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Genetical genomics aims at identifying

quantitative trait loci (QTLs) for molecular

traits such as gene expression or protein

levels (eQTL and pQTL, respectively). One

of the central concepts in genetical geno-

mics is the existence of hotspots [1], where a

single polymorphism leads to widespread

downstream changes in the expression of

distant genes, which are all mapping to the

same genomic locus. Several groups have

hypothesized that many genetic polymor-

phisms—e.g., in major regulators or tran-

scription factors—would lead to large and

consistent biological effects that would be

visible as eQTL hotspots.

Rather surprisingly, however, there

have been only very few verified hotspots

in published genetical genomics studies to

date. In contrast to local eQTLs, which

coincide with the position of the gene and

are presumably acting in cis—e.g., by

polymorphisms in the promoter region—

distant eQTLs have been found to be

more elusive. They seem to show smaller

effect sizes and are less consistent, perhaps

due to the indirect regulation mechanism,

resulting in lower statistical power to

detect them and, consequently, an inabil-

ity to reliably delimit hotspots [2]. While

there are typically hundreds to thousands

of strong local eQTLs per study, the

number of associated hotspots is much

lower. For example, a recent very large

association study in about 1,000 humans

did not find a single significant hotspot [3].

Other studies have reported up to about

30 hotspots, far less than the number of

significant local eQTLs (Table 1). The

molecular basis is known for less than a

handful of cases. An example is the

Arabidopsis ERECTA locus, which leads

to a drastic phenotypic change in the plant

and has broad pleiotropic effects on many

molecular (and morphological) traits [4].

Recently, Wu et al. [5] reported the

large-scale identification of hotspots. They

studied gene expression in adipose tissue of

28 inbred mouse strains and performed

eQTL analysis by genome-wide association

analysis. The paper reports the identifica-

tion of over 1,600 candidate hotspots, each

with a minimum hotspot size of 50 target

genes. Furthermore, they demonstrated that

these hotspots are biologically coherent by

showing that in about 25% of cases, the

hotspot targets are enriched for functional

gene sets derived from Gene Ontology, the

KEGG pathways database, and the Inge-

nuity Pathways Knowledge Base. These

findings suggested that genetic polymor-

phisms can indeed lead to large and

consistent biological effects that are visible

as eQTL hotspots.

However, the authors chose a relatively

permissive threshold of p = 0.003 for QTL

detection, uncorrected for multiple testing.

In total, 886,440 eQTLs were identified at

this threshold, i.e., 134 per gene. A

permutation test (C. Wu and A. I. Su,

unpublished data) shows that this results in

a false discovery rate of 64%, largely

resulting from multiple testing across

157,000 SNPs and 6,601 probe sets. This

relatively permissive threshold was chosen

because the focus of the analysis was on

patterns of eQTL hotspots and not on

individual eQTL associations. Analysis of

eQTL patterns is relatively robust to

individual false positives, and a permissive

threshold allows for relatively greater

sensitivity in detecting signal [6]. The

authors observed an enrichment of specific

biological functions among the genes in

the reported hotspots. The study also

reported that enriched categories tended

to match the annotation of candidate

regulators. Moreover, one predicted regu-

lator was experimentally validated. In

sum, these data seem to support the

hypothesis that hotspots are downstream

of a common master regulator linked to

the eQTL.

However, we suggest here that these

observations may also be explained by

clusters of genes with highly correlated

expression. If one gene shows a spurious

eQTL, many correlated genes will show

the same spurious eQTL, in particular if

the false discovery rate for individual

eQTLs is very high [2,7–9]. There are

many nongenetic mechanisms that can

create strongly correlated clusters of func-

tionally related genes. On the one hand,

such clusters may be a result of a

concerted response to some uncontrolled

environmental factor. On the other hand,

dissected tissue samples can contain slight-

ly varying fractions of individual cell types,

leading to cell-type–specific gene clusters,

which vary in a correlated manner. The

resulting correlation patterns represent

potentially confounding effects, both for

the correct determination of a significance

threshold and for the biological interpre-

tation of the resulting hotspots.

Consequently, a key consideration in

eQTL analysis is in the effective design of

a permutation strategy to assess statistical

significance. The approach used in [5]

permuted the observed eQTLs among

genes (Figure 1B). However, this approach

has the disadvantage of ignoring the

expression correlation between genes so

that their spurious eQTLs no longer

cluster along the genome. This permuta-

tion strategy leads to a potentially severe

underestimate of the null distribution of

the size of hotspots, when there are

correlated clusters as described above.

An alternative strategy would have been

to permute the strain labels as shown in

Figure 1A, maintaining the correlation of

the expression traits while destroying any
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genetic association [2,10]. As discussed

above, it is expected that this would result

in a more realistic significance threshold

and a much smaller number of significant

hotspots. Reanalysis of the data from [5]

confirmed this idea: when permuting the

strain labels (i.e., randomly swapping the

genotypes between animals), the average

maximum size of hotspots in the permuted

data increases from less than 50 to 986.

Consequently, even the largest hotspot in

the real data only has a multiple testing

corrected p-value of 0.23. This reanalysis

demonstrates that expression correlation

can indeed explain a large part of the co-

mapping between genes. Such effects may

also underlie some of the higher numbers

of hotspots reported by some earlier

studies (Table 1), especially where no

appropriate permutation tests were ap-

plied to determine the statistical signifi-

cance of hotspots [2].

Of course, this does not imply that all

hotspots are necessarily false positives. As

described above, about 5% of the co-

mapping clusters in [5] are not only

functionally coherent but also map to a

locus that contains a gene of the same

functional class. This number is not statis-

tically significant, but it is still suggestive of

an enrichment of functional associations

(p,0.16, false discovery rate = 67%; C. Wu

and A. I. Su, unpublished data). Some of

these prioritized hotspots could correspond

to true hotspots, and indeed one of them has

been verified experimentally: cyclin H was

validated as a new upstream regulator of

cellular oxidative phosphorylation, as well

as a transcriptional regulator of genes

composing a hotspot [5].

