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Synopsis.  Selection depletes additive genetic variation underlying traits important in
fitness. Intense mating competition and female choice may result in negligible heritability
in males. Females often appear to choose mates, however, suggesting genetic variation in
males which is important to females. Evidence is reviewed on allelic substitutions, karyo-
typic variation, and especially the heritable variation of continuous traits involved in sexual
behavior and reproduction. Phenotypic variation in male mating speed and courtship
intensity, female mating and oviposition behavior, egg size and number, body size, par-
thenogenesis, and the sex ratio generally have heritable variation. The maintenance of
genetic variation, and the meaning of heritability estimates for natural populations is

considered.

INTRODUCTION

Some biologists have proposed that most
traits affecting fitness are characterized by
negligible genetic variation. In many cases,
however, these predictions do not agree
with results from direct measurements of
genetic variation. I here review the rela-
tionship between genetic variation and
selection with special reference to intra-
specific variation in traits important in sex-
ual behavior and reproduction. I consider
the techniques used to measure heritable
variation, the empirical results from
selected examples of genetic variation
underlying reproductive traits, the mean-
ing and consequences of genetic variation,
and the maintenance of genetic variation
in natural populations. Heritability of traits
of possible importance in fitness is an
extensive subject. Grant and Price (1981)
reviewed genetic variation underlying eco-
logically important traits, and Istock (1978,
1981) considered the heritability of insect
development (see also Dingle and Heg-
mann, 1982).

SELECTION AND GENETIC VARIATION

The rate of fitness increase in a popu-
lation is proportional to the additive genetic
variance for fitness (Fisher, 1958). Natural
selection increases the frequency of alleles

! From the Symposium on Alternative Reproductive
Tactics presented at the Annual Meeting of the Amer-
ican Society of Zoologists, 27-30 December 1982, at
Louisville, Kentucky.

advantageous to reproduction and sur-
vival, simultaneously depleting the under-
lying additive genetic variance. Population
genetic models predict a reduction in addi-
tive genetic variance in response to selec-
tion, and that the intensity of selection and
rate of depletion are correlated (Fisher,
1958; Turner, 1969; Crow and Kimura,
1970). Models of reduced additive varia-
tion under selection have underlying
assumptions, but traits most important in
reproduction and survival should have a
lower amount of genetic variation than less
important traits (Falconer, 1960; Futuyma,

1979).

The paradox of female choice

Williams (1975), Howard (1978), May-
nard Smith (1978), Harpending (1979), and
Thornhill (1980a) predicted that female
mating preferences would deplete genetic
variation underlying traits important to
male reproduction and survival. If so,
female discrimination of mates will not
result in further genetic advantages com-
pared to females who mate at random.
West-Eberhard (1979) also proposed that
genetic models of female choice required
unrealistic levels of heritable variation in
males, and that competition for any lim-
iting resource such as mates, oviposition or
nesting sites, food, and shelter would
largely involve non-heritable traits. Females
of many species appear to choose mates
from an array of males, however, suggest-
ing that males differ in the heritability of
traits important to females. Unless males
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provide resources to females, female choice
is paradoxical if predictions regarding neg-
ligible heritable variation are correct (Bor-
gia, 1979).

Alternative reproductive modes and
genetic variation

Reduced genetic variation has important
implications for alternative reproductive
behavior. Variations in male behavior often
involve signaling to attract and stimulate
females, or silently intercepting females
attracted to signaling males (Howard, 1978;
Cade, 1979; and references in this vol-
ume). If female choice and male-male com-
petition reduce heritable variation in male
traits to negligible levels, then intraspecific
variation in sexual behavior should not
reflect additive genetic variation.

Males often change their signaling
behavior in response to conditions such as
density, aggression, and individual age. To
some, flexibility in behavior and genetic
variation are antithetical: “‘selection under
strong local intraspecific competition
should favor a facultative (rather than
genetic) switch,” since individuals able to
change their behavior maximize fitness
under various conditions (West-Eberhard,
1979; see also Rubenstein, 1980; Thorn-
hill, 1980a; and Waltz, 1982). Facultative
alternatives and underlying genetic varia-
tion are not mutually exclusive possibili-
ties, however, and individuals may differ
in the tendency to change behavior under
different conditions. Cade (1980), Dawkins
(1980), and Dominey (1984) discussed
facultative alternatives in terms of evolu-
tionarily stable strategies.

