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A bs tr ac t

Background

The nature and underlying mechanisms of an inverse association between adult 

height and the risk of coronary artery disease (CAD) are unclear.

Methods

We used a genetic approach to investigate the association between height and CAD, 

using 180 height-associated genetic variants. We tested the association between a change 

in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 

cases and 128,383 controls. Using individual-level genotype data from 18,249 per-

sons, we also examined the risk of CAD associated with the presence of various 

numbers of height-associated alleles. To identify putative mechanisms, we analyzed 

whether genetically determined height was associated with known cardiovascular 

risk factors and performed a pathway analysis of the height-associated genes.

Results

We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; 

P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. 

There was a graded relationship between the presence of an increased number of 

height-raising variants and a reduced risk of CAD (odds ratio for height quar- 

tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that 

we studied, we observed significant associations only with levels of low-density lipo-

protein cholesterol and triglycerides (accounting for approximately 30% of the as-

sociation). We identified several overlapping pathways involving genes associated 

with both development and atherosclerosis.

Conclusions

There is a primary association between a genetically determined shorter height and 

an increased risk of CAD, a link that is partly explained by the association between 

shorter height and an adverse lipid profile. Shared biologic processes that deter-

mine achieved height and the development of atherosclerosis may explain some of 

the association. (Funded by the British Heart Foundation and others.)
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T
here is a well-established associa-

tion between a shorter adult height and an 

increased risk of coronary artery disease 

(CAD).1 Shorter stature is also associated with 

risk factors for CAD, including high blood pres-

sure, high levels of low-density lipoprotein (LDL) 

cholesterol, and diabetes.2,3 An individual-level 

meta-analysis showed that a decrease of 1 SD 

(approximately 6.5 cm) in height was associated 

with a relative increase of 8% (95% confidence 

interval [CI], 6 to 10) in the risk of fatal or non-

fatal CAD.2 The effect was largely unchanged af-

ter adjustment for smoking status, systolic blood 

pressure, history of diabetes, body-mass index, 

lipid markers, alcohol consumption, education 

level, and occupation.2 Therefore, the precise 

mechanisms linking shorter height with an in-

creased risk of CAD remain unclear.

Genetic variants that affect a trait provide a 

means of exploring the relationship between 

the trait and the disease and to identify puta-

tive mechanisms. In a genomewide association 

study, Lango Allen et al.4 identified a large num-

ber of independent genetic variants associated 

with adult height, which is a highly heritable 

trait. Large-scale genomewide association stud-

ies have also been undertaken to determine 

genetic variants associated with CAD5-7 and 

several cardiovascular risk factors.8-15 Here, we 

used the 180 single-nucleotide polymorphisms 

(SNPs) that explain about 10% of the variation 

in height, as identified by Lango Allen et al.,4 

and leveraged CAD-association data for the same 

variants for up to 193,449 persons to examine 

the association between genetically mediated 

variation in height and the risk of CAD. We 

also examined the association between the 

height-associated variants and several cardiovas-

cular risk factors and performed bioinformatics 

analyses of the height-associated variants to iden-

tify other potential biologic mechanisms that 

could link a shorter height with an increased 

risk of CAD.

Me thods

Height-Associated Variants

To identify height-associated genetic variants, 

Lango Allen et al.4 (in the Genetic Investigation 

of Anthropometric Traits [GIANT] Consortium) 

analyzed 183,727 persons of European descent 

and observed that variants at 180 loci showed an 

association with height at a genomewide signifi-

cance level (P<5×10−8). We used the lead SNP from 

each locus (i.e., the SNP showing the strongest 

association) in the current analysis. None of these 

variants lie in loci implicated by genomewide as-

sociation studies in susceptibility to CAD.5-7

Association between Height-Associated 

Variants and CAD

To examine the association between height-associ-

ated genetic variants and CAD, we extracted sum-

mary association statistics for these variants for the 

cohorts that contributed to the meta-analyses of 

genomewide association studies of CAD performed 

by the Coronary Artery Disease Genomewide Rep-

lication and Meta-Analysis (CARDIoGRAM) Con-

sortium5 and the Coronary Artery Disease (C4D) 

