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Abstract

Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a
challenge. In the present work, different approaches were combined taking advantage of the particular genetic
structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria
brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine
pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on
fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding
programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility,
proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis
coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by
half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance
near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of
this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-
toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.
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Introduction

Alternaria brown spot (ABS) is a serious disease that
induces necrotic lesions on fruit and young leaves, defoliation
and fruit drop in susceptible citrus genotypes [1]. The disease
was first observed in Australia in 1903 on the 'Emperor'
mandarin [2], and was subsequently detected in citrus-growing
regions in America, the Mediterranean Basin, South Africa, Iran
and China [3-5]. In Spain, the disease was first detected in
1998 [6], and it is currently widespread in all citrus-growing
areas, affecting mainly 'Fortune' and 'Nova' mandarin hybrids.
The disease is caused by the tangerine pathotype of the
fungus Alternaria alternata (Fr.) Keissl, which carries a gene
cluster (ACTT) located in a small (<2.0 Mb) conditionally
dispensable chromosome responsible for ACT-toxin

biosynthesis [7]. This host-specific toxin is released during the
germination of conidia, rapidly affecting the plasma membrane
integrity of susceptible host cells [8]. There is also indirect
evidence suggesting the presence of toxin receptors in
susceptible citrus genotypes [9]. In addition, recent studies
indicate that the mitigation of reactive oxygen species (ROS)
produced by the host plants is essential for pathogenicity [10].
The pathogen sporulates on affected tissues, and conidia are
disseminated by air currents and rain splash. Warm
temperatures and prolonged wetness on the tree are required
for infection. The incubation period is very short, and lesions
are visible just 1 or 2 days after infection is initiated, due to the
rapid effects of the ACT-toxin [11]. The disease causes severe
epidemics in humid areas, as well as in semi-arid regions, due
to its environmental flexibility [4]. Currently, ABS control is
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primarily based on the application of fungicides. Sprays must
be scheduled to protect susceptible organs during the critical
periods for infection. Depending on the climate of the region
and the susceptibility of the cultivar, between four and ten
fungicide sprays per year are needed to produce quality fruit for
the fresh market [12-14].

Despite this large number of sprays, disease control is not
always satisfactory, and cultivation of susceptible cultivars such
as the 'Fortune' mandarin has declined significantly in Spain
during recent years. In addition, systematic application of
fungicides for ABS control over many years may create
environmental problems and public health concerns [15].
Moreover, in the context of the changing global climate, plant
breeding is especially focused on improving resistance to biotic
and abiotic stresses.

Several studies have been carried out to determine the
resistance or susceptibility to ABS in citrus genotypes [16-21].
Although there are some discrepancies among the results of
these studies, resistance is clearly present in ‘clementine’
(Citrus clementina Hort. ex Tan), ‘Willowleaf’ (C. deliciosa Ten)
and ‘satsuma’ (C. unshiu Mark) mandarins. Susceptibility has
also been well established for ‘Dancy’ (C. tangerina Hort. ex
Tan) and ‘Fortune’ (supposed C. clementina Hort. ex Tan × C.
tangerina Hort. ex Tan) mandarins; ‘Orlando’, ‘Minneola’ and
‘Nova’ tangelos (mandarin × grapefruit hybrids); and the
‘Murcott’ tangor (supposed mandarin × sweet-orange hybrid).
Other cultivars such as the ‘Ellendale’ tangor and some sweet
oranges and grapefruits have been characterised as sensitive
or resistant by different authors. From diploid progeny analysis,
it has been proposed that inheritance of ABS resistance in
citrus is controlled by a single recessive allele [19,22].
Resistance to the strawberry and pear Alternaria pathotypes,
which produce toxins structurally analogous to those of the
tangerine pathotype, as well as resistance to the apple
pathotype, is controlled in the same way, by a single recessive
allele [9]. Therefore, resistant cultivars are considered to be
recessive homozygous for this locus, whereas susceptible
cultivars could be heterozygous or homozygous dominant.

Diploidy is the general rule in Citrus and related genera;
however, polyploidy manipulation is currently widely used in
triploid citrus breeding programs aimed at developing new
seedless mandarin cultivars [23]. Many of these breeding
programs [24-33] use ABS-susceptible cultivars as parents,
due to their utility with regard to other important traits (fruit
quality, maturing period, production) and particular reproductive
biology (monoembryony, high rate of triploid production). The
inheritance and efficient selection of resistance to ABS is
therefore of central importance to triploid mandarin breeding
projects.

Genetic analysis of phenotypical traits and marker-trait
association in polyploid species is generally considered as a
challenge due to complex segregation, dosage effects and
potential non Mendelian inheritance associated with epigenetic
variations.

The main factor affecting trait inheritance in triploid families is
the strategy used for triploid breeding [23], with significant
differences between the sexual polyploidisation approach (2x ×
2x crosses with unreduced -2n- gamete formation) and

interploid crosses (2x × 4x or 4x × 2x). Indeed, the choice of
strategy affects the transmission of parental heterozygosity to
the diploid gamete.

In sexual polyploidisation, two factors affect the transmission
of parental heterozygosity to the offspring: the mechanism of
2n gamete formation (i.e., first-division restitution [FDR] or
second division restitution [SDR]) and the genetic distance
from the locus of interest to the centromere [34]. Therefore,
Half-Tetrad Analysis (HTA) based on 2n gametes is an efficient
means of genetic mapping [35-37]. In 2x × 2x citrus crosses,
the diploid (unreduced) gamete is transmitted by the female
parent [38,39]. SDR has been proposed for diploid
megagametophyte development in ‘Clementine’ [40] and
‘Fortune’ mandarins [41], whereas FDR has been reported in
sweet oranges [42]. Recent studies have revealed that SDR is
the main mechanism involved in unreduced gamete formation
in the majority of citrus cultivars [43]. For interploid crosses,
most of the tetraploid parents used in citrus breeding arise from
chromosome doubling in nucellar cells of apomictic diploid
parents [44]. Because mandarins are one of the ancestral
species of cultivated citrus [45], doubled-diploid mandarins
should be considered as autotetraploid, and tetrasomic
inheritance should be expected [46]. In such a situation, the
frequency of diploid gametes that receive a locus in
heterozygosis from the tetraploid parent varies between 0.55
and 0.66, depending on the double-reduction frequency [47].

In addition to the particular transmission of chromosome
fragments and parental heterozygosity, the phenotypic trait
inheritance in polyploids can be affected by dosage effects
[48,49] and even by neoregulation of gene expression due to
epigenomic reformatting [50,51], eventually leading to non-
Mendelian segregation. Moreover, polyploidy induces
morphological variations in leaves and fruits [52-54] that should
affect fungus colonisation. In this context, no data have yet
been published regarding the inheritance of ABS resistance in
triploid progenies.