GENETIC VARIATION AND
ReprODUCTIVE TRAITS

Genetic variation associated with traits
important in reproduction may be detected
as allelic differences at one or many loci,
and inversions and other variations in
chromosome structure. In this section I first
discuss the experimental techniques used
to study heritable variation, and review
examples from vertebrates and inverte-
brates on the heritability of behavioral and
morphological traits associated with sexual
behavior and reproduction. I then con-

sider the meaning of heritability estimates
for natural populations, and the mecha-
nisms maintaining additive genetic varia-
tion.

Heritability and continuous variation

Most traits important in fitness are con-
tinuously distributed and are probably
under the influence of many loci (Falconer,
1960; Crow and Kimura, 1970). Some
examples of continuously distributed traits
of potential importance in reproductive and
sexual behavior include size, weight, color,
duration or intensity of signaling, and
number of gametes produced. Heritability
is a measure important in the context of
continuous traits, but it is often misunder-
stood with respect to measurement or
interpretation. Analysis of variance tech-
niques allow environmental and additive
genetic variation underlying a trait to be
identified. Heritability in the **broad sense”
is the proportion of phenotypic variance
due to genetic variation. That proportion
of variation due to additive genes is termed
“heritability in the narrow sense,” and may
be determined by crosses of inbred strains
(diallel crosses), and analysis of variance on
measurements between different types of
relatives. The upper limit of heritability
can be estimated by repeated measure-
ments of the same trait in the same indi-
viduals (repeatability). ““‘Realized heritabil-
ity”” is the proportion of phenotypic
variance due to additive loci as determined
by response to artificial selection to change
phenotypic means. Heritability may range
from 0 to the theoretical maximum of 1,
although estimated values sometimes
exceed 1. All heritability measurements
incorporate statistical tests of significance,
and rely on assumptions which limit
interpretive value (Falconer, 1960). These
aspects of heritability are considered more
fully later.

Sexual vigor, courtship, and
mating propensity

Vigor is the strength, intensity, and rate
of performance of a behavioral pattern. In
a sexual context vigor may be character-
ized as frequency of courtship, mating, and
associated activities. Vigor is often involved
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in successful competition, and is sometimes
proposed to have negligible heritable vari-
ation (West-Eberhard, 1979; Thornhill,
1980qa). Karyotype data, single allele sub-
stitutions, and studies of quantitative traits,
however, indicate genetic variation is often
correlated with variation in sexual vigor.

Substitution of alleles at a single locus
may cause Drosophila males to depart from
the normal mating sequence in various
ways. The ‘‘cacophony’’ mutation, for
example, causes males to change the nor-
mally species-specific rate of wing vibration
during courtship (Schilcher, 1977). Other
mutations result in increased courtship of
males, inability to mount or dismount
females, and reduced duration of copula-
tion (reviewed by Hall, 1981). Single allele
changes also affect female receptivity in
mosquitos, Aedes atropalpus, where affected
individuals mate at an early age (Gwadz,
1970).

Mating speed is probably the most
important factor affecting male fitness in
Drosophila (reviewed by Parsons, 1974).
Rapidly mating males mate more fre-
quently and leave more offspring than
slowly mating males (Prakash, 1967). Male
mating speed is correlated with inversions
of the third chromosome in D. pseudoob-
scura (Speiss and Langer, 1964), and Dob-
zhansky (1943, 1958) demonstrated that
inversion frequencies varied seasonally for
over 20 yr, suggesting selection was taking
place. Anderson et al. (1979) compared the
frequency of male third chromosome
inversions in D. pseudoobscura with that of
offspring from females inseminated in the
field. There were significant differences
between male and offspring karyotypic fre-
quencies, indicating differential male mat-
ing success. Karyotypes varied between
localities and months, with a change of 20—
30% in some combinations annually. The
rarest karyotypes persisted in sample pop-
ulations, suggesting genetic variation was
maintained under selection.