Consortium.6 Of the 180 SNPs, 112 were also 

included on the Metabochip array, a customized 

array containing 200,000 SNP markers.16 We 

also extracted data for these 112 SNPs from the 

Metabochip-array CAD meta-analysis performed 

by the combined CARDIoGRAM+C4D Consor-

tium for cohorts that were not included in the 

previous CARDIoGRAM or C4D meta-analyses.7 

Each of the studies that were included in these 

meta-analyses adhered to a case–control design, 

including some nested within cohorts.5-7

The numbers of cases and controls that were 

contributed by each consortium are provided in 

Table S1 in the Supplementary Appendix, avail-

able with the full text of this article at NEJM.org. 

The number of samples and SNPs that were 

contributed by individual studies within each 

consortium are provided in Table S2 in the Sup-

plementary Appendix. Details regarding the ascer-

tainment of samples for each study are provided 

in the primary articles.5-7 All cases were required 

to have had a validated history of myocardial 

infarction, coronary revascularization, or angio-

graphic coronary disease.

Height-Associated Variants  

and Cardiovascular Risk Factors

In parallel, to investigate potential explanatory 

effects of genetically determined height on the 

risk of CAD through known cardiovascular risk 

factors, we extracted estimates of effect size for 

each of the height variants from publicly avail-

able meta-analyses of data sets from genome-
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wide association studies for systolic and diastolic 

blood pressures, mean and pulse pressures,8,9 

LDL cholesterol level, high-density lipoprotein 

(HDL) cholesterol level, triglyceride level,10 pres-

ence or absence of type 2 diabetes mellitus,11 

body-mass index,12,13 glucose and insulin levels,14 

and smoking quantity.15 The maximum sizes of 

these data sets ranged from 29,182 to 249,796 

samples (Table 1).

Statistical Analysis

For each height-associated variant, we calculated 

β
3
 values (the putative association between height 

and CAD mediated through that variant) from 

the direct measurements of β
1
 (the effect size of 

the association between the variant and height) 

and β
2
 (the effect size of the association between 

the variant and CAD), as described previously.8,17 

(A more complete description of β
1
, β

2
, and β

3
 

and the relationships among them and how β
3
 

was calculated is provided in Fig. S1 in the Sup-

plementary Appendix.) The value for β
3
 can be 

interpreted as the odds ratio for CAD per 1-SD 

increase in genetically determined height. Because 

the association between each SNP with height 

and the association with CAD is very small, indi-

vidual β
3
 values are likely to center around 1.0. 

Combining the β
3
 values from all SNPs provides 

additional power to assess the overall association 

between height and CAD (i.e., composite associa-

tion). We used inverse-variance–weighted ran-

dom-effects meta-analysis to combine individual 

β
3
 estimates. We performed the same analysis in 

a subgroup of patients with a history of myocar-

Table 1. Association between Genetically Determined Height and Coronary Artery Disease and Cardiovascular Risk Factors.*