Due to its direct applicability in marker-assisted selection, the
identification of molecular markers linked to phenotypic
variation, e.g., related to disease resistance, is a key step in
most breeding programs. Bulked segregant analysis [BSA [55]]
can be used to identify molecular markers in a genomic region
associated with a specific phenotype rapidly. This method is
based on linkage disequilibrium between the gene and linked
markers in segregating progeny, and the genetic linkage
between markers and the causal gene is determined by
differences in marker-allele frequencies between resistant and
susceptible bulks. For characters controlled by one or a few
genes, BSA is an effective technique for detecting alleles linked
to phenotypes in a large sample of progeny at a relatively low
cost, where the only requirement is that the genotyping
technique and molecular markers utilised provide quantitative
measurements of allelic frequencies [56]. This approach should
be optimised by coupling BSA with a high-throughput
genotyping method using markers covering the whole genome.
Genome-wide association studies of pooled DNA samples
have been valuable tools in the fast, scalable and economical
identification of candidate single nucleotide polymorphisms
(SNPs) associated with a phenotype [57-64]. In citrus, very
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large SNP resources are becoming available from extensive
citrus sequencing projects [65-68]; meanwhile, new
technologies have been developed for very rapidly genotyping
large numbers of SNPs in DNA samples. One such technology
is the GoldenGate assay from Illumina™ [59,69,70], which
proved useful in citrus by allowing mapping of 677 SNP
markers onto the ‘Clementine’ consensus map [71].

The objectives of this study were (i) to confirm Mendelian
monolocus inheritance of ABS resistance in triploid progenies,
by analysing the segregation of resistance in different interploid
crosses, and to confirm the dominance of susceptibility by
analysing segregation of resistance in progeny produced by
sexual polyploidisation and interploid hybridisation; (ii) to locate
the chromosome region associated with the ABS resistance
using a genome scan assay coupled with BSA, followed by
targeted genetic mapping by HTA in triploid progenies arising
from 2n gametes; and (iii) to identify candidate resistance
genes in the located region, taking advantage of the recently
released reference whole genome sequence of C. clementina
[72]. A more applied objective was identification of molecular
markers for marker-assisted selection (MAS) in citrus breeding
programs.

Materials and Methods

Plant material
Seven hundred and fourteen triploid hybrids arising from four

2x × 2x crosses, three 2x × 4x crosses and their parents were
evaluated for field and in vitro infection by A. alternata. Parental
genotypes included in the citrus germplasm bank and hybrids
were grown at the ‘Instituto Valenciano de Investigaciones
Agrarias’ (I.V.I.A.) orchards in Moncada, Valencia, Spain. The
plantings were very dense, with conditions very favourable for
the development of ABS infection.

Information about parental accessions, their origin, ABS
phenotype and references are shown in Table 1. The genetic
configuration of the ABSr locus (‘A’, dominant susceptible
allele; ‘a’, recessive resistant allele) for each parental
accession (also given in the table) has been deduced from
information about ABS resistance/susceptibility of diploid
genotypes, their pedigree and segregation data at the diploid
level, under the hypothesis of single locus inheritance. The
tetraploids ‘Nova’ and ‘Orlando’ resulted from chromosome
stock doubling of the Nova and Orlando diploids, respectively
[44]. The diploid lines are considered to be ‘Aa’ at the ABSr
locus; therefore, the genotypes of the two tetraploid parents
should be ‘AAaa’.

Three of the 2x × 2x crosses share ‘Fortune’ as the female
parent, with ‘Willowleaf’ mandarin (93 hybrids), ‘Minneola’
tangelo (127 hybrids) and ‘Murcott’ (148 hybrids) as male
parents. The other 2x × 2x cross was ‘clementina Fina’ ×
‘Nadorcott’ (50 hybrids). Details on procedures for establishing
the triploid populations from 2x × 2x crosses by embryo rescue
and triploid selection by flow cytometry can be found in [28].

Two of the 2x × 4x crosses share ‘Orlando 4x’ as the male
parent, with ‘Clemenules’ (180 hybrids) and ‘Fortune’ (116
hybrids) as female parents. The other 2x × 4x population was
‘Clemenules’ × ‘Nova 4x’ (100 hybrids). Information about

procedures for establishing the 2x × 4x populations can be
found in [30].

Moreover, five additional triploid populations arising from 2x
× 2x and 2x × 4x crosses (114 hybrids) were also evaluated for
ABS resistance to extend the experiments to other genetic
backgrounds. Due to the relatively low number of triploid
hybrids within each population, the resultant data have been
included as supplementary material (Table S1).

Evaluation of ABS resistance
Previous studies in diploid genotypes have shown a range of

susceptibility level among citrus germplasm, but suggest that
immune response could be controlled by a single recessive
allele [19,22]. In the present study, genotypes have been
considered as resistant if no symptoms have been observed
neither under field evaluations nor leaf inoculations. Therefore
in this study, as in the previous ones at diploid level [19-22], the
resistant phenotype corresponds to immune symptom.

Field evaluation.  Symptoms of A. alternata were evaluated
for all genotypes on trees grown at the I.V.I.A. orchards in
spring, when young leaves are more susceptible to ABS and
environmental conditions are highly favourable for infection
[15]. Presence or absence of ABS symptoms on the leaves
was recorded in a qualitative manner. For each tree,
observations were carried out over three consecutive years
(2010, 2011 and 2012).

In vitro inoculation of detached leaves.  Inoculum
production: A virulent single-spore isolate of A. alternata
(IVIA-A005) isolated from an infected ‘Fortune’ fruit from
Valencia (Spain) was used for inoculations. Abundant conidia

Table 1. Parental genotypes used in this study, phenotypic
information on ABS resistance and deduced ABSr locus
genotyping.

Genotype Origin PhenotypeReference
ABSr locus
genotype

‘Fortune’
C. clementina

X C. tangerina
S [6,20] Aa

‘Minneola’
C. paradisi’ X
C. tangerina

S [114-117] AA

‘Orlando’
C. paradisi X
C. tangerina

S [22,115]
2x: Aa; 4x:
AAaa

‘Nova’
C. clementina

X (C. paradisi

X C. tangerina)
S [19]

2x: Aa; 4x:
AAaa

‘Murcott’ (unknown) S [19-115] Aa
‘Willowleaf’ C. deliciosa R [115] aa

‘Clemenules’
‘Clementina

Fina’
C. clementina R [20,22,74,115,117] aa

‘Nadorcott’
‘Murcott’ X
unknown

R
Our unpublished
data

aa

(S) Susceptible phenotype; (R) Resistant phenotype; (A) Susceptible allele; (a)
Resistant allele
doi: 10.1371/journal.pone.0076755.t001
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were obtained by a method adapted from [73]. The isolate was
grown on potato dextrose agar (PDA) plates at 25°C in
darkness for 8–10 days, illuminated with fluorescent lamps
(Philips TLD 18W/33) at 25°C for 8 h to initiate conidiophore
formation, and then placed in the dark at 18°C for 12 h.
Conidial suspensions were prepared by pouring sterile water
over the colonies and gently rubbing the surface with a sterile
glass rod. The suspension was filtered through two layers of
cheesecloth, and the spore concentration was adjusted to 105

conidia·ml-1 with a haemocytometer. Suspensions with conidial
germination lower than 90% were discarded.

