j

cov ðei; ejÞ ¼ 2 sEDS
þ s2

C if i 6¼ j and i and j share a cage

cov ðei; ejÞ ¼ 0 if i and j are in different cages

Note that cov (ei,ej) may be negative as a result of sEDS
being negative.

When group size is constant, as is the case in this dataset (group size = 2), eD, eS, and c are

not identifiable. Thus we instead used a single random environmental term, whose correlation

structure is described below, as has been done in other studies of social genetic effects[25]:

cov ðei; ejÞ ¼ s2

E if i ¼ j

cov ðei; ejÞ ¼ rs2

E if i 6¼ j and i and j share a cage

cov ðei; ejÞ ¼ 0 if i and j are in different cages

From the expressions of cov (ei,ej) above we see that s
2

E ¼ s2

ED
þ s2

ES
þ s2

C and

r ¼ ð2 sEDS
þ s2

CÞ=s
2

E . As the determinant of the environmental covariance matrix is neces-

sarily positive, −1� ρ � 1.

Note that under the assumption 0� ρ � 1 the environmental component could be rewrit-

ten as a sum of cage effects and iid residuals. This assumption is often made when group size is
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large (e.g. [2]) because

r ¼ ð2 sEDS
þ ðn � 2Þs2

ES
þ s2

CÞ=s
2

E

where n is the group size. ðn � 2Þs2

ES
is likely to be positive and large for large groups, so ρ is

likely be positive for large groups. However, in this experiment group size is 2 so ðn � 2Þs2

ES
¼

0 and ρmay well be negative. Thus we cannot rewrite the residual term as a sum of cage effects

and iid residuals.

To investigate interactions between DGE and SGE (see Methods sections Model selection

and Variance partitioning below), we considered all mice (B6 and D2) as focal individuals. For

all other analyses we analysed B6 focal mice and D2 focal mice separately. We did so because

there was evidence that interactions exist between DGE and SGE (results reported in the col-

umns under “All mice” in S2 Table and shown in S2 Fig) and analysing B6 and D2 focal mice

separately in that case simplified results interpretation.

When analysing B6 and D2 focal mice separately, we used the following simpler model:

yf ¼ AS;cm þ ef

¼ bSXcm þ ef

ð1Þ

where βS is the regression coefficient of SGE and Xcm the strain of the cage mate cm, with strain

encoded as 0 for B6 and 1 for D2.

Model selection. To investigate whether interactions between DGE and SGE might con-

tribute to phenotypic variation, we sought to identify the combination of genetic and environ-

mental terms from {DGE, SGE, interaction between DGE and SGE, DEE, SEE, covariance

between DEE and SEE, and cage effects} that best modelled phenotypic variation. All mice (B6

and D2) were included as focal individuals for this analysis. Constraints were imposed on the

environmental correlation parameter ρ when SEE and/or cage effects were not included in the

model. Thus, the models were fitted in R using either the functions lm (stats package), lme

(nlme package), or gls (nlme package, corCompSymm correlation structure for the residuals),

as appropriate. The best model was selected using the Akaike information criterion (AIC) cal-

culated based on the maximum-likelihood (ML) fit using the AIC function in the R stats pack-

age. The results of this analysis are reported in S2 Fig and the columns under “All mice” in S2

Table).

Variance partitioning. For S2 Fig and the columns under “All mice” in S2 Table, both B6

and D2 mice were considered as focal individuals and we used the following model:

yf ¼ AD;f þ AS;cm þ AD;f : AS;cm þ ef

¼ bDXf þ bSXcm þ bD:SXf :Xcm þ ef

ð2Þ

where βD is the regression coefficient of DGE, Xf the strain of f, and βD:S the regression coeffi-

cient of the interaction between DGE and SGE. Xf.Xcm is the product of the numerically

encoded strains of f and cm, and therefore was 0 except for D2 focal mice with D2 cage mates.

All other results were obtained by analysing B6 and D2 focal mice separately using Model (1).

