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Abstract—This paper presents a modified Genetic Algorithm (GA)
technique in which the large phase perturbations are calculated
by aggregating small phase increments. The proposed aggregation
GA technique overcomes the major drawback of the large solution
space required by the classical GA techniques. The proposed
method adopts small ranges for increments of the parameters and the
optimality is reached via aggregation of the best increments of phases.
Consequently, the GA searches in a smaller solution space and finds the
solution with reduced number of iterations. Simulation results show
the achieved improvement of the proposed technique over the classical
GA. The suppressed sectors using phase-only control are accomplished
with and without element failures. Problems like imposing symmetrical
nulls around the mainbeam and compensation for the failure of center
element have been achieved.
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1. INTRODUCTION

Array pattern synthesis has long been of interest to antenna designers
where suppressed sectors are created at the direction of the interfering
signals. In general, the pattern synthesis techniques require variable
complex weights, variable phase shifters, or variable attenuators at the
elements of the array. Array pattern control with variable complex
weights is rather expensive compared with the phase-only control
[1, 2] and amplitude-only [3] control. But, the phase-only control
has the advantage of design simplicity as the required phase shifters
are normally incorporated at the array elements. Generally, pattern
synthesis by the phase-only control in the conventional configuration
of a linear antenna involves nonlinear algorithms to obtain the phase
adjustments [1, 4]. The nonlinear problem can be simplified by
restricting the array phase perturbations to small values such that
the problem can be linearized [2]. To avoid the limitation of the small
phase restriction, large values for the phases are allowed using nonlinear
algorithms. A linear algorithm for large phase values can be achieved
using an iterative procedure with linear programming [5]. A general
strategy for phase-only control have been described and is applicable
to continuous apertures and to linear and planer arrays [6].

Genetic Algorithms (GA’s) are optimization techniques that have
been used to solve general problems with objective functions that do
not possess continuity and differentiability properties. Recently, GA’s
have been used as an optimization tool to control many of the features
of the array patterns. A GA was developed by Haupt [7] to adjust
a quantized phase-only weights by small phase perturbations. Unlike
binary coding and binary crossover genetic algorithms, an approach has
been proposed where the excitation weighting vectors were presented
as complex number chromosomes and uses decimal linear crossover
without crossover site [8]. Also, the GA was used to establish the
optimal solution for a uniformly null-filled array and for array thinning
[9]. On the other hand, GA was employed to steer the pattern nulls
when only the amplitudes of the array elements are perturbed [10].

In fact, the pattern synthesis with phase-only control is considered
to be a highly nonlinear problem; therefore, GA’s have been found to
be well suited to this problem including the element failure case. In
this work, the large phase perturbations of the antenna elements are
calculated by aggregating small phase increments using the proposed



Genetically evolved phase-aggregation technique 289

aggregation genetic algorithm. The modified GA is used to find the
best phase increments of the elements such that the performance index
is optimum. This technique will overcome the major drawback of
the classical approach; that is, the solution space of each parameter
should be specified. For a specified large range of solution space, the
convergence will be slow. On the other hand, for a specified small range
of solution space the optimal solution is not guaranteed. Therefore, the
proposed aggregation method adopts small ranges for the increments of
the parameters and the optimality can be reached via the accumulation
of the best increments of phases. This will cause the genetic algorithm
to search in small solution space and find the solution with reduced
number of iterations.

2. PROBLEM FORMULATION

The initial pattern of N equi-spaced isotropic elements has the
following form

Fo(θ) =
N∑
n=1

a0ne
j(dnκ sin θ+φn) (1)

where a0n is the current excitation of the nth element, dn is the position
of the nth element, κ is the wave number, θ is the scanning angle from
broadside, and φn is the initial phase shift of the nth element. Denoting
the angular direction u = sin(θ) and using matrix notation, Equation
(1) can be formed as

Fo(u) = Φ0S(u) (2)

where

Φ0 =
[
ejψ

0
1 ejψ

0
2 ejψ

0
3 · · · ejψ

0
N

]
(3)

S(u) =
[
a01e

jd1ku a02e
jd2ku a03e

jd3ku · · · a0NejdNku
]T

(4)

and ψ0
n = φn.