Leaf inoculations: Bioassays were performed immediately
after leaf harvest. Young leaves (about 50% developed) were
inoculated with 105 conidia·ml−1 [74]. This suspension was
sprayed over both upper and lower surfaces of each leaflet,
using five leaves per genotype. Controls were inoculated by
spraying sterile distilled water. Leaves were incubated in a
moist chamber in the dark at 27°C, and the results were
evaluated 48h after inoculation. In susceptible genotypes, leaf
symptoms appear during the second day after inoculations and

very clear necrosis induced by the ACT-toxin can be observed
after 48h (Figure 1).

A genotype was considered resistant when no symptoms of
ABS were observed in any leaf, whereas presence of infection
was recorded when a clear symptom of ABS was observed in
any leaf. The inoculations were repeated when there was doubt
regarding interpretation. The complete experiments were
carried out twice during spring of 2010 and twice during spring
of 2011.

Two triploid populations derived from 2x × 2x crosses
[‘Fortune’ (‘Aa’) × ‘Minneola’ (‘AA’) and ‘Clementina Fina’ (‘aa’)
× ‘Nadorcott’ (‘aa’)] and three triploid populations derived from
2x × 4x crosses [‘Clemenules’ (‘aa’) × ‘Orlando 4x’ (‘AAaa’),
‘Fortune’ (‘Aa’) × ‘Orlando 4x’ (‘AAaa’) and ‘Clemenules’ (‘aa’)
× ‘Nova 4x’ (‘AAaa’)] were phenotyped to compare the
expected and observed proportions of resistant and susceptible
genotypes, to confirm the monolocus inheritance and
dominance of the ABS susceptibility. For the ‘Aa’ × ‘AA’ cross,
all segregation progeny are expected to be susceptible to ABS
(‘AAA’, ‘AAa or ‘Aaa’), whereas for the ‘aa’ × ‘aa’ cross, all
segregation progeny are expected to be ABS resistant (‘aaa’).

Figure 1.  Leaves of resistant genotype ‘Willowleaf’ mandarin (A) and susceptible genotype ‘Fortune’ mandarin (B)
showing ABS symptoms 48h after inoculation with a suspension of 105 conidia·ml-1.  
doi: 10.1371/journal.pone.0076755.g001
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In case of the ‘aa’ × ‘AAaa’ and ‘Aa’ × ‘AAaa’ crosses, the
resistant and susceptible proportions depend on heterozygosity
restitution (HR) from the tetraploid parent to the progeny, which
varies between 0.55 and 0.66 depending on the double-
reduction frequency [47]. Therefore, in these cases, the
resistant proportions are expected to be between 0.1667 and
0.225 for the ‘aa’ × ‘AAaa’ cross and between 0.0833 and
0.1125 for the ‘Aa’ × ‘AAaa’ cross (Table 2). χ2 tests were
conducted on the observed and expected frequencies. In cases
of diploid × tetraploid crosses, where expected frequencies are
included in an interval (according to the double-reduction
frequency), if the observed value was found to be out of the
interval, the observed value was compared with the closest
value flanking this interval.

Estimation of the locus-centromere genetic distance
under the hypothesis of monolocus inheritance

Two segregating triploid progeny derived from crosses
between ‘Fortune’ (‘Aa’) as the female parent and ‘Willowleaf’
(‘aa’) and ‘Murcott’ (‘Aa’) as male parents have been used to
estimate the locus-centromere distance. Because SDR is the
mechanism leading to unreduced gamete formation in ‘Fortune’
[41], the maternal HR frequency varies between 0 at the
centromere to 0.66 if a model of no chromosome interference
is assumed. However [41], demonstrated that the Cx(Co)4

model assuming partial chromosome interference was better
adapted to the observed HR in Fortune 2n gametes.

The functions for estimating the frequency of diploid gametes
that would be heterozygous for a given locus according to its
distance from the centromere can be easily modified to

estimate the expected genotypic frequency within resultant
triploid progeny and even the expected segregation of
phenotypic traits with monolocus inheritance. Considering that
ABS resistance is a recessive trait controlled by a single locus,
susceptible triploid genotypes may have ‘AAA’, ‘AAa’ or ‘Aaa’
allele configurations, whereas resistant triploid genotypes
should present only the ‘aaa’ configuration for this locus (Table
3). Therefore, the frequency of resistant genotypes within each
population is informative for HR estimation, and therefore for
determination of the locus-centromere distance. The relation
between centromere distance and percentage of resistant
hybrids in controlled progeny have been represented (Figure 2)
for the two models of crosses corresponding to the ‘Fortune’ ×
‘Willowleaf’ and ‘Fortune’ × ‘Murcott’ crosses (‘Aa’ × ‘aa’ and
‘Aa’ × ‘Aa’, respectively) under two models of chromosome
interference (no interference and partial interference). It should
be noted that under the Cx(Co)4 model of partial chromosome
interference, the frequencies of resistant hybrids under 20%
and 10% for the ‘Aa’ × ‘aa’ and ‘Aa’ × ‘Aa’ crosses,
respectively, can correspond to two different distances from the
centromere.

Bulk segregant analysis coupled with genome scan
BSA [55] has been used to identify genomic regions linked to

ABS resistance. To simplify the analysis with only one parental
segregation of ABS resistance, the ‘Aa’ × ‘aa’ population
(rather than ‘Aa’ × ‘Aa’) was selected. Triploid hybrids from the
‘Fortune’ (‘Aa’) × ‘Willowleaf’ (‘aa’) population yielding
conclusive phenotypes (resistant or susceptible) in both field
and in vitro evaluations were selected for this purpose.

Table 2. Expected proportions of ABS locus allelic configuration (AAA, AAa, Aaa or aaa) for each population evaluated.