Risk Factor
Maximum No. of 

Samples in Data Set
Estimated Association

(95% CI)† P Value I2‡

Coronary artery disease 65,066 cases, 
128,383 controls

0.88 (0.82 to 0.95) <0.001 55.7

Body-mass index§ 249,796 0.01 (−0.02 to 0.03) 0.74 14.7

Blood pressure

Systolic 69,899 0.34 (−0.31 to 1.00) 0.30 41.6

Diastolic 69,909 0.14 (−0.27 to 0.56) 0.50 42.1

Mean arterial pressure¶ 29,182 0.20 (−0.19 to 0.60) 0.32 41.6

Pulse pressure‖ 74,079 0.23 (−0.06 to 0.52) 0.12 26.9

Cholesterol

Low-density lipoprotein 95,454 −0.06 (−0.09 to −0.04) <0.001 31.6

High-density lipoprotein 99,900 −0.02 (−0.05 to 0.02) 0.44 54.0

Triglycerides 96,598 −0.05 (−0.08 to −0.03) <0.001 29.1

Type 2 diabetes 34,840 cases, 
114,981 controls

0.95 (0.83 to 1.07) 0.38 50.0

Glucose 96,496 0.01 (−0.01 to 0.02) 0.48 31.0

Log-transformed plasma insulin 85,573 0.01 (−0.01 to 0.02) 0.29 37.3

Smoking quantity** 41,150 0.04 (−0.01 to 0.09) 0.11 15.8

* Estimates of effect size for each of the height variants were extracted from publicly available meta-analyses of data 
sets from genomewide association studies.

† The average effect estimates for a 1-SD increase in height are shown as odds ratios for categorical diseases (coronary 
artery disease and diabetes). For quantitative traits, the β estimates are shown in either absolute values (systolic and 
diastolic blood pressure, pulse pressure, mean arterial pressure, smoking quantity, glucose, and log insulin) or in SD 
(body-mass index, high-density lipoprotein and low-density lipoprotein cholesterol, and triglycerides).

‡ I2 indicates the percentage of total variation in study estimates because of heterogeneity in the meta-analysis.
§ The body-mass index is the weight in kilograms divided by the square of the height in meters.
¶ Mean arterial pressure was defined as two thirds diastolic pressure plus one third systolic pressure.9

‖ Pulse pressure was defined as systolic pressure minus diastolic pressure.
** Scores for smoking-quantity levels among smokers (cigarettes smoked per day) were 0 (1 to 10 cigarettes per day),  

1 (11 to 20 cigarettes), 2 (21 to 30 cigarettes), and 3 (31 or more cigarettes).17

The New England Journal of Medicine 

Downloaded from nejm.org by Matthias Bank on December 11, 2015. For personal use only. No other uses without permission. 

 Copyright © 2015 Massachusetts Medical Society. All rights reserved. 



Genetically Determined Height and Coronary Artery Disease

n engl j med 372;17 nejm.org april 23, 2015 1611

dial infarction and in men and women separate-

ly, using sex-specific estimates of β
1
 released by 

the GIANT Consortium (www.broadinstitute.org/

collaboration/giant/index.php/GIANT_consortium_

data_files).

For a subgroup of CAD cohorts in which we 

had access to individual-level genotypes genome-

wide (Table S3 in the Supplementary Appen-

dix), we performed a weighted analysis of ge-

netic risk score to evaluate the effect of the 

presence of an increasing number of height- 

related variants on the risk of CAD. We calcu-

lated a value of 0 to 2 for every SNP for each 

individual on the basis of the sum of the pos-

terior probabilities for the height-increasing 

allele and multiplied by the effect size observed 

for height. We then totaled these values across 

all SNPs for each individual, and the individuals 

were then grouped into quartiles. We used logis-

tic regression to assess the quartiles, after ad-

justment for study, to estimate combined odds 

ratios for CAD.

To assess the association between height vari-

ants and cardiovascular risk factors, we combined 

the β
3
 estimates using a fixed-effects meta-

analysis, except in cases in which heterogeneity 

was high (I2, >40%), in which case we per-

formed a random-effects meta-analysis. For these 

analyses, the β
3
 values reflect the change in 

measurement unit of the variable per 1-SD change 

in height for quantitative variables (with a nega-

tive value reflecting an inverse association) or an 

odds ratio for categorical variables. Because we 

tested a total of 13 traits (including CAD), we 

considered a P value of 0.003 to indicate statisti-

cal significance (Table 1).