Heritability studies show that additive
genetic variation is associated with Dro-
sophila mating speed. Diallel crosses dem-
onstrated a heritability of 0.3-0.6 for mat-
ing speed (Parsons, 1964), and Manning
(1961) showed a realized heritability of 0.3

in selection experiments lasting 25 gen-
erations in D. melanogaster. Flies from the
fast line mated in 3 min on average, whereas
80 min was the mean mating time for the
slow line. Females from the fast line were
more receptive to male courtship than
females from the slow line. Males from the
fast line courted females more often than
slowly mating males. Reduced mating speed
may also be produced by artificial selection
on only one sex or the other in D. melan-
ogaster and D. simulans (Manning, 1963,
1968).

Selection on duration of male courtship
behavior in Drosophila (rather than mating
speed) has resulted in lines with males which
vibrate and scissor their wings differing
amounts (McDonald, 1979; Wood and
Ringo, 1982). Artificial selection has also
changed Drosophila female receptivity to
particular male phenotypes (Dow, 1976),
and the latent period of female receptivity
(Pyle and Gromko, 1981). Drosophila mat-
ing speed is affected by artificial selection
on non-reproductive traits such as geotaxis
(Pyle, 1978), and genetic strains differ in
their sensitivity to the same environmental
factor (Ikeda, 1976). Speiss (1970) reviewed
the genetic basis of mating propensity in
Drosophila.

Field cricket males, Gryllus integer (this
species is under taxonomic revision), call
and attract mates or silently intercept
females near calling males. Duration of
individual calling is continuously distrib-
uted, and population density, male-male
aggression, and time of night affect indi-
vidual calling time (Cade, 1979). Labora-
tory experiments demonstrated realized
heritability of approximately 50% for the
duration of nightly calling (Cade, 1981).
Also, laboratory lines of males differed sig-
nificantly in nightly calling duration in the
selected directions under field conditions
(Cade, unpublished data).

Male mating speed has a significant her-
itability in chickens and quail (Siegel, 1972;
Cunningham and Siegel, 1978). Diallel
crosses show heritabilities of 0.1-0.2 for
the time from one mating until the nextin
lab mice, and for the time from intromis-
sion to ejaculation (McGill, 1970). General
activity, aggressive behavior, and other
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aspects of vigor have heritable variation in
mice (Scott, 1966; DeFries and Hegmann,
1970; Southwick, 1970), and some of these
traits may be involved in sexual selection.

Morphological variation

Body size is often involved in mating
competition. Large male bees, Centris pal-
lida, patrol female emergence sites, while
small males hover nearby. Patrolling males
mate more often than hoverers (Alcock,
1979). Large male spiders, Nephila clavipes,
mate near the hub of a female's web,
whereas small males occur on the periph-
ery and seldom mate (Christenson and
Goist, 1979). Male size or weight correlates
with mating success in other bees and wasps
(Alcock, 1981; Severinghaus et al., 1981),
flies (Thornhill, 19804; Borgia, 1981,
1982), and beetles (McLain, 1981; John-
son, 1982). Heritability of size is not known
in these species. It is sometimes asserted
that body size does not show heritable vari-
ation (West-Eberhard, 1979; Thornhill,
1980a), but studies on various animals
demonstrate additive genetic variation is
often associated with body size.

Large male Drosophila outcompete and
mate more often than smaller males (Ewing,
1961). Realized heritabilities for wing
length, thorax length, and the ratio of wing
to thorax length in D. melanogaster are 0.4—
0.5 (Reeve and Robertson, 1953; Latter
and Robertson, 1962; Robertson, 1962).
Body size has a realized heritability of 0.3
0.4 (Robertson 1957, 1960). Develop-
mental rate, a parameter related to body
size, has a realized heritability of 0.1-0.2
in Drosophila (Sang and Clayton, 1957;
Sang, 1962; Prout, 1962).