 SUSCEPTIBLE SUSCEPTIBLE SUSCEPTIBLE TOTAL SUSCEPTIBLE RESISTANT
POPULATION AAA AAa Aaa AAA, AAa, Aaa aaa

‘Fortune’ X ‘Minneola’ (Aa X AA) 1−HR

2
HR 1−HR

2
1 0

‘Clementina Fina’ X ‘Nadorcott’ (aa X aa) - - - 0 1

‘Clemenules’ X ‘Orlando 4x’ (aa X AAaa) - 0.1667-0.225 0.55-0.66 0.775-0.833 0.1667-0.225

‘Fortune’ X ‘Orlando 4x’ (Aa X AAaa) 0.0833-0.1125 0.3875-0.4167 0.3875-0.4167 0.8875-0.9167 0.0833-0.1125

‘Clemenules’ X ‘Nova 4x’ (aa X AAaa) - 0.1667-0.225 0.55-0.66 0.775-0.833 0.1667-0.225

HR: maternal heterozygosity restitution
doi: 10.1371/journal.pone.0076755.t002

Table 3. Expected susceptible and resistant proportions for ‘Fortune’ (‘Aa’) X ‘Willowleaf’ (‘aa’) and ‘Fortune’ (‘Aa’) ×
‘Murcott’ (‘Aa’) populations.

 SUSCEPTIBLE SUSCEPTIBLE SUSCEPTIBLE TOTAL SUSCEPTIBLE RESISTANT
POPULATION AAA AAa Aaa AAA, AAa, Aaa aaa

‘Fortune’ X ‘Willowleaf’ (Aa x aa) - 1−HR

2
HR 1+HR

2
1−HR

2

‘Fortune’ X ‘Murcott’ (Aa X Aa) 1−HR

4
1−HR

4 +
HR

2 =
1+HR

4
1−HR

4 +
HR

2 =
1+HR

4
3+HR

4
1−HR

4

HR: maternal heterozygosity restitution
doi: 10.1371/journal.pone.0076755.t003
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Genomic DNA of triploid hybrids and their parents was isolated
using the Plant DNeasy kit from Qiagen, Inc. (Valencia, CA,
USA), following the manufacturer’s protocol. DNA
concentrations were estimated with PicoGreen® and adjusted
to 30 ng/µl. Four resistant and four susceptible DNA bulks were
established by mixing DNA from five resistant or susceptible
hybrids. Each bulk and the parents were genotyped using an
Illumina GoldenGate™ array platform, which contains 1536
SNP markers [68]. Six hundred and seventy-seven of these
SNPs are mapped in the 'Clementine' reference genetic map
[71].

For the mapped markers that were heterozygous in the
‘Fortune’ genotype, we estimated the relative allele signal in
each bulk by allelic composition measurement, called the “B
allele frequency” (BAF) by Illumina™ [70], using the Illumina®
GenomeStudio 2009. The BAF parameter varies between 0
and 1 and is related to the proportion of the B allele versus A+B
(SNP genotyping in GoldenGate™ array is diallelic). For pooled
samples, this parameter provides useful information on the
BAF in the bulk.

ANOVA were performed using BAF information, and the
significance of the differentiation between the resistant and
susceptible bulks was tested by the F statistic. The pattern of

this F parameter along the genome allowed identification of
genomic regions with high probability of association with
phenotype variation.

Individual genotyping and mapping of the ABS
resistance gene

Ninety-three triploid hybrids for the ‘Fortune’ × ‘Willowleaf’
population and their diploid parents were genotyped using
available SSR and SNP markers already mapped [71] in the
interval identified by the BSA analysis or developed from the
'Clementine' genomic sequence as described below.

New SSR and SNP marker development.  We have taken
advantage of the recent release of the reference citrus genome
sequence (haploid Clementine genome publicly available at
www.phytozome.net/clementine) by the International Citrus
Genomics Consortium (ICGC) to develop new markers in the
genomic region surrounding the SNPs identified by BSA
genome scan as linked to ABS resistance. Microsatellites
motifs were searched using Sputnik software (http://
espressosoftware.com/sputnik/) and new SSR markers were
developed and tested for useful polymorphisms. Moreover,
4.47 kb corresponding to four DNA fragments within this region
were sequenced in ‘Fortune’ and ‘Willowleaf’ to find SNPs that

Figure 2.  Locus-centromere distance estimated from the proportion of resistant hybrids observed in ‘Aa’ × ‘aa’ and ‘Aa’
× ‘Aa’ crosses under a model of no chromosome interference and the Cx(Co)4 model of partial chromosome interference.  
doi: 10.1371/journal.pone.0076755.g002
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could be heterozygous in ‘Fortune’ and homozygous in
‘Willowleaf’ mandarin (information on location of the
corresponding sequences on the haploid Clementine reference
genome and primers used to amplify these DNA fragments is
given in Table S2).

SSR analyses.  Polymerase chain reactions (PCRs) were
performed with wellRED oligonucleotides (Sigma-Aldrich®, St
Louis, MO, USA) using the following protocol: Mastercycler ep
Gradient S (Eppendorf Scientific Inc., Westbury, NY, USA);
reaction volume, 15 µl; 0.8 U Taq polymerase (Fermentas®,
Burlington, VT, USA); reaction buffer: 750 mM Tris-HCl (pH 9),
50 mM KCl, 200 mM (NH4)2SO4, 0.001% bovine serum
albumin, 0.1 mM of each dNTP, 5 mM MgCl2, 3 mM of each
primer, 30 ng DNA. The PCR program was as follows: 94°C for
5 min; 40 cycles of 30 s at 94°C, 1 min at 55°C and 30 s at
72°C; final elongation 10 min at 72°C. Separation was carried
out by capillary gel electrophoresis (CEQ 8000 Genetic
Analysis System; Beckman Coulter Inc., Fullerton, CA, USA).
Data collection and analysis were carried out using the
GenomeLab GeXP (Beckman Coulter Inc.) version 10.0
software.

SNP analyses.  SNP genotyping was performed by
Kbioscience® services, using the KASPar technique. Detailed
explanation of specific conditions and reactives can be found in
[75].

Assignment of allelic configuration in heterozygous triploid
hybrids was carried out using the MAC-PR method for SSR
markers [76], or using relative allele signal as proposed by [77]
for SNPs genotyped by the KASPar (KBioscience®, UK)
technique. Maternal HRs within the triploid progeny were used
for de novo mapping of the markers in relation to the
centromere position, using the Cx(Co)4 model for SDR with
partial interference [41,78].

Allelic phase of linked marker loci was inferred from the
preferential association at the population level between the
phenotype (resistant/susceptible) and the maternal alleles.
Marker alleles linked with susceptibility were codified as ‘a’
alleles, and those linked with resistance as ‘b’ alleles. The
global coherence of this phase attribution was checked by
performing a correlation (Pearson’s coefficient) from an
individual/loci matrix with values of 1, 0.5, and 0 for the ‘aa’,
‘ab’, and ‘bb’ genotypes, respectively. These correlation values
were also used to determine the locations of the various
markers in the relative chromosome arms (i.e., on either side of
the centromere) in the de novo mapping process.