All models were fitted using restricted maximum likelihood (REML). The proportion of

phenotypic variance explained by each fixed effect in the model (Model (1) or Model (2)) was

calculated as the ratio of the sample variance of that term (i.e. the expected value of the vari-

ance of that term, which is varðbSXÞ for SGE) and the sample phenotypic variance. We

obtained the sample phenotypic variance by drawing from the fitted model and calculating the

average variance of the draws.

Standard errors were obtained using Gaussian propagation of uncertainty.
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Statistical significance tests. Statistical significance analyses for SGE were carried out in

B6 and D2 focal mice separately (S1 Fig), based onModel (1). Significance of the SGE covariate

was assessed using a likelihood ratio test. Q values[58] implemented in the R package qvalue

[59] were used to adjust for multiple testing across traits and focal strain (43 traits x 2 focal

strains, 86 tests in total).

Gene set enrichment analysis. We considered B6 and D2 focal mice separately for this

analysis, using the R package topGO[60] and the annotation package org.Mm.eg.db to per-

form gene set enrichment analyses. We used the residuals from PEER and considered the vari-

ance explained by SGE in Model 1 as score for each gene. Enrichment P values were obtained

with the Kolmogorov-Smirnov test and the elim algorithm that decorrelates the GO graph

structure[61]. Q values[58] were used for multiple testing correction, and obtained using the R

package package[59].

Outbred mice dataset

Description of the dataset. We used the raw data from Valdar et al.[22] (genotypes and

organismal phenotypes), Huang et al.[23] (organismal phenotype: cellular proliferation in the

subgranular zone of the dentate gyrus, a measure of adult neurogenesis) and Huang et al.[24]

(gene expression in the hippocampus), which were collected on Heterogeneous Stock (HS)

mice. HS mice are descended from eight inbred progenitor strains through more than 50 gen-

erations of circular breeding with 24 families[62]. As a result, each HS mouse is genetically

unique. The mice included in this dataset are from a colony established at Oxford for a few

generations, and for which pedigree data are available (3,149 mice). Cage information was

available for a subset of 2,448 mice, filling 549 cages in groups of 2 to 7 mice (S4 Fig). Geno-

types at 13,459 single nucleotide polymorphisms were available for a subset of 1,940 of those

2,448 mice, and a pair-wise genetic similarity matrix shows that they were related at different

levels (S8 Fig), including (but not only) many full siblings. Some phenotype data were available

for all 2,448 mice, but the number of mice phenotyped for each organismal phenotype is

reported in S5 Table.

Inference of relationship coefficients using the single-step or Hmatrix. Our analysis of

this dataset is based on linear mixed models, which use a genetic covariance matrix made of

pair-wise relationship coefficients. These coefficients can be estimated from genome-wide

genotypes, however as 508 cage mates of phenotyped mice had not been genotyped, we esti-

mated relationship coefficients for all 3,149 mice based on both genotype and pedigree data.

We discarded the genotypes of 18 mice because they represented likely duplicates.

We infered the pair-wise relationship coefficient of the 1,227 non-genotyped mice with all

3,149 mice using the single-step or H matrix[63–65], which was constructed as (in the inverse

scale;):

H�1 ¼ A�1 þ
0 0

0 Gð�Þ�1 þ A�1

gg

 !

where A−1 is the inverse of pedigree-based Wright (1921) relationship matrix, and Agg is the

pedigree-based relationship submatrix across genotyped individuals. The pedigree consisted of

the genotyped individuals and their parents, some of them common across sibships. To war-

rant that both G(�) and A−1 refer to the same base population and to ensure that G(�) is a valid

covariance matrix, G(�) was constructed as [66, 67]

Gð�Þ ¼ 0:95 a þ b
M0M

2
P

ðpiqiÞ

� �

þ 0:05Agg
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where a and b are constants (respectively 0.015 and 0.982) based on statistics of A and G so

that average relationship and average inbreeding agree for both matrices. These constants cor-

rect for the random drift and the loss on heterozygosity across generations. Matrix M contains

centered genotypes based on observed allelic frequencies p and q = 1 − p for each locus as in

[68]. The matrix H was obtained by inversion of H−1. Program pregsf90 ([69]; available at

http://nce.ads.uga.edu/wiki/doku.php) was used to construct H. Using this matrix, all esti-

mates of genetic variance refer to the pedigree base populations, i.e. the parents of the animals

in the study. Because this is only one generation back in time, we can assume that this base

genetic variance is concordant with the genetic variance in the phenotyped population.