The method of null steering by controlling the phase shifters
is obtained by determining a set of new phase values such that
the resultant pattern has nulls formed in the interference directions
while maintaining the main beam pointing towards the desired signal.
Consequently, the specifications are set by a desired function, template,
that is defined as the initial antenna array pattern in the main beam
region, the specified side lobe level, αs, and the specified null levels,
αj , j = 1, 2, . . . , J , where J is the number of interfering signals. Hence,
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the template, D(u), is defined as

D(u) =




Fo(u) u ∈ Ro

αs u ∈ Rs

αj u ∈ Rj , j = 1, 2, . . . , J
(5)

where Ro, Rs, and Rj represent the angular regions of the main beam,
the side lobes and the null regions, respectively. Realization of the
above pattern can be done using phase-only control method with the
following function

F (u) = ΦS(u) (6)
where

Φ =
[
ejψ1 ejψ2 ejψ3 · · · ejψN

]
(7)

The phases ψn for n = 1, . . . , N should be chosen such that F (u)
approximates the template D(u).

3. SOLUTION USING AGGREGATION GENETIC
ALGORITHM

In the classical GA’s, the solution space of each parameter should be
specified in the genetic search with real values. This range of the
solution space is usually unknown which will cause two problems; first,
it is hard to guess the suitable range of each parameter; second, a large
range should be adapted. The consequence will be a larger number of
iterations is needed to find the optimal solution in this large solution
space. On the other hand, the proposed method adopts small ranges
for the increments of the parameters and the optimality criterion is
to find the best increments of phases that should be aggregated to
maximize the fitness function. This will cause the genetic algorithm
to search in small solution space and find the solution in less number
of iterations. The exact range of each parameter is not vital in this
approach since the accumulation of the parameter increments will take
care of this matter.

Let the array pattern at the kth aggregation step to be expressed
as

F k(u) = ΦkS(u) (8)

where Φk denotes the complex phase vector at the kth aggregation
step, and is expressed as

Φk =
[
ejψ

k
1 ejψ

k
2 ejψ

k
3 · · · ejψ

k
N

]
(9)

It is desired to proceed from the initial phases to the final phases such
that F k(u) approximates D(u) in a predefined sense as the number of
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aggregation steps increases. To establish this procedure, let the phase
vector at the kth aggregation step be expressed as

Ψk = Ψk−1 +Bk (10)

where
Ψk =

[
ψk1 ψk2 ψk3 · · · ψkN

]
(11)

and
Bk =

[
βk1 βk2 βk3 · · · βkN

]
(12)

is the vector of phase increments at the kth aggregation step.
Previous works have been concentrated on finding the phase vector

Ψ via GA’s, in this work GA’s are used to find the best vector of
increments B such that Ψ will be optimum. This modification gives
better rates of convergence and overcomes the problem of restricting
the solution space which is inherent in GA’s. Genetic algorithms
maintain and manipulate a family or population of solutions and
implement what is called survival of the fittest strategy during the
search for better solution. GA’s evolve a population of individuals
based on the mechanics of natural selection, genetics and evolution.
Each individual of the population represents a trial solution of the
problem and is called a chromosome which is usually represented by
binary strings. In [11] chromosomes are extended to real values, and
it is shown that real-valued GA is more efficient than binary GA. The
use of GA requires the determination of the following six fundamental
issues [12]: chromosome representation, selection function, genetic
operators making up the reproduction function, the creation of initial
population, termination criteria, and the evaluation function.

The first issue is chromosome representation which is needed
to describe each individual in the population of interest. The
representation scheme determines how the problem is structured in
the GA and the operators that are used. Floating-point numbers have
been used to make up the sequence of genes for each chromosome.

The second issue is selection of individuals to produce successive
generations which plays an important role in GA. The selection
function determines which of the individuals will survive and continue
on to the next generation. Various methods for selection are available
such as Roulette Wheel [13], Normalized Geometric Ranking [12], and
Tournament Selection. Normalized geometric ranking was adapted for
this application.