The relative position of the ABSr locus and markers were
analysed by performing a multiple correspondence analysis
(MCA), considering markers as individuals and the various 2n
gametes as variables. From the previous matrix, we
established the qualitative matrix for the factorial analysis by
grouping 1 and 0.5 as the same modality (presence of the ‘a’
allele linked with the dominant susceptibility allele in ‘Fortune’)
and considering the absence of the ‘a’ allele as the other
modality. XLSAT was used to calculate the Pearson’s
correlation coefficient and to perform the MCA.

Gene ontology
All genes encountered within the genomic region between

the two markers flanking the estimated location of the ABSr
locus were searched in the ‘Clementine’ whole genome
assembly delivered by the ICGC and publicly available at
www.phytozome.net/clementine. The corresponding annotation
data were then processed with Blast2GO [79] to provide a
global description of the cellular components and biological
processes of the genes identified in this genome region.

Results

Segregation of ABS resistance in various triploid
progeny arising from sexual polyploidisation and
interploid crosses

Field and in vitro evaluation of ABS
resistance.  Symptoms of ABS were evaluated for all parental
accessions and hybrids both from visual inspection of the trees
grown at orchards and by in vitro inoculations with a conidial
suspension of the pathogen. Results obtained for parental
genotypes were according to those cited in the literature:
‘Fortune’, ‘Minneola’, ‘Murcott’ and ‘Orlando’ exhibited
symptoms of ABS both in the field and in vitro in all
evaluations; ‘Clemenules’, ‘Clementina Fina’, ‘Willowleaf’ and
‘Nadorcott’ did not exhibit any ABS symptoms on their leaves
at any time. Triploid hybrids derived from various evaluated
crosses were susceptible (exhibiting typical ABS symptoms) or
resistant at proportions depending on the progeny evaluated.
No resistant genotypes were found within the ‘Fortune’ ×
‘Minneola’ population, whereas all triploid hybrids from the
cross between two resistant genotypes (‘Clementina Fina’ ×
‘Nadorcott’) were resistant to ABS. Total concordance between
field and in vitro evaluations was observed for all evaluated
populations with the exception of ‘Clemenules’ × ‘Orlando 4x’,
where it was over 97% (Table 4).

Inheritance of ABS resistance.  Observed resistant
proportions within the ‘Fortune’ (‘Aa’) × ‘Minneola’ (‘AA’),
‘Clemenules’ (‘aa’) × ‘Orlando 4x’ (‘AAaa’), ‘Clemenules’ (‘aa’)
× ‘Nova 4x’ (‘AAaa’), ‘Fortune’ (‘Aa’) × ‘Orlando 4x’ (‘AAaa’)
and ‘Clementina Fina’ (‘aa’) × ‘Nadorcott’ (‘aa’) populations are
shown in Table 5. As expected, no resistant genotypes were
observed within the ‘Fortune’ × ‘Minneola’ triploid population,
whereas no susceptible ones were observed within the
‘Clementina Fina’ × ‘Nadorcott’ population. Regarding the
interploid crosses, 41/175 (23.43%) and 16/100 (16%) triploid
hybrids were phenotyped as resistant within the ‘Clemenules’ ×
‘Orlando 4x’ and ‘Clemenules’ × ‘Nova 4x’ populations,
respectively. These values are not significantly different
(χ2=0.087, p-value=0.769 and χ2=0.032, p-value=0.857,
respectively) to the closest value of the theoretical interval
(16.67–22.5%) under the hypothesis of single locus recessive
inheritance of resistance in an ‘aa’ × ‘AAaa’ cross. In the same
way, the observed proportion of resistant hybrids in ‘Fortune’ ×
‘Orlando 4x’ is within the theoretical interval under the same
hypothesis for an ‘Aa’ × ‘AAaa’ cross.

These results confirmed the single dominant inheritance of
the ABS susceptibility in triploid populations. Moreover, results
of the five additional triploid populations evaluated for ABS
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resistance (Table S1) also confirm the single recessive
inheritance of ABS resistance.

Estimation of the genetic distance of the ABS
resistance locus (ABSr) to the centromere

For the two triploid populations arising from 2x × 2x crosses
(‘Fortune’ × ‘Willowleaf’ and ‘Fortune’ × ‘Murcott’), the
proportions of resistant and susceptible hybrids are related to
the ABSr locus-centromere distance. To estimate the locus-
centromere distance, we used a simple cross model in which
only the 2n gametes segregate for the ABSr locus (‘Fortune’ ×
‘Willowleaf’). This allows avoiding any eventual bias associated
with distorted segregation from the male parent.

The proportion of resistant hybrids in the ‘Fortune’ ×
‘Willowleaf’ population was 39.78%, corresponding to an HR
estimation value of 0.2043, assuming that ‘aa’ and ‘AA’ 2n
gametes were equally represented. Only one value for
centromere distance is associated with the observed proportion
of resistant hybrids when the functions presented in Material
and Methods are applied (Figure 2). Moreover, no interference
and partial chromosome interference models gave very similar
estimates for the centromere distance, which has been
estimated to be 10.5 cM.

With such an ABSr locus-centromere distance, the expected
proportion of the resistant genotype in ‘Fortune’ × ‘Murcott’
progeny (‘Aa’ × ‘Aa’) should be 19.9%. The observed value
(17.57%) is not significantly different (χ2=0.501), confirming the
proximity of the ABSr locus to a centromere.

Bulk segregant analysis coupled with genome scan
BSA over the ‘Fortune’ (‘Aa’) × ‘Willowleaf’ (‘aa’) population

has been used to identify a genomic region linked to the ABS
resistance gene. Four resistant and four susceptible bulks were
genotyped for 1536 SNP markers using a GoldenGate™ array
platform. Of these, 429 SNP markers were heterozygous for
the ‘Fortune’ mandarin and were used to perform ANOVA
analyses over relative allele signal for each bulk; significance of
the differentiation between the resistant and susceptible bulks
was tested by the F statistic. A graphical example for the
CiC3248-06 and CiC6243-03 markers, which differentiate
resistant and susceptible bulks, is shown in Figure 3.

The pattern of this F parameter along the nine linkage
groups of the ‘Clementine’ genetic map [71] led us to discard
most genomic regions (Figure S1) and allowed identification of
a region containing numerous markers with a high probability
(>99%) of association with phenotype variation, located on
chromosome III (Figure 4). This region includes 25 significant
SNP markers within an interval of 13.1 cM between markers
CiC4831-03 (at 84.66 cM) and CiC1875-01 (at 97.76 cM) on
the ‘Clementine’ map. The maximum F value within this region
is attained by marker CiC4681-02, located at 92.78 cM
(F=2055). The genomic region between these two markers
contains around 15 Mb. No significant marker clusters were
found in any other area of the genome.