Other studies, which used much stricter

thresholds for defining their hotspots, also

demonstrated the potential of interpreting

putative hotspots by a closer study of the

associated genetic locus [11,12]. An ex-

ample is the recent work of Zhu et al. [12]:

by combining eQTL information, tran-

scription factor binding sites, and protein–

protein interaction data in a Bayesian

network approach, they were able to

predict causal regulators for nine out of

the 13 hotspots (69%) originally reported

in [13]. With integrated methods like

these, it should be possible to identify

those hotspots that are more than just

clusters of co-expressed genes. As a result,

the number of identified, functionally

relevant hotspots could ultimately increase

beyond the small numbers reported in

Table 1. This would create new opportu-

nities for gene regulatory network recon-

struction.

In any case, for the time being it seems

that distant eQTLs and their hotspots are

still scarce and hard to find, and that those

that are reported should be interpreted

Table 1. eQTL Hotspots Reported in Selected Genetical Genomics Studies.

Paper Organism
Population
Size

Number of
Local eQTLs

Number of
Distant eQTLs

Threshold
for eQTLs

Number of
Hotspots

Brem et al., Science, 2002 [23] yeast 40 185 385 p,561025 8

Yvert et al., Nat Genet, 2003 [13] yeast 86 578 1,716 p,3.461025 13

Schadt et al., Nature, 2003 [1] mouse 111 1,022 1,985 LOD.4.3 7

Kirst et al., Plant Physiol, 2004 [24] eucalyptus 91 1 8 experiment-wise
a= 0.10

2

Monks et al., AJHG, 2004 [25] human 15 CEPH families (167) 13 20 p,561025 0

Morley et al., Nature, 2004 [26] human 14 CEPH families 29 118 p,4.361027 2

Cheung et al., Nature, 2005 [27] human 57 65 0 p,0.001 0

Stranger et al., PLoS Genet, 2005 [28] human 60 10–40 3 corrected p-
value = 0.05

0

Chesler et al., Nat Genet, 2005 [29] mouse 35 83 5 FDR = 0.05 7

Bystrykh et al., Nat Genet, 2005 [30] mouse 30 478 136 genome-wide
p,0.005

‘‘multiple’’

Hubner et al., Nat Genet, 2005 [31] rat 259 622 1,211 p,0.05 2

Mehrabian et al., Nat Genet, 2005 [32] mouse 111 20,107 total 20,107 total LOD.2 1

DeCook et al., Genetics, 2006 [33] Arabidopsis 30 3,525 total 3,525 total FDR = 2.3% 5

Lan et al., PLoS Genet, 2006 [34] mouse 60 723 5,293 LOD.3.4 15

Wang et al., PLoS Genet, 2006 [35] mouse 312 2,118 4,556 p,561025 7

Li et al., PLoS Genet, 2006 [36] C. elegans 80 414 308 p,0.001;
FDR = 0.04

1

Keurentjes et al., PNAS, 2007 [4] Arabidopsis 160 1,875 1,958 FDR = 0.05 ,29

McClurg et al., Genetics, 2007 [37] mouse 32 N.A. N.A. N.A. 25

Emilsson et al., Nature, 2008 [3] human 470 1,970 52 FDR = 0.05 0

Schadt et al., PLoS Biol, 2008 [38] human 427 3,210 242 p,1.6610212 23

Ghazalpour et al., PLoS Genet, 2008 [39] mouse 110 471 701 FDR = 0.1 4

Wu et al., PLoS Genet, 2008 [5] mouse 28 600 885,840 (C. Wu and A. I.
Su, unpublished data)

p,0.003 1,659

The numbers are based on the statistical procedure and threshold used in the original publication, which can vary widely between papers. Where results based on
multiple thresholds were reported, we included the most conservative one in the table.
N.A., not reported in the original paper. FDR, false discovery rate.
doi:10.1371/journal.pgen.1000232.t001
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with caution. This rarity of convincing

hotspots in genetical genomics studies is

intriguing. It could be due to the limited

power of the initial studies, but it could

also have a more profound reason. For

example, it might well be that biological

systems are so robust against subtle genetic

perturbations that the majority of heritable

gene expression variation is effectively

‘‘buffered’’ and does not lead to down-

stream effects on other genes, protein,

metabolites, or phenotypes [14–17]. Ex-

perimental evidence for phenotypic buff-

ering of protein coding polymorphisms is

well established [18,19].

In fact, it has been shown that pheno-

typic buffering is a general property of

complex gene-regulatory networks [20].

Also, if small heritable changes in tran-

script levels were transmitted unbuffered

throughout the system, there would be a

grave danger that genetic recombination

would lead to unhealthy combinations of

alleles and, consequently, to systems fail-

ure. Hotspots with large pleiotropic effects

are thus more likely to be removed by

purifying selection. If, as thus expected,

common alleles are predominantly buff-

ered by the robust properties of the system

and hence largely inconsequential for the

rest of the molecules in the system, this will

have profound consequences for the

design and interpretation of genetical

genomics studies of complex diseases.

Most importantly, it could turn out that

even so-called common diseases—like

diabetes, asthma, or rheumatoid arthri-

tis—are not necessarily the result of

common, small-effect variants in a large

number of genes, but are rather caused by

changes at a few crucial fragile points of

the system (hotspots), which cause large,

system-wide disturbances [21,22]. Future

studies in genetical genomics should aim at

further elucidating the striking rarity of

eQTL hotspots.
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