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Abstract

The quantum mechanical functionality of nanoelectronic
devices such as resonant tunneling diodes (RTDs), quantum

well infrared photodetectors (QWIPs), quantum well lasers,
and heterostructure fieM effect transistors (HFETs) is

enabled by material variations on an atomic scale. The

design and optimization of such devices requires a
fundamental understanding of electron transport in such
dimensions. The Nanoelectronic Modeling Tool (NEMO)

is a general-purpose quantum device design and analysis tool

based on a fundamental non-equilibrium electron transport

theory. NEMO was combined with a parallelized genetic

algorithm package (PGAPACK) to evolve structural

material parameters to match a desired set of experimental
data. A numerical experiment that evolves structural

variations such as layer widths and doping concentrations is

performed to analyze an experimental current voltage
characteristic. The genetic algorithm is found to drive the

NEMO simulation parameters close to the experimentally

prescribed layer thicknesses and doping profiles. With such

a quantitative agreement between theo_ and experiment

design synthesis can be performed.

1 Introduction

Miniaturization of measurement, analytical md

communication systems is required to meet the NASA/JPL

goal to reduce payload in future space missions. Typical

system requirements include the detection of particular

spectral lines, associated data processing, and
communication of the acquired data to other subsystems.
Silicon device technology dominates the commercial

microprocessor and memory market, however,
semiconductor heterostrucmre devices maintain their niche

for light detection, light emission, and high-speed data

transmission. The production of these heterostructure
devices is enabled by the advancement of material growth

techniques, which opened a vast design space. The full

experimental exploration of this design space is unfeasible
and a reliable design tool is needed.

The Nanoelectronic Modeling tool (NEMO) was

developed as a general-purpose quantum mechanics-based I-

D device design and analysis tool from 1993-97. The tool is
available to US researchers by request on the NEMO web

site [1]. NEMO is based on the non-equilibrium Green

function approach, which allows a fundamentally sound
inclusion of the required physics: bandstructure, scattering,

and charge self-consistency. The theoretical approach is
documented in reference [2] while some of the major

simulation results are documented in references [3,4]. This

paper highlights the recent work on genetic algorithm based

device analysis.

2 Genetic Algorithm-Based Quantum

Device Analysis

RTD designs involve the choice of material

compositions, layer thicknesses, and doping profiles. The

full exploration of the design space using purely

experimental techniques is unfeasible due to time and
financial constraints. For example, it takes a well-equipped

research laboratory approximately five working days [5] for

the growth, processing and testing of a particular resonant
tunneling diode design. NEMO can provide current voltage
characteristics (I-V's) that are in quantitative agreement with

experimental data [3,4] within minutes to hours I of CPU

time for a single set of device and material parameters.
With this quantitative simulation capability the design

parameter space can be explored expediently once an
automated system for the design parameter variation is

implemented. This paper summarizes the combination of
NEMO with a massively parallel genetic algorithm package

(PGAPACK) [6]. For a detailed description of genetic

algorithms we refer the reader to reference [7]. In this work
the RTD is used as a vehicle to study the effects of

structural and doping variations on the electron transport.
Several I-V of different devices that are part of a well-

behaved test matrix of experimental data published in

reference [3] are used as a design target. Details of the

The actual CPU time needed for a single I-V simulation depends
strongly on the choice of material systems, bandstructure models,
temperature scattering models, and bias points. The individual I-V
characteristics presented here take about 30 minutes to compute on a
single 200MHz RI0000 CPU of an SGI Origin.
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Figure I: (a) Conductionband edge without charging effects and
doping profile along the growth axis of the RTD. (b)
Experimental and optimal fit simulated current voltage
characteristic. Layer thicknesses are within the experimental

uncertainty. The unintentional doping in the central device
region is one order of magnitude larger than typically assumed.

preparation of the simulation.target, the fitness function and
the physical electron transport model can be found in

reference [8].

3 The Numerical Experiment

In the numerical experiment described in Figure 1, five

parameters (2 doping concentrations, Nt, N2, and 3
thicknesses, T,, T 2, T3) are varied within the genetic

algorithm in order to achieve the best fit to an experimental
I-V curve. The simulation is started from a random

population of 200 parameter sets. The doping population is

logarithmically distributed around the nominal values by
factors of 10 (N I E [1X1017,1X1019], N2 _ [lxl0ta, lxl0tr]).

The layer thickness population is uniformly distributed
around the nominal value by 10 monolayers (T_6[1,17] and

T,,T_e[6,26]). In each generation 63 of the worst genes 2 are

dropped out of the population and new genes are generated

from the rest by mutation and crossover. The mutation and

the crossover probablities are set to 50%. Mutation allows

the parameters to leave the original parameter range.

4 Simulation Results

One example of our simulation results involving an I-V

is shown in Figure lb. The physical structure was specified

to the grower to have 16 monolayers (ml) of barriers (T:)

and well (T_), no intentional doping in the central device

(N,_=lxl015 cm-3), N_=Ixl0 ts cm 3 doping in the low doping

spacers, and 3x10 ts cm 3 in the high doping contacts (see
Figure la). The simulation is started from the random

populations as described in the previous section. The

genetic algorithm converges for to the nominal structure
values, well within the experimental uncertainty as shown

in Figure lb.

z LAPACK is implemented with MPIwhere N-I of N processors are
slaves to one master processor. In a cluster of 64 CPU's we therefore
renew 63 genes in every generation.

It has been found in previous work [3] (by empirical

adjustments) that for these experimental samples the well
widths must be increased in the simulation by a few

monolayers versus the nominal values to achieve the best

agreement with experimental current voltage characteristics.

The genetic algorithm drives the best fit to the same
conclusion.

The the reduced doping in the central device region is

intended to reduce ionized dopant scattering in the resonant

tunneling diode. The low doping level is typically referred

to as "no-intentional doping" and it is typically assumed to
be lxl0 _5cm 3. The simulations indicate that this doping

level is about one order of magnitude higher than assumed.

5 Summary

A physics-based resonant tunneling device analysis driven

by a genetic algorithm with quantitative agreement between

experiment and theory has been achieved. With such

quantitative agreement within this material system device

synthesis is expected to be possible, where a desired

performance characteristic is prescribed to the simulator and
a new arrangement of layer thicknesses and doping profiles

is generated.
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