Genome Region Linked to ABS Resistance in Citrus
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Genetic mapping of the genomic region surrounding
the ABS locus

Among the SNP markers with significant linkage to ABS
resistance, five displayed the most convenient allelic
conformation in the parents (heterozygous in ‘Fortune’ and
homozygous in ‘Willowleaf’) for genetic mapping by individual
genotyping of the ‘Fortune’ × ‘Willowleaf’ progeny. One SSR
marker included in this segment in the ‘Clementine’ genetic
map [71] also displayed useful allelic polymorphisms between
parents.

To develop additional markers with useful allelic
conformation, the genomic region (from www.phytozome.net)
surrounding the 25 significant SNPs was scanned to find new
microsatellites and develop new SSR markers. Among 42
SSRs tested, four new SSR markers provided useful
polymorphisms. Moreover, 4.47 kb (Table S2) within this region
in ‘Fortune’ and ‘Willowleaf’ and two SNPs heterozygous in
‘Fortune’ and homozygous in ‘Willowleaf’ were sequenced.

More detailed information on all markers used in this study is
available as supplementary material in Table S3 and Table S4.

Next, five mapped SNP markers [71], one mapped SSR
marker [CX0038 [42]:], and six newly developed markers (four
SSRs and two SNP markers) were used to genotype all 93
triploid hybrids of the ‘Fortune’ × ‘Willowleaf’ population.
Because the male parent was homozygous or different from
the female parent at each selected locus, the genetic structure
of the diploid female gamete (Table S5) was deduced from the
triploid hybrid genotyping [see 41 for details], and the marker
HRs were estimated.

We took advantage of the direct link between HR in 2n
gametes and the locus-centromere distance for de novo
mapping of genetic markers in relation to the centromere
position, using the Cx(Co)4 model for SDR with partial
interference [41]. No recombination was observed between the
centromere and the CiC1229-05 and CiC6116-04 markers. The
markers next closest to centromere were SNP-ALT1 and SNP-

Table 5. Expected and observed frequencies of Alternaria brown spot resistant hybrids under the hypothesis of single
dominant inheritance within each population and significances of χ2 conformity tests.

 

‘Fortune’ X
‘Minneola’ (‘Aa’ X
‘AA’)

‘Clemenules’ X ‘Orlando 4x’
(‘aa’ X ‘AAaa’)

‘Clemenules’ X ‘Nova 4x’
(‘aa’ X ‘AAaa’)

‘Fortune’ X ‘Orlando 4x’
(‘Aa’ X ‘AAaa’)

‘Clementina Fina’ X
‘Nadorcott’ (‘aa’ X ‘aa’)

Number of evaluated hybrids 127 175 100 116 50
Expected resistant proportion
(%)

0% 16.67%-22.5% 16.67%-22.5% 8.33%-11.25% 100%

Observed resistant proportion
(%)

0% 23.43% 16.00% 10.34% 100%

χ2 test; p-value NS 0.087; 0.769 (NS) 0.032; 0.857 (NS) WTI NS
doi: 10.1371/journal.pone.0076755.t005

Figure 3.  Plot showing Bulked Segregant Analysis results for the CiC3248-06 (A) and CiC6243-03 (B) markers,
distinguishing between susceptible and resistant genotypes and bulks.  
doi: 10.1371/journal.pone.0076755.g003
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ALT2 (with the same HTA data), 0.54 cM away; the next
closest marker was CX0038 (2.7 cM). To determine whether
this marker was located at one side or the other of the
centromere, we checked its correlation with the markers in
distal positions on the draft map (at this step, CiC1229-05 and
CiC6116-04 on one side, and SNP-ALT1 and SNP-ALT2 on
the other side). Because the lower correlation was for SNP-
ALT1 and SNP-ALT2, CX0038 was positioned on the opposite
chromosome arm. The same process was applied at each
subsequent step of marker addition to the map, proceeding
according to increasing distance from the centromere. The
order of the mapped markers in the de novo map was the
same as in the ‘Clementine’ map [71], and new (non-mapped)
markers maintained the expected order of the assembled
sequence available at www.phytozome.net (Figure 5A,B).
However, the estimated genetic distances were higher than
those on the ‘Clementine’ map, suggesting that the
recombination rate in this genomic region during the production
of the 2n gamete was higher in ‘Fortune’ than in ‘Clementine’.
A logically important modification of the slope of the physical
distances according to genetic map is observed in the
centromeric region (with lower recombination by physical
distance unit).

No recombination was observed between the AT21 marker
and the ABSr locus. The two flanking markers (TTC8 and
CiC3248-06) were found at 3.77 and 1.71 cM, respectively,
from the ABSr locus, delimiting a 3.3 Mb genome region. This
position of the ABSr locus was checked by an MCA based on a
qualitative matrix (see Material and Methods). Most of the
matrix diversity was represented in the first axis (72.9%; Figure
5C), where the order of markers and the relative position of the
ABSr locus was identical to the de novo mapping, based on
HR.

Gene annotations around the ABSr locus
The assembled sequence (www.phytozome.org) of the

region of chromosome III between the two markers flanking the
ABSr locus (TTC8 and CiC3248-06) was examined for gene
annotations. The results revealed several disease resistance
genes along and at the extremes of the analysed region, so the
analysis was extended 1.5 Mb down from the TTC8 marker
and 1.7 Mb up from the CiC3248-06 marker. Ninety-five genes
annotated as homologous to disease resistance genes were
found within the corresponding 6.5 Mb region. A genome-wide
analysis of disease resistance gene homologs revealed that
17% of them are located within this region on chromosome III.

Figure 4.  Pattern of F statistic from ANOVA along chromosome III.  (the linkage group map under the F value graph is
taken from the ‘Clementine’ genetic map [71].
The blue line indicates the least significant value for F at p<0.01.
doi: 10.1371/journal.pone.0076755.g004
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Within the 3.3-Mb region defined by the two flanking
markers, 177 annotated genes were found (Table S6). Gene
ontology (GO) analysis of biological processes revealed that
69.1% of these genes are involved in metabolic processes and
21.9% are related to response or cell death (Figure 6A). GO
also indicated that 25% of the genes are intrinsic to the
membrane (Figure 6B), which is the target of the ACT-toxin
produced by the tangerine pathotype of A. alternata.

In the region defined by the two flanking markers, which
includes the ABSr locus, 33 disease resistance homologous
genes were found (Figure 7). Thirty of these genes encode
proteins predicted to have a central nucleotide-binding site
(NBS) domain, 28 are involved in apoptosis, and 29 have a C-
terminal leucine-rich repeat (LRR) domain. Six of the 30 NBS-
containing genes have transmembrane activity. Among the
resistance genes identified, 15 are homologous to the LOV1
gene, which has been implicated in dominant susceptibility of
Arabidopsis to the victorin toxin produced by Cochliobolus
victoriae Nelson [80]. Other three of these resistance genes
belong to the mlo family, which confer durable broad-spectrum
resistance against the powdery mildew pathogen in barley [81].