Heritability of body size or weight has
not been studied in other species where
this trait is of known importance in sexual
competition. Parent-offspring compari-
sons of body size in field populations of
some species do exist, however. Boag and
Grant (1978) found heritabilities in Dar-
win’s finches, Geospiza fortis, of 0.5-1.0 for
adult body weight, and wing, tarsal and bill
measurements. Beak and tarsal lengths in
song sparrows, Melospiza melodia, have her-
itabilities of 0.3-0.6 (Smith and Zach,

1979), and body weight at 75 days of age
in Red Grouse, Lagopus lagopus, has a her-
itability of 0.6 (Moss and Watson, 1982).

Laboratory experiments also show addi-
tive genetic variation underlying animal
body size. Flour beetles, Tribolium casta-
neum, have realized heritabilities of 0.2—
0.7 for pupal weight, and 0.4-1.0 for larval
and adult weight (Enfield, 1977; Bell and
Burris, 1973; Kaufman et al., 1977). Devel-
opmental rates have a realized heritability
of 0.2-0.4 in Tribolium (Bell and Burris,
1973). True bugs, Dysdercus bimaculatus,
have a heritability of 0.5 for body size in
parent-offspring comparisons (Deer, 1980).
Size also has a realized heritability of 0.1-
0.2 in mice (MacArthur, 1949; Rahnefeld
et al., 1963).

Intraspecific variation important in male
mating success sometimes involves color-
ation. In some Canadian populations of
three-spined sticklebacks, Gasterosteus acu-
leatus, male throats range in color from
dull to bright red. Females prefer brightly
colored males (Semler, 1971), but red males
are more susceptible to trout predation
(Moodie, 1972). Intermediate coloration
was produced in crosses between pheno-
types, thus suggesting underlying additive
genetic variation for male coloration
involved in sexual selection (McPhail,
1969).

Substitution of single alleles results in
morphological differences in Drosophila.
Variations in color, texture, and eye shape
result from allelic substitution. Ehrman
(1978) reviewed the effects of morpholog-
ical variation on male courtship behavior
and mating success in Drosophila.

Egg production, nesting, and oviposition

Egg size affects survival to fledging in
some birds (Schifferli, 1973; Davis, 1975;
Lundberg and Vaisanen, 1979). Survival
of Red Grouse chicks, Lagopus lagopus, cor-
relates with egg size, but is largely inde-
pendent of known environmental variation
(Moss et al., 1981). Repeatability measure-
ments and regressions on measurements
between relatives demonstrate a heritabil-
ity of 0.6-1.2 for egg size in field popula-
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tions of Red Grouse (Moss and Watson,
1982). Significant heritability of egg size
has also been shown in Great Tits, Parus
major (van Noordwijk et al., 19815b).

Clutch size results from a complex inter-
action of environmental and ontogenetic
factors (Klomp, 1970), and models of clutch
size evolution assume heritable variation
(Lack, 1968). A 20 yr study of Great Tits,
P. major, shows that the number of fledg-
lings generally increases with clutch size,
suggesting selection on egg number. Her-
itability estimates from repeatability mea-
surements and regressions on mother-
daughter-grandmother clutch sizes are
approximately 0.4 (van Noordwijk, 1981a).
Heritability for clutch size in other Great
Tit populations is 0.4-0.5 (Perrins and
Jones, 1975). Additive genetic variation is
also associated with the rate of egg pro-
duction in domestic fowl (King and Hen-
derson, 1954; Nordskog et al., 1967).

Hatching synchrony relative to other
birds in a colony affects individual fitness,
and is a function of egg laying date. Lesser
Snow Goose chicks, Anser caerulescens, have
maximum survival rates if they hatch at the
mean date for the population. Chicks
hatching a few days before or after the
mean date have significantly lower survi-
vorship. Female geese breed at natal sites,
and repeated measurements of 3,000 indi-
viduals over 6 years gave estimates of 0.4-
0.5 for relative hatch date heritability
(Cooke and Findlay, 1982; Findlay and
Cooke, 1982a, b).