To identify common biologic processes that 

might explain the association between height 

and CAD, we performed pathway analysis using 

Ingenuity Pathway Analysis (IPA) software, ver-

sion 18488943 (Ingenuity Systems). Such an 

analysis requires the assignment of each height-

associated SNP to a specific gene that is then 

included in the pathway analysis. (Further de-

tails regarding the selection process for the 

genes are provided in the Supplementary Appen-

dix; the full list of genes that are included in the 

analysis is provided in Table S4 in the Supple-

mentary Appendix.) The IPA output includes 

Benjamini–Hochberg Q values for the false dis-

covery rate.18

R esult s

Study Cases and Controls

The maximum number of CAD cases and con-

trols available for analyses were 65,066 and 

128,383, respectively (Table S1 in the Supplemen-

tary Appendix); 73.8% of the cases and 49.8% of 

the controls were men. The average age was 57.3 

years (range, 42.4 to 75.6), and 65% of the cases 

reported a history of myocardial infarction.

Height-Associated Variants and CAD

The individual β
3
 odds ratios for the 180 SNPs 

that were analyzed to investigate the association 

between height and CAD are shown in Figure 1. 

In a random-effects meta-analysis, there was a 

significant association between the height-asso-

ciated SNPs and CAD (odds ratio, 0.88; 95% CI, 

0.82 to 0.95; P<0.001) (Table 1). This association 

translated to a relative increase of 13.5% (95% CI, 

5.4 to 22.1) in the risk of CAD per 1-SD decrease 

in height.

As anticipated, most individual β
3
 values cen-

tered around 1.0 and were nonsignificant (Fig. 1). 

However, some values had a nominally signifi-

cant association (P<0.05) both above and below 

1.0. Because 180 variants were tested, some of 

these associations could reflect chance (only 

3 survived Bonferroni correction), but they could 

also represent pleiotropy — in other words, an 

effect of these loci on the risk of CAD that was 

independent of any effect through height. To 

rule out the possibility that the observed genetic 

association between height and CAD was being 

driven by more extreme associations, we repeated 

the meta-analysis with the exclusion of six SNPS 

that showed an individual association at P<0.001. 

The combined association between the remaining 

Figure 1 (next pages). Forest Plot Showing the Effect 

Size of Height on the Risk of Coronary Artery Disease 

(CAD) for Each Height-Associated Genetic Variant.

Shown are odds ratios for each height-associated single-
nucleotide polymorphism (SNP) for β3 values (i.e., the 
putative association between height and CAD mediated 
through that variant). The number of cases and con-
trols that were analyzed for each variant are shown. 
The β3 odds ratios are organized in ascending values 
across two panels for ease of visualization. The overall 
β3 estimate (shown in red) is from a random-effects 
meta-analysis of all SNPs.
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variants and CAD was largely unchanged (odds 

ratio, 0.88; 95% CI, 0.82 to 0.94; P<0.001).

The association between genetically deter-

mined height and CAD remained significant in 

the subgroup of cases with a history of myocar-

dial infarction (odds ratio, 0.88; 95% CI, 0.80 to 

0.96; P = 0.003). In sex-specific analyses, the as-

sociation between the variant and CAD was 

significant in men (odds ratio, 0.88; 95% CI, 

0.81 to 0.95; P = 0.001) but not in women (odds 

ratio, 0.96; 95% CI, 0.86 to 1.07; P = 0.46). How-

ever, in an interaction test, the difference be-

tween the sexes was not significant (P = 0.19).

Genetic Risk Score and Risk of CAD

Individual-level data were available for 18,249 

persons (including 8240 cases) from six cohorts 

(Table S3 in the Supplementary Appendix). The 

risk of CAD among individuals, as partitioned 

into quartiles carrying an increasing number of 

height-raising alleles, is shown in Figure 2. Those 

with an increased number of height-raising al-

leles had a reduced risk of CAD, with an odds 

ratio for quartile 2 vs. quartile 1 of 0.90 (95% CI, 

0.83 to 0.98; P = 0.02), an odds ratio for quartile 3 

vs. quartile 1 of 0.88 (95% CI, 0.81 to 0.96; 

P = 0.003), and an odds ratio for quartile 4 vs. 

quartile 1 of 0.74 (95% CI, 0.68 to 0.80; P<0.001).