Discussion

The monolocus inheritance and recessivity of ABS
resistance was confirmed in citrus triploid progeny,
and the ABSr locus was mapped in the chromosome III
genetically close to the centromere

Several studies have reported the single dominance
inheritance of ABS susceptibility in diploid citrus genotypes
[19,22]; however, no data have been previously published
regarding triploid progeny. In this present study, inheritance of
resistance to the ABS pathogen has been analysed in triploid
progeny produced by different strategies (sexual
polyploidisation and interploid crosses) over a wide range of
genetic backgrounds. The segregations (resistance/
susceptibility) observed for all the triploid populations we
evaluated confirm the monolocus inheritance and recessivity of
the disease in a triploid context. All progeny arising from a
homozygous susceptible cultivar, such as ‘Minneola’, were
susceptible, whereas in cases of heterozygous parents,
segregations were as expected, depending on the hybridisation
strategy.

Figure 5.  Order and location of markers and ABSr locus.  (A) De novo genetic mapping (cM) of markers and the ABSr locus on
chromosome III relative to the centromere by half-tetrad analysis, (B) relation between genetic and physical location in the
‘Clementine’ reference genome (www.phytozome.net/clementine), and (C) representation of the markers on the first axis of the
multiple correspondence analysis.
doi: 10.1371/journal.pone.0076755.g005
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Genetic mapping and marker-trait association in polyploids
are complicated by the diversity of the meiotic process (and
therefore, recombination mechanisms) involved, as well as the
distribution of markers into multiple dosage classes [82].
Despite these limitations, genetic maps based on segregating
molecular markers have been generated for a wide range of
polyploids including tetraploid cotton [83], hexaploid tall fescue

[84], hexaploid wheat [85] and octoploid sugar-cane mandarin
[82,86].

In this study, the first information regarding the location of the
ABSr locus was given directly by the analysis of the
segregation between susceptible and resistant triploid hybrids
in progeny obtained by sexual polyploidisation (2n gametes),
assuming monolocus recessive determination of the

Figure 6.  Classification of genes annotated between the TTC8 and CiC3248-06 markers according to gene ontology (GO)
functional categories.  (A) GO biological process categories. (B) GO cellular component categories.
doi: 10.1371/journal.pone.0076755.g006
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resistance. Indeed, for 2n gametes resulting from either FDR or
SDR, as in the ‘Fortune’ mandarin [41], there is a direct linkage
between parental HR (and therefore, the proportion of resistant
and susceptible hybrids) and the genetic distance to the
centromere. HTA is therefore an efficient way to map loci
relative to a centromere [78,87,88]. At this step, we identified
that the ABSr locus was relatively close (10.5 cM) to one
centromere.

Figure 7.  Genes found in the region around the ABSr
locus, indicating the disease resistance gene homologous
and their major domains and annotations.  
doi: 10.1371/journal.pone.0076755.g007

The ABSr locus was then located by combining two
approaches. The first one was to perform BSA coupled with
genome-scan using SNP markers mapped in the reference
‘Clementine’ genetic map [71]. This approach allowed
localisation of the ABS resistance locus within a 13.1 cM area
on chromosome III of the ‘Clementine’ genetic map,
corresponding to 15 Mb of scaffold 3 of the current
‘Clementine’ whole genome assembly in pseudomolecules
(www.phytozome.net). Our results confirm the potential for raw
location of major genes involved in phenotypic trait variability
by coupling BSA strategies with genomic scanning, as
previously proposed by [57], and demonstrate that it can be
successfully applied in a polyploid segregating population.

This genomic region was further examined for additional
SSR and SNP markers, which were used for de novo mapping
of the area by HTA of 2n gamete inferred from triploid hybrid
genotypes. Mapping functions relating HR and centromere
distance [41,78] and an approach based on a correlation matrix
have given convergent results in identification of the closest
markers flanking the candidate ABS resistance gene. The
AT21 marker appeared to be tightly linked to the ABSr locus.
However, it would be necessary to analyse many more
progeny to estimate its linkage with the ABSr locus precisely.
The two flanking markers of AT21 and the ABSr locus are
TTC8 and CiC3248-06, respectively, at 3.77 and 1.71 cM. This
marker frame is much more closely linked than previous
markers identified from diploid segregating progenies. Two
RAPD markers are in loose linkage with the ABSr locus (15.3
cM and 36.7 cM far from the ABS locus in the same side) [19].
A more recent study identified two flanking SRAP markers at 3
cM and 13 cM, and the authors of that study proposed that the
genomic region of the ABSr locus should display low
polymorphism, explaining the difficulty of obtaining markers
very close to the gene [22]. The availability of the reference
genetic map [71] and whole genome sequence [72] of C.
clementina clearly increases the potential for marker-trait
association studies in citrus, with co-dominant markers located
both in the physical and genetic maps.

Candidate genes for resistance to ABS were identified
The ABSr locus appears to be included in a genomic region

very rich in disease resistance gene homologs. Indeed, 17% of
all resistance genes annotated in the citrus reference genome
(www.phytozome.net) are found in a 6.5 Mb region (2.2% of
the whole genome) of chromosome III, surrounding the ABSr
locus. In the 3.3 Mb region defined by the two flanking markers,
33 disease resistance gene homologs were identified. Six of
them are considered to be intrinsic to the membrane, including
three belonging to the mlo family and 28 related to apoptosis.
These resistance genes are organised in clusters, as generally
described in many crop species [89,90], and as already
demonstrated in citrus for resistance to Tristeza virus found in
the Poncirus genome [91].

A. alternata is a necrotroph pathogen, which first kills host
cells before parasitizing them and metabolising their contents.
If the toxins used to kill host cells are not released at the right
time, place, or concentration, or if a particular host genotype is
insensitive to the toxin, the host cells will not die, the
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necrotroph will be unable to infect or reproduce, and the plant
will be resistant [92]. A. alternata, like other necrotrophs,
produces host-selective toxins (ACT-toxins), defined as
pathogen effectors, which induce toxicity and promote disease
only in the host species expressing a specific and often
dominant susceptibility gene [93]. Their pathogenic ability is
conditioned by a gene in the pathogen that encodes production
of the toxin and by a gene in the host that promotes sensitivity
to the toxin. For this type of pathogen, plant resistance can be
achieved via the loss or modification of the toxin’s target or
through detoxification [94].

Inheritance of ABS resistance in citrus has been described
as monogenic [19,22], controlled by a single recessive allele.
The results of this study corroborate this hypothesis by
demonstrating the predicted proportions of resistant and
susceptible genotypes obtained from various crosses and the
identification, by BSA, of a single genomic region highly
associated with resistance. ACT-toxins from the tangerine
pathotype of A. alternata, as well as AF-toxin from the
strawberry pathotype and AK-toxin from the Japanese pear
pathotype, have an epoxy-decatrienoic acid structure and exert
their primary effect on the plasma membrane of susceptible
cells, causing a rapid increase in electrolyte loss from tissues
and invaginations in plasma membranes [95]. Varietal
resistance to ACT-toxin in citrus is very highly correlated with
ABS resistance. Therefore, a probable function for the gene of
interest is to encode a protein involved in ACT-toxin
recognition, which would allow the toxin to cause cell death.
Such a dominant gene should be present (homozygously or
heterozygously) in susceptible cultivars, and absent or
defective in resistant cultivars.