Processing of organismal phenotypes. We considered a subset of the experimental vari-

ables recorded by Valdar et al.[22] as covariates for our analysis (S5 Table). Each phenotype

was normalized using a covariate-aware Box-Cox transformation[49], and the covariates were

fitted as fixed effects in the models used in our analyses.

Re-processing of expression data. Gene expression in the hippocampus was assessed by

hybridization of mRNA to the Illumina Mouse WG-6 v1 BeadArray platform. The data, as

originally pre-processed by Huang et al. had critical shortcomings: S10A and S10B Fig show

that the higher correlation that can be seen in the raw data between probes mapping to the

same gene compared to random probe pairs is lost in the pre-processed data from Huang et al.

[24]. We re-processed the data as detailed in Section 2.6 of Krohn[70]. Briefly, the BeadArray

images were imported into the Gene Expression module (V 1.6.0) of the Illumina GenomeStu-

dio (V 2010.1) without invoking any data adjustment procedures. These raw data were trans-

ferred to R using the Bioconductor package lumi[71]. A cluster dendrogram enabled

identification of four outlier samples, which were excluded from further pre-processing. Two

thousand control probes scattered across the Illumina chip enabled subtraction of background

noise levels via lumi. Standardisation of variance and mean were carried out via lumi’s vari-

ance stabilising transformation and robust spline normalisation. Then a series of four filters

were applied to eliminate unreliable probes: following the pipeline developed by Barbosa-Mor-

ais et al.[72], probes not rated as “perfect” (50 out of 50 nucleotides match the reference

genome) or “good” (48 to 49 out of 50 matches to the genome) were removed; so were probes

that mapped to more than one genomic location according to BLAST queries[73] and probes

that included a SNP (NCBI dbSNP Build 137); finally, only probes detected in at least 5% of

the mice at a 0.95 detection level (as per GenomeStudio) were retained. Following filter appli-

cation, 15,736 of the original 47K probes, mapping to 11,996 genes, were kept. Finally, Com-

Bat[74] was used to control for batch effects (the data were assayed over several months). S10C

Fig shows that our processing of the data kept the biological correlation that exists between

probes mapping to the same gene.

Statistical models. We considered a linear additive model,

yf ¼ Xf b þ aD;f þ eD;f þ Zf aS þ Zf eS þ Wf c ð3Þ

Here, yf is the phenotypic value of the focal mouse f, Xf is a row of the matrix X of covariate

values and b a column vector of corresponding estimated coefficients. aD,f is the additive direct

genetic effects (DGE), also called breeding value, of f. Zf is a row of the matrix Z that indicates

cage mates (importantly Zi,i = 0) and aS the column vector of additive social genetic effects

(SGE). eD refers to direct environmental effects (DEE) and eS to social environmental effects

(SEE). Wf is a row of the matrix W that indicates cage assignment and c the column vector of

cage effects
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Because the genetic setup is not binary (B6 / D2 in the experiment with inbred strains) but

individuals are genetically unique and related to varying degrees, we modeled the components

in Model (3) as random effects, while accounting for covariance between different effects. The

joint distribution of all random effects is defined as:

aD

aS

eD

eS

c

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

� MVN ð 0;

s2
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H

1
sADS

H
2

0 0 0

sADS
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2
s2
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H

3
0 0 0

0 0 s2
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I
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sEDS
I
2