Types of nests or oviposition sites might
often affect fitness. Nest size, for example,
is important in thermoregulation in house
mice, Mus musculus (Lynch and Possidente,
1978). Dialle! crosses and selection exper-
iments demonstrated heritabilities from
non-significant levels to 0.3 for the amount
of material incorporated into nests by M.
musculus females (Lynch and Hegmann,
1972; Lee, 1973; Lynch, 1980). Differ-
ences in the type of surface preferred by
ovipositing D. melanogaster (Takamura and
Fuyama, 1980), and in the tendency for D.
pseudoobscura to oviposit gregariously have
underlying additive genetic variation (Del
Solar, 1968).

Sex ratio and parthenogenesis

Models of sex ratio evolution assume
some genetic influence (Bulmer and Bull,
1982). Sex ratio in Drosophila is affected by
X chromosome inversions. Male D. pseu-
doobscura with the sex ratio trait produce
mostly female offspring. The sex ratio trait
shows latitudinal and seasonal fluctuations,
and has persisted in field populations for
over 20 yr (Dobzhansky, 1943, 1958;
Bryant et al., 1982). Falconer (1954)
reviewed evidence for additive variation in
the sex ratio of mice and Drosophila, includ-
ing cases where heritabilities were non-sig-
nificant.

Parthenogenetic individuals frequently
occur in otherwise sexual populations of
Drosophila and other insects, a condition
known as tachoparthenogenesis. Parthe-
nogenetic individuals are more common in
field populations than in the lab, undergo
meiosis and fusion of ootids to form diploid
eggs, and are probably important in the
evolution of parthenogenesis (Templeton,
1982). Experiments have increased the
number of parthenogenetic females in
selected lines of D. mercatorum, suggesting
there is additive genetic variation under-
lying parthenogenetic reproduction (Car-
son, 1967).

There is also additive genetic variation
for the sex ratio in fish (Kosswig, 1964),
and in species with environmental sex
determination. In Map turtles, Graptemys
ouachitensis, males hatch from eggs kept at
low temperatures, females at high temper-
atures, and both sexes are produced at
intermediate temperatures. Parent-off-
spring comparisons of the primary sex ratio
of eggs incubated at intermediate temper-
atures showed a heritability of 0.8 in the
laboratory (Bull et al., 1982).

Estimates of heritability and meaning

Heritability estimates do not provide
information on the fate of genetic varia-
tion, but they do test the null hypothesis
that genetic variation underlying a trait is
negligible. Studies reviewed here reject this
hypothesis for traits involved in sexual
behavior and reproduction which may be
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important in fitness. Field studies and lab-
oratory studies on animals taken from the
field demonstrate the presence of genetic
variation. Genetic variation is even present
in highly inbred laboratory strains,
although these conditions reduce genetic
differences (Shire, 1979). Traits important
in sexual and reproductive behavior
respond to artificial selection and may also
respond to sexual selection or other forms
of natural selection.

Interpretation of data on genetic varia-
tion for selection in field populations is dif-
ficult. Single allele substitutions have major
effects on male and female reproductive
behavior in laboratory populations of Dro-
sophila, but the frequency of such alleles in
natural populations is unclear. Chromo-
some data from Drosophila and other species
do not have this limitation. Karyotypes
fluctuate in frequency, affect male mating
speed, and provide evidence of differential
male mating success in the field. Karyotype
data demonstrate persistence of genetic
variation under sexual selection. Chro-
mosomal analysis provides only gross esti-
mates of genetic variation, however, and
may not be a suitable technique for many
species.

Interpretation of narrow sense and real-
ized heritability estimates is complicated by
assumptions of quantitative genetic models
and the commonly observed variation in
replicated experiments (Yoo, 1980). Phe-
notypic variation includes genetic and
environmental components. Heritability
measurements often assume that the envi-
ronment interacts with all genotypes in the
same way. Selection experiments are per-
formed under controlled conditions, but it
is unlikely that environment and genotype
interactions are constant. Also, estimates
of heritability under controlled conditions
in the laboratory may be greater than her-
itabilities determined in a fluctuating, nat-
ural environment. Effects of the environ-
ment on different genotypes can be
measured by heritability estimates under
different environmental conditions (Tho-
day, 1979: Giesel et al., 1982).