Height-Associated Variants  

and Cardiovascular Risk Factors

The findings from the analyses of the composite 

association between height-associated variants 

and specific cardiovascular risk factors are pro-

vided in Table 1. For most of the risk factors, the 

analyses did not identify any evidence of an as-

sociation between genetically determined height 

and the risk of CAD. The two exceptions were 

LDL cholesterol and triglyceride levels, for which 

there were small but significant associations.

For both LDL cholesterol and triglycerides, the 

associations were in a direction that could have 

contributed to the observed association between 

a shorter genetically determined height and an 

increased risk of CAD. To investigate this find-

ing further, we evaluated the quantitative asso-

ciations between LDL cholesterol and triglycer-

ides and the risk of CAD that were reported in 

observational studies,19 taking into account re-

gression dilution.20 We determined that for each 

1-SD increase, the risk of CAD was raised on 

average by 45% (log odds ratio, 0.37) for the LDL 

cholesterol level and by 32% (log odds ratio, 

0.28) for the triglyceride level. Then, from the 

respective changes from a 1-SD change in geneti-

cally determined height, we estimated that the 

risk of CAD would increase by 2.3% (95% CI, 

1.9 to 2.8) because of the increase in the LDL 

cholesterol level and by 1.5% (95% CI, 1.2 to 1.8) 

because of the increase in the triglyceride level. 

This suggests that approximately 19% of the 

observed association between a genetically deter-

mined decrease in height and an increased risk 

of CAD could be explained by the effect of 

shorter height on LDL cholesterol and approxi-

mately 12% by an effect on triglycerides. To 

confirm that the majority of the genetic asso-

ciation of height with CAD was not mediated by 

lipid levels, we repeated our analysis of the as-

sociation between height variants and the risk of 
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Figure 2. Analysis of the Association between the Pres-

ence of an Increasing Number of Height-Related Al-

leles and the Risk of CAD, According to Quartile of Ge-

netic Risk Score (GRS).

The analysis was performed in 18,249 samples (including 
8240 obtained from patients with CAD) with the use of 
individual-level genotype data. Shown are odds ratios 
and 95% confidence intervals. Participants were divided 
into quartiles on the basis of the number of height- 
increasing alleles that were present, with quartile 1 
(reference quartile) carrying the fewest.
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CAD with the exclusion of 60 SNPs that were 

associated with a lipid trait at P<0.05. An analy-

sis of the remaining SNPs resulted in an odds 

ratio of 0.89 (95% CI, 0.81 to 0.98; P = 0.01).

Pathway Analysis

Biologic pathways (incorporating genes at the 

height loci) with a Q value of less than 0.05 for 

the false discovery rate, as identified on the IPA 

analysis, are provided in Table 2. Also shown are 

the genes within each pathway that were present 

on the input list and also the proportion of genes 

in each pathway formed by them. Pathways in IPA 

software have a hierarchical organization, and 

many of the pathways that are identified are 

overlapping and, in some cases, are subsets of 

each other. For example, the pathway that is iden-

tified as “factors affecting cardiogenesis” is an 

amalgam of other pathways and overlaps with sig-

naling pathways for bone morphogenetic protein 

(BMP) and transforming growth factor β (TGF-β), 

and all three of these pathways share genes with 

other pathways. Likewise, there is overlap be-

tween the signaling pathways for growth hor-

mone and insulin-like growth factor 1 (IGF-1).