0

0 0 sEDS
IT
2

s2
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I
3

0

0 0 0 0 s2

CI4

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

and the phenotypic covariance is:

cov ðyi; yjÞ ¼ s2

AD
H

1 i;j þ sADS
fðH

2
ZTÞi;j þ ðZHT

2
Þi;jg þ s2

AS
ðZH

3
ZTÞi;j þ s2

ED
I
1 i;j

þ sEDS
fðI

2
ZTÞi;j þ ðZIT

2
Þi;jg þ s2

ES
ðZI

3
ZTÞi;j þ s2

C ðWI
4
WTÞi;j ð4Þ

H1, H2, and H3 were calculated by dividing the (single-step) H matrix by, respectively, sam-

pleVar(H),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sampleVarðHÞ � sampleVarðZHZTÞ
p

, and sampleVar(ZHZT), where sampleVar

is the sample variance of the corresponding covariance matrix: suppose that we have a vector x

of random variables with covariance matrix M, the sample variance of M is calculated as

sampleVar Mð Þ ¼
TrðPMPÞ

n � 1

Tr denotes the trace, n is the sample size, and P ¼ I � 11
0

n
[75, 76].

As a result of this scaling, s2

AD
, sADS

, and s2

AS
directly reflect the relative contribution of

DGE, the covariance between DGE and SGE, and SGE.

Similarly, I1, I2, and I3 were calculated by dividing the identity matrix I by, respectively,

sampleVar(I) = 1,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sampleVarðIÞ � sampleVarðZIZTÞ
p

, and sampleVar(ZIZT), so that s2

ED
,

sEDS
, and s2

ES
directly reflect the phenotypic variance explained by DEE, the covariance between

DEE and SEE, and SEE.

I4 was calculated by dividing the identity matrix I by sampleVar(WIWT).

See S1 Note for a discussion of how these models differ from published SGE models.

Variance partitioning. For each trait, Eq (4) was used to partition phenotypic variance

into its individual components. All models were fitted using LIMIX[26, 27], which we

extended to handle models with correlated variance components. The model was fitted using

restricted maximum likelihood (REML). We report the contribution of DGE and SGE to phe-

notypic variation as the proportions of phenotypic variance explained by DGE and SGE, i.e.

the ratio between the sample variance explained by DGE (s2

AD
) or SGE (s2

AS
) and the sample

variance of the overall phenotype covariance matrix (defined by Eq 4, with all variance compo-

nents estimated).

Standard errors on variance components are estimated as the square root of the corre-

sponding diagonal entries of the inverse of the Fisher information, which is the negative

expected value of the Hessian[77].

Simulation experiments. Phenotypes were simulated based on the genotypes and the

cage relationships of the full set of 2,448 mice. Phenotypes were drawn from model (3). We

note rADS
the correlation between aD and aS : rADS

¼ sADS
=ðsAD

� sAS
Þ.

We present several sets of simulations:
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• one based on the estimated contributions of all parameters averaged over all organismal phe-

notypes: s2AD = 15%, s2AS = 4%, rADS = 0.5, s2ED = 52%, s2ED = 0, rEDS = 0, s2C = 22% (S6B Fig

and S7B Fig)

• one based on the estimated contribution of all parameters averaged over the six phenotypes

with highest SGE: s2AD = 5%, s2AS = 27%, rADS = 0.92, s2ED = 5%, s2ED = 0, rEDS = 0, s2C = 51%

(S6C Fig and S7C Fig)

• s2AD taking values {0,10,20,30,40,50} with all other parameters set to their average estimated

contribution across all phenotypes (so s2AS = 4%, rADS = 0.5, s2ED = 52%, s2ES = 0, rEDS = 0, s2C
= 22%) (S6A Fig and S7A Fig)

• s2AS taking values {0,10,20,30,40,50} with all other parameters set to their average estimated

contribution across all phenotypes (Fig 2C, S6A Fig and S7A Fig)

• rADS taking values {-0.8,-0.4,-0.2,0.2,0.4,0.8} with all other parameters set to their average

estimated contribution across all phenotypes (S6A Fig and S7A Fig)