Heritability calculations generally assume
that each locus has a small additive effect,
and that the non-additive components of
dominance and epistasis are minimal.

Although additive effects are the main
source of phenotype-genotype correlation,
dominance and epistasis are also impor-
tant. Non-additive sources of variation may
change the mean effects of additive loci,
and therefore result in variable responses
to artificial selection in different lines or
replicates and lead to incorrect estimates
of heritability (Jinks, 1979; Johnson, 1979).
Other factors which may lead to variation
in estimates of heritability are genetic drift,
mutation, and natural selection within
experimental populations which oppose
artificial selection (Hill, 1971, 1977; Jinks,
1979; Mukai, 1979). Statistical techniques
are available to partition total phenotypic
variance into additive, non-additive, and
environmental components (Mather, 1949;
Lerner, 1958; Falconer, 1960; Mather and
Jinks, 1971).

Pleiotropy, or the multiple phenotypic
effects of alleles, is important in the con-
text of heritability. Little is known about
gene action in polygenic systems. Corre-
lated responses to selection are due to link-
age, but also to the multiple effects that
loci have on biochemical processes and
protein synthesis (Johnson, 1979). Poly-
genes are not specific for any character
being measured, but affect underlying
developmental processes shared by other
characters. There is, for example, exten-
sive pleiotropy between egg laying at dif-
ferent ages, rate of egg laying, and lon-
gevity in Drosophila melanogaster (Rose and
Charlesworth, 1980). Although it is con-
venient to describe selection for a partic-
ular character, selection on all phenotypic
characters associated with alleles is impor-
tant in altering genetic variation (Lande,
1979; Thompson, 1979).

Estimates of additive variation are gen-
erally valid for the particular population
and generation under study. Replicated
tests and the use of different experimental
techniques are advisable (Falconer, 1977).
Although heritability is affected by exper-
imental and genetic conditions, properly
designed experiments provide the only
estimate of additive genetic variation which
may be available for selection (Richardson
etal., 1968; Thompson and Thoday, 1979).
Such experiments demonstrate that addi-
tive genetic variation underlying sexual
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behavior and reproduction is the rule,
rather than the exception.

Maintenance of variation

The question of how genetic variation is
maintained in natural populations has
received extensive empirical and theoret-
ical attention. Genetic mechanisms and
fluctuations in the intensity and direction
of selection are involved in the mainte-
nance of additive variation. Depleted vari-
ation is usually predicted from single or
few locus models, but the rate of depletion
is inversely proportional to the number of
loci (Crow and Kimura, 1970). Allelic sub-
stitutions and independent segregation of
multiple loci result in many possible geno-
types. Additive genetic variance will be
reduced slowly in polygenic systems, and
is likely to be retained at some level unless
the population size is small and selection
intense (Crow and Kimura, 1970; Bulmer,
1971). Mutations also contribute to genetic
variance. Lande (19764, 1977) showed that
mutation rates could account for much
additive genetic variation in multiloci
regardless of the mating system, and May-
nard Smith (1978) considered mutations to
be a likely source of male genetic variation
available for female choice (but see Taylor
and Williams, 1982).

Linkage disequilibrium is the association
of alleles in gametes at different frequen-
cies than expected from random segrega-
tion. Selection may increase one allele’s
frequency, but act against other alleles in
disequilibrium (Bulmer, 1971; Futuyma,
1979). Taylor and Williams (1982) consid-
ered linkage disequilibrium to be the most
likely source of genetic variation in natural
populations, and that heritabilities in the
range of 33% could be maintained by dis-
equilibrium.

Predictions on the reduction of additive
genetic variation assume that selection
operates at some constant level. Selection
is not often constant, however, and geno-
types do not have constant fitness values
(Kojima, 1971). Intensity and direction of
selection on the total phenotype may vary
because of population density, frequency
of competing phenotypes, and temporal or
spatial variations in the environment
(Clarke, 1979). Different selective pres-

sures in variable environments are proba-
bly responsible for much genetic variation
(Beardmore, 1970; Selander and Kauf-
man, 1973; McDonald and Ayala, 1974).
Selection for particular phenotypes may
also be countered by predator or parasite
pressure on those phenotypes (Cade, 1975;
Lande, 1976b5).