The most obvious candidate for providing recognition
specificity to the pathogen effector is the LRR domain, which
binds a corresponding ligand [94] with a putative nucleotide-
binding (NB) site; these genes are classified as ‘NB-LRR’
genes [96]. This class includes members that carry either N-
terminal homology to the Toll protein and interleukin-1 receptor
(TIR-NB-LRR) or a putative coiled-coil (CC) at the N-terminus
(CC-NB-LRR). Resistance (R) genes from both of these
subclasses confer resistance against fungi, and several fungal
resistance genes have been reported and used in crop
improvement programs. NB-LRR genes have been identified
that confer resistance against flax rust, maize rust, barley
powdery mildew, rice blast and Fusarium wilt and downy
mildew of tomato [97]. However, sequence variation within the
central LRR domain, as well as variation in LRR copy number,
plays an important role in determining recognition specificity
[98]. Likewise, R genes, first identified as dominant resistance
genes, could be targets of pathogen effectors and therefore
play roles in susceptibility [99]. Thus, avirulence (Avr) elicitors
and HST may be recognising the same resistance genes in
plants, leading to evolutionary outcomes that differ between
necrotrophs and biotrophs while affecting the evolution of the
corresponding R genes [100]. In Arabidopsis, victorin (an HST
produced by C. victoriae) sensitivity and disease susceptibility
is conferred by the LOV1 gene, which encodes a NB-LRR
protein. LOV1 is targeted by victorin, the pathogen effector,
and this interaction results in disease susceptibility [80]. These

NB-LRR proteins recognise specific pathogen-derived products
and initiate a resistance response that often includes a type of
cell death known as the hypersensitive response [101]. In the
same way, the Pc locus of sorghum, which contains genes
encoding NB-LRR proteins, determines dominant susceptibility
to HSTs produced by the necrotroph fungus Periconia circinata
(L). Mangin Sacc [102,103]. . Together, these results suggest
that for necrotroph fungi, the disease is favoured by inducing
the resistance response [95,99]; this mode of susceptibility
could also apply to A. alternata. In this study, thirty disease
resistance gene homologous encoding proteins with NBSs
were found in the ABS locus region, and 15 of them are
homologous to the LOV1 gene. Therefore, disease resistance
gene homologous should be considered as candidate genes
for inducing susceptibility, especially in the case of LOV1
homologs found in this region.

Another class of resistance genes, belonging to the mlo
family, has also been implicated in susceptibility to barley
powdery mildew produced by Blumeria graminis f. sp. hordei
[81]. Mlo proteins are localised in the plasma membrane and
possess seven transmembrane domains; it has been
suggested that they function as receptors in plants
[81,104,105]. The resistance trait conferred by mlo is
recessively inherited and non-race-specific, because it is
effective against all isolates of the fungus B. graminis
[106,107]. Three resistance genes found in the ABSr locus
region belong to this class. However, in citrus, two pathotypes
of A. alternata have been described that produce HSTs that
affect a narrow range of genotypes (ACT-toxin to tangerines,
ACR-toxin to Rough lemon [C. jambhiri Lush.] and Rangpur
lime [C. limoniae Osbeck]), and resistance found in the
germplasm was pathotype-specific [4].

The identification of the gene for ABS resistance will involve
fine mapping with large diploid populations. SNP markers are
currently being developed from each candidate gene for this
purpose. From the reduced set of candidate genes that would
result from this fine genetic mapping, functional validation could
be performed by genetic transformation [108] or viral vector-
induced gene silencing [109,110].

For susceptible genotypes it is probable that additional
genes, but also environmental factors, affect the susceptibility
level. QTLs analyses conducted in susceptible progeny should
be necessary to decipher this quantitative component of
susceptibility.

Toward efficient breeding for ABS resistance
ABS is a major fungal disease in certain mandarin cultivars

around the world; the disease causes a substantial loss of
production and fruit quality [1,4]. Currently, ABS management
relies mainly on the application of fungicides [12-14], but this
control is expensive, not environmentally friendly, and not
always efficient. As a consequence, the production of
susceptible cultivars, such as 'Fortune' and ‘Nova’ among
others, has declined significantly during recent years, and
many trees of the most susceptible varieties have been
removed and replaced by resistant cultivars that may lack
some of the interesting agronomic traits of the susceptible
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cultivars [111]. Therefore, ABS resistance must be considered
as a major selection criterion in mandarin breeding programs.

Our results demonstrate that it is possible to use susceptible
parents heterozygous for the resistance gene to breed resistant
triploid varieties. For instance, the susceptible cultivar
‘Fortune’, which is a very efficient female parent in producing
high-quality triploid hybrids in 2x × 2x hybridisation [28], should
not be discarded. Indeed, the 39% and 19% of resistant triploid
hybrids produced when crossed with resistant or heterozygous
susceptible genotypes, respectively, are acceptable if
combined with early selection by controlled inoculation
phenotyping or MAS. On the other hand, parents homozygous
for the susceptible allele, such as ‘Minneola’, should be
definitively ruled out. Our results also demonstrate that when
heterozygous susceptible parents are used as producers of
diploid gametes, it is much more efficient to integrate them in a
2x × 2x strategy rather than to use them as doubled-diploid
parents in interploid crosses. Indeed, the heterozygosity
transmission of the ABSr locus (associated with susceptibility
transmission to the triploid progeny) is lower in the 2n gametes
than in the diploid gametes produced by doubled-diploids, due
to its location close to the centromere of chromosome III and
the SDR origin of unreduced gamete formation in most citrus
genotypes [43].

HTA has permitted identification two flanking markers at 3.77
and 1.71 cM of the ABSr locus, as well as a third marker that
did not exhibit any recombination with the ABSr locus within the
analysed population. These markers should be used together
for efficient early MAS for different parental combinations when
the markers are heterozygous in the susceptible parent and
polymorphic between the two parents. We are currently
sequencing DNA fragments between these two markers to
identify SNP loci that provide a useful allelic combination for
the various crosses of our mandarin breeding program. These
are examples of the very few identified markers for MAS in
citrus, which include the SSR markers flanking the Citrus
Tristeza virus resistance gene(s) of Poncirus [ [112]; Mikeal
Roose, personal communication] and the dominant PCR assay
for the anthocyanin content of pulp of blood orange due to a
transposable element in the 5’ extremity of the Ruby gene
[113].
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