• s2ED taking values {0,10,20,30,40,50} with all other parameters set to their average estimated

contribution across all phenotypes (S6A Fig and S7A Fig)

• s2ES taking values {0,10,20,30,40,50} with all other parameters set to their average estimated

contribution across all phenotypes (S6A Fig and S7A Fig)

• rEDS taking values {-0.8,-0.4,-0.2,0.2,0.4,0.8} with all other parameters set to their average

estimated contribution across all phenotypes (S6A Fig and S7A Fig)

• s2C taking values {0,10,20,30,40,50} with all other parameters set to their average estimated

contribution across all phenotypes (S6A Fig and S7A Fig)

500 simulations were drawn for each combination of parameters.

Statistical significance tests. Statistical significance was assessed using restricted likeli-

hood ratio tests, comparing the full model in Eq (3) to a null model without the SGE term.

Because both SGE and the covariance between DGE and SGE are constrained to zero in the

null model, we calculated significance by comparing the log likelihood ratio statistics to the χ2

distribution with 2 degrees of freedom, which is conservative. Q values[58] were used for mul-

tiple testing correction, and obtained using the R package qvalue [59].

Accession numbers

Gene expression data from the experiment with inbred strains are available from ArrayExpress

E-MTAB-5276. Phenotype data for the same experiment are provided as S7 Table.

Supporting Information

S1 Note. Differences between our models and those published in the field of animal breed-

ing.

(DOCX)

S1 Fig. Experimental design and analysis approach (experiment with inbred strains). (A)

When jointly analyzing B6 and D2 focal mice (for S2 Fig and columns “all mice” of S2 Table),

DGE, SGE and their interaction can be detected. All other results were obtained by consider-

ing B6 focal mice (B) and D2 focal mice (C) separately. The only genetic parameter then is the
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strain of the cage mate. Environmental effects are not shown.

(TIF)

S2 Fig. Evidence for interactions between DGE and SGE in the experiment with inbred

strains. The contribution to phenotypic variance of DGE, SGE, and their interaction is shown.

All organismal phenotypes are shown (see S1 Table for a description of each measure). They

are plotted in order of decreasing contribution of the interaction component. Blue stars indi-

cate phenotypes for which a model with interaction was selected based on the Akaike informa-

tion criterion (AIC).

(TIF)

S3 Fig. Consistent direction of social genetic effects across the anxiety phenotypes that are

significantly affected by SGE in D2 focal mice (experiment with inbred strains). Box plots

for the six anxiety-related phenotypes that are significantly affected by SGE in D2 mice

(P< 0.05, see Table 1). The raw data are shown, for all four types of cages (B6 focal mice with

B6 cage mate (BB), B6 focal mice with D2 cage mate (BD), D2 focal mice with B6 cage mate

(DB), and D2 focal mice with D2 cage mate (DD).
� The sign of the correlation between anxiety and time spent not moving in the center of the

activity chamber in the first minute of the test in unclear: greater time spent in the center of

the apparatus usually indicates lower anxiety levels, but the measure may reflect the mouse

freezing where it was dropped off in the apparatus–which would be a sign of high anxiety.

(EPS)

S4 Fig. Group sizes in the outbred mice dataset.

(EPS)

S5 Fig. Consistent results using genomic and inferred relationship coefficients (outbred

mice dataset). Comparison of the contribution of DGE (A) and SGE (B) to organismal pheno-

types, estimated either using genotype and pedigree data (see Methods; all mice included, x

axis) or genotype data only (subset of mice that were in fully genotyped cages, y axis).