Parasites might conserve genetic varia-
tion in hosts in other ways. Hamilton and
Zuk (1982) reasoned that females choose
males whose vigorous displays correlate
with absence of parasites. Resistance to
parasites shows heritable variation, and
parasite-host cycles may maintain additive
variation. Hamilton and Zuk assumed neg-
ligible heritability of male sexual traits.
Female choice based on parasite resistance
is an interesting and important possibility,
but this hypothesis is not essential to
account for additive genetic variation asso-
ciated with traits affecting male fitness.

Variation in intensity and direction is well
documented for natural selection. Some
argue, however, that sexual selection is
fundamentally different from natural
selection since male reproductive success
varies more than survivorship. For exam-
ple, very few males in a population may
reproduce due to female choice for partic-
ular traits. Male survivorship may be high,
however, if other resources are not limit-
ing. West-Eberhard (1979) proposed that
natural selection would be relaxed under
intense sexual selection. Relaxation of nat-
ural selection would thus provide the
genetic variation essential for evolution of
non-reproductive traits such as foraging
ability. This type of strict separation of sex-
ual and natural selection is without merit,
however, and ignores extensive pleio-
trophic relationships in the genome. Also,
various selective agents interact in produc-
ing the phenotype (Otte, 1979).

MAGNITUDE OF VARIATION

Both the existence and relative magni-
tude of additive genetic variation are
important considerations. There is a gen-
eral trend for traits important in fitness to
have relatively lower heritabilities than
traits without high fitness value (Falconer,
1960). Important exceptions exist to any
correlation between heritability and fitness
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value of a trait, however, and many com-
parisons rely on data from inbred strains.
Comparisons of heritabilities are also com-
plicated by experimental and genetic fac-
tors discussed previously.

If heritability is negligible, then male-
male competition and female mate choice
will not change gene frequency over time.
But additive genetic variation as judged by
the best techniques available is almost
always non-zero. Even in traits with low but
statistically significantly heritabilities, arti-
ficial selection usually alters phenotypic
means. Additive genetic variation under-
lying reproductive traits is probably gen-
erally available for selection through male-
male competition, a well documented mode
of sexual selection.

Female ability to mate with males who
pass on beneficial additive loci to offspring
is more difficult to assess. Since females
appear to choose mates in various species,
Maynard Smith (1978) proposed that even
very low levels of additive genetic variation
would make female choice adaptive. Tay-
lor and Williams (1982), however, sug-
gested that heritabilities in the range of 0.3
were not sufficient for evolution by female
choice. Quantitative models are not avail-
able on the degree of heritability necessary
to allow female detection, and there are
few experimental data available. In a rare
exception, D. melanogaster females which
were allowed to choose mates produced
more offspring than females who were ran-
domly assigned males. Productivity values
were repeatable and highly significant. The
two female groups differed by only about
2% (Partridge, 1980), suggesting that small
genetic gains were made by the choosing
group. Also, heritability of larval devel-
opmental rates in Drosophila is not high,
and this trait may have been involved in
Partridge’s experiments. Female Drosoph-
ila appear to be able to detect and benefit
from mate choice based on relatively low
heritabilities.

ConcLusioN

Heritable variation is often associated
with traits involved in sexual behavior and
reproduction, and many of these traits may
be important in determining fitness. Re-

liable predictions about reduction of
additive genetic variation in natural pop-
ulations cannot be based on simple quan-
titative models with unrealistic assump-
tions. Dynamic genetic models are now
becoming available, however, which incor-
porate age-structured populations, poly-
genic inheritance, and variations in selec-
tive pressures (Lande, 1980, 1981, 1982aq,
b). Data are available on heritable variation
to test genetic models, but most studies of
genetic variation are conducted indepen-
dently of field studies on behavioral and
morphological variation. Long range stud-
ies of heritable variation and selection in
field populations are needed. Claims of
negligible heritability underlying traits
important in fitness, however, ignore much
empirical evidence, as well as quantitative
treatments on the maintenance of additive
genetic variation.
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