Discussion

In this study, we found an association between a 

genetically determined decrease in height and an 

increased risk of CAD. Our finding validates the 

epidemiologic observation of an inverse associa-

tion between height and CAD.1,2

A key advantage of using a genetic approach 

over a traditional epidemiologic approach to in-

vestigate an association such as that between 

height and CAD is that genotypes (because they 

are randomly distributed at birth) are unlikely to 

be confounded by lifestyle or environmental fac-

tors. Regardless of whether such factors are 

known (e.g., poor nutrition or socioeconomic 

conditions during childhood) or unknown, they 

can independently affect achieved height and the 

risk of CAD and lead to a spurious association 

between them (Fig. 3). It is nonetheless possible 

that the genetic variants themselves affect height 

and CAD risk through entirely different mecha-

nisms. However, given the large number of vari-

ants that we included in the analysis, all of 

which were selected only because of their asso-

ciation with height, it is likely that at least some 

of the processes are shared. This hypothesis is 

supported by the finding from the individual-

level analysis of genetic risk score showing a 

direct correlation between the presence of an 

increasing number of height-related alleles and a 

reduction in the risk of CAD (Fig. 2).

A genetic approach also offers novel methods 

to explore potential mechanisms linking shorter 

height with an increased risk of CAD (Fig. 3). In 

this context, we performed two analyses. First, 

we applied the same genetic approach to inves-

tigate the association between height-related 

genetic variants and several established and po-

tential cardiovascular risk factors. Notable nega-

tive findings here include the lack of an overall 

effect of height-associated SNPs on body-mass 

index. This suggests that the association be-

tween shorter stature and an increased risk of 

CAD is not mediated by an effect on obesity. On 

Table 2. Biologic Pathways Identified by Means of IPA of Height-Associated Variants.*

Canonical Pathways in IPA Q Value† Ratio‡ Proteins in Pathway

Factors promoting cardiogenesis  
in vertebrates

0.003 0.07 NKX2–5, BMP2, TGFB2, MEF2C, BMP6, PRKCZ, NOG

Growth hormone signaling 0.03 0.06 SOCS2, IGF1R, GH1, SOCS5, PRKCZ

Axonal guidance signaling 0.03 0.06 FGFR4, SOCS2, IGF1R, INSR, SOCS5

STAT3 pathway 0.03 0.03 SLIT3, PAPPA2, PAPPA, RHOD, ADAM28, GNA12, 
BMP2, PTCH1, HHIP, NFATC4, BMP6, PRKCZ

BMP signaling pathway 0.03 0.06 NKX2-5, RUNX2, BMP2, BMP6, NOG

TGF-β signaling 0.04 0.05 NKX2-5, AMH, RUNX2, BMP2, TGFB2

IGF-1 signaling 0.049 0.05 SOCS2, IGF1R, IGFBP7, SOCS5, PRKCZ

* BMP denotes bone morphogenetic protein, IGF-1 insulin-like growth factor 1, IPA Ingenuity Pathway Analysis, STAT3 
signal transducer and activator of transcription 3, and TGF-β transforming growth factor β.

† The Q value was calculated with the use of the Benjamini–Hochberg method for determining the false discovery rate.
‡ The ratio is the proportion of the genes in the IPA that were part of the input list for the height-related genes.
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the other hand, there was a significant overall 

association between height SNPs and LDL cho-

lesterol and triglycerides in a direction consis-

tent with their association with CAD. The asso-

ciation between shorter stature and increased 

plasma LDL cholesterol and triglyceride levels 

has also been observed in epidemiologic stud-

ies.2 The mechanisms by which height-associated 

SNPs have an effect on LDL cholesterol and tri-

glyceride levels are not clear. In any case, these 

effects in combination potentially explain less 

than one third of the observed association be-

tween genetically determined shorter height and 

an increased risk of CAD.