(EPS)

S6 Fig. Need to account for SGE to obtain unbiased DGE estimates in the outbred mice

dataset. DGE estimates were evaluated using simulated phenotypes: the difference between

estimated and simulated DGE is shown on the y-axis. Each boxplot summarizes the results

from 500 simulations, and the whiskers extend to the 1st and 9th deciles of the distribution. (A)

Phenotypes simulated with varying levels DGE, SGE, correlation between DGE and SGE,

DEE, SEE, correlation between DEE and SEE, and cage effects (top to bottom panels). (B) Phe-

notypes simulated based on the estimated contributions of all parameters averaged over all

organismal phenotypes. (C) Phenotypes simulated based on the estimated contributions of all

parameters averaged over the six organismal phenotypes with strongest SGE. The boxplots in

blue correspond to results from the full model with DGE, SGE SEE and cage effects, those in

green correspond to the model with DGE and cage effects only, and those in red correspond to

the model with DGE only.

(EPS)

S7 Fig. Unbiased SGE estimates in the outbred mice dataset. SGE estimates were evaluated

using simulated phenotypes: the difference between estimated and simulated SGE is shown on

the y-axis. Each boxplot summarizes the results from 500 simulations, and the whiskers extend

to the 1st and 9th deciles of the distribution. (A) Phenotypes simulated with varying levels

DGE, SGE, correlation between DGE and SGE, DEE, SEE, correlation between DEE and SEE,

and cage effects (top to bottom panels). (B) Phenotypes simulated based on the estimated
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contributions of all parameters averaged over all organismal phenotypes. (C) Phenotypes sim-

ulated based on the estimated contributions of all parameters averaged over the six organismal

phenotypes with strongest SGE. Estimates were obtained from the full model with DGE, SGE,

and cage effects.

(EPS)

S8 Fig. Above-average relatedness of cage mates compared to non-cage mates in the out-

bred dataset.

(EPS)

S9 Fig. Identification of outlier gene expression profiles using principal component analy-

sis in the experiment with inbred strains. (A) Variance explained by the principal compo-

nents. (B) Scatterplot of the first and second principal components. Samples that were

excluded from all analyses (outliers) are highlighted.

(EPS)

S10 Fig. Improved quantification of gene expression in the hippocampus following re-pro-

cessing of the data (outbred mice dataset). The quality of the quantification is evaluated

based on the correlation between probes that target the same gene (orange line) and probes

that target different genes (blue line). The empirical cumulative function of these correlations

is shown, so a smaller area under the curve is indicative of greater correlations.

(A) Raw data from Huang et al.26: expression values from pairs of probes that map to the same

gene are more highly correlated than expression values from pairs of probes that map to differ-

ent genes.

(B) Pre-processed data from Huang et al.26: same-gene probes are only as correlated as pairs of

probes mapping to different genes, suggesting a loss of biological signal.

(C) Data pre-processed by us: same-gene probes are more highly correlated than different-

gene probes, suggesting biological signal is retained.

(EPS)

S11 Fig. Independency of residual variability on group size (outbred mice dataset). The

residuals from a model with covariates fitted as fixed effects only (y axis) were plotted as a

function of group size (x axis). Only the six organismal phenotypes with strongest SGE are

shown.

(EPS)

S12 Fig. Consistent results using mice in cages of 4,5 or 6 mice only (outbred mice dataset).

Comparison of the contribution of DGE (A) and SGE (B) to organimal phenotypes, estimated

either using all mice (x axis) or only those mice that were in groups of size 4, 5 or 6 (y axis).

(EPS)

S1 Table. Organismal phenotypes collected in the experiment with inbred strains.

(XLS)

S2 Table. SGE significance and effect sizes for all organismal phenotypes measured in the

experiment with inbred strains.

(XLSX)

S3 Table. SGE significance for non-residualized organismal phenotypes measured in the

experiment with inbred strains.

(XLSX)
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S4 Table. SGE significance and effect sizes for all genes expressed in the prefrontal cortex

(experiment with inbred strains).

(XLS)

S5 Table. Description of all organismal phenotypes in the outbred mice dataset, and signif-

icance and effect sizes of SGE.

(XLSX)

S6 Table. SGE significance and effect sizes for all genes expressed in the hippocampus (out-

bred mice dataset).

(XLSX)

S7 Table. Raw phenotype data collected on inbred strains.

(XLS)
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