Second, we performed pathway analysis, 

which identified a number of overlapping path-

ways linking height-associated SNPs that could 

also have an effect on the risk of CAD, including 

the BMP- and TGF-β–signaling pathways, axon-

guidance pathways, and the STAT3 and IGF-I 

pathways, all of which have experimentally 

documented roles in the development of athero-

sclerosis.21-26 The limitations of pathway analy-

sis included the need to assign a specific gene 

for each height-associated locus and incomplete 

knowledge regarding how such pathways are 

constructed. (A fuller discussion of the pathways 

is provided in the Supplementary Appendix.) 

Taken together, these findings suggest that sev-

eral overlapping and complex biologic pathways 

on the one hand influence development and 

height and on the other hand influence the risk 

of atherosclerosis through an effect on vascular 

biology and function (Fig. 3).

In contrast to epidemiologic studies in which 

a similar inverse association between height and 

CAD was present in both men and women,2 we 

did not see a significant association in women. 

Whether this represents a genuine difference in 

the effect of genetically determined height on the 

risk of CAD between men and women or simply 

reflects the reduced power from the much small-

er sample size available for analysis in women is 

unclear. Notably, the effect sizes that were ob-

served in men and women were not signifi-

cantly different in an interaction analysis.

Height and other measurements of body size 

have a positive correlation with the diameter of 

coronary arteries.27 Therefore, a potential simple 

explanation for an increased risk of CAD in 

shorter persons is that they have proportionally 

smaller-caliber coronary arteries, so a similar 

plaque burden could result in greater probability 

of symptomatic disease. However, women also 

have smaller-caliber arteries than men, indepen-

dent of body size and height.27 Reduced height 

and female sex would therefore be expected to 

have an additive effect if this was the mecha-

nism linking shorter height with an increased 

risk of CAD. In this context, the finding of a 

weaker association between genetically deter-

mined shorter height and CAD in women than 

in men would argue against a structural expla-

nation on the basis of coronary-vessel caliber as 

the main explanation for the inverse association 

between height and CAD.

Although the genetic approach that we used 

allows us to reduce the possibility of confound-

ing of any observed association by socioeconom-

ic, lifestyle, or environmental factors, it does not 

rule out the possibility that the association be-

tween genetically determined shorter height with 

an increased risk of CAD is due to lifestyle 

choices or behavior adopted by such persons as 

a direct consequence of being shorter (Fig. 3). 

Indeed, in an exemplar exploration of this pos-

sibility, we examined whether the height-related 

variants showed an association with the quantity 

Genetic
Variants

Shared
Biologic

Pathways
Height

CAD

Confounders

Figure 3. Interpreting the Association between Genetically Determined 

Shorter Height and Increased Risk of CAD.

The main advantage of the genetic approach is that it reduces the likelihood 
of known and unknown demographic, lifestyle, socioeconomic, or behavioral 
confounders that have an independent effect on height and the risk of CAD 
(solid black lines) and could give rise to a false association between the two 
factors. It is possible that the association between the studied genetic vari-
ants and height and the association with CAD are through completely dif-
ferent mechanisms (dashed black lines). However, the more likely scenario 
on the basis of our findings is that height variants affect biologic pathways, 
which on the one hand determine achieved height and on the other hand 
influence the risk of CAD (solid red lines). It is also possible that genetically 
determined height itself alters lifestyle or behavior, which then affects the 
risk of CAD (dashed red line).
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of cigarettes smoked among smokers but found 

no evidence for this hypothesis (Table 1). Other 

relevant behavioral changes that could have an 

effect on the risk of CAD that could be adopted 

by persons of short stature include those related to 

diet, physical activity, and alcohol consumption.

In conclusion, using a genetic approach, we 

found an association between genetically deter-

mined shorter height and an increased risk of 

CAD. Part of this inverse association may be 

driven by the association between shorter height 

and an adverse lipid profile, although the major-

ity of the relationship is likely to be determined 

by shared biologic processes that determine 

achieved height and atherosclerosis development. 

More generally, our findings underscore the 

complexity underlying the inherited component 

of CAD.
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