The third issue is genetic operators, which provide the search
mechanism of the GA. The operators are used to create new solutions
based on existing ones. There are two basic types of operators,
crossover and mutation. Crossover takes two individuals and produces
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two new individuals while mutation alters one individual to produce
a single new solution. Operators for real-valued representation have
been developed in [11]. In general, let BL and BU be the lower and
upper bounds for the vector B, respectively, i.e.,

BL = [β1L β2L β3L · · · βNL] (13)
BU = [β1U β2U β3U · · · βNU ] (14)

Heuristic crossover produces a linear extrapolation of the two
individuals. A new individual is created as follows:

B1c = B1p + diag(r)(B1p −B2p)

B2c = B1p

(15)

where B1p, B2p are two parent individuals and B1p is better than
B2p, B1c, B2c: are two children individuals, and r is a vector of
uniform random number between (0,1).

For this type of crossover a feasibility check, f , on B1c should be
done as follows:

f =

{
1 if βnL ≤ βn1c ≤ βnU , n ∈ N

0 otherwise
(16)

where βn1c is the nth increment for the first child chromosome. If f
equals 1, the crossover takes place; otherwise, a new random number r
is generated and the heuristic crossover is done again. If the number of
failures exceeds a preset value, let the children equal the parents and
stop.

The multi-non-uniform mutation operator applies the following
operator to all the variables in the individual:

βn =




βn + (βnU − βnL)f(G) if r1 < 0.5
βn − (βnU + βnL)f(G) if r1 ≥ 0.5
βn otherwise

(17)

where f(G) = (r2(1 − G
Gmax

))b, r1, r2 are uniform random numbers
between (0,1), G is the current generation, Gmax is the maximum
number of generations, and b is a shape parameter.

The fourth issue is that the GA must be provided with an initial
population, Po. It is usually done by randomly generating solutions for
the entire population within the search space. Improvements on the
convergence can be done by seeding potentially good solutions which
are taken form other optimization methods.



Genetically evolved phase-aggregation technique 293

The fifth issue is termination of the search for the best individual
should be stopped if one of the following three conditions is satisfied:
reaching the maximum number of iterations, reaching the optimum
solution, or the solution exceeds some tolerance based on the
performance index.

The last issue is the evaluation function or better named the fitness
function in GA and it is a vital part of this type of optimization
method. The survival of the individuals is based on this evaluation
function, the fitted individuals, i.e., individuals having the highest
values of fitness will stay for the next generation and the others will
be discarded. GA optimization is usually designed for maximization.
If the optimization problem is to minimize a function f(x), this is
equivalent to minimizing a function g, where g(x) = −f(x), i.e.,

min f(x) = max g(x) = max {−f(x)} (18)

In this work, the evaluation function is the minimization of the
maximum deviation in decibel between the actual output of the array
system F k(u) (hereafter will be denoted F k(u,Bk)) and the template
specified by D(u). By applying (17) for the minimization case, the
performance index, Jk(u,Bk), will be

Jk(u,Bk) = min
Bk

max
u

(
F k(u,Bk)dB −D(u)dB

)
(19)

The optimization process in this case is to find the best individual
Bk which will be used in (10) to minimize Jk(u,Bk); eventually it
minimizes the maximum deviation between F k(u,Bk) and D(u).

The proposed algorithm will proceed as follows:

1. Initialization:
- Set max k = K, max i = I.
- Set k = 0.
- Set i = 0.
- Set BL, and BU
- Set Ψ0 = [0 0 · · · 0].
- Set B0

best = [0 0 · · · 0].
2. Randomly generate an initial population Po of M individuals.
3. Include the individual Bk

best with the initial population.
4. Evaluate the respective performance index for each individual of

the population.
- Ψk = Ψk−1 +Bk

- Φk =
[
ejψ

k
1 ejψ

k
2 ejψ

k
3 · · · ejψ

k
N

]
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- F k(u,Bk) = ΦkS(u)
- Jk(u,Bk) = min

Bk
max
u

(
F k(u,Bk)dB −D(u)dB

)
5. Generate an intermediate population Pr by selection operator.
6. Generate a new population Pnew by crossover and mutation

operators on Pr.
7. If i < I, set i = i + 1, and go to step 4; otherwise, proceed to the

next step.
8. Use the best solution Bk

best to find the phase vector
Ψk = Ψk−1 +Bk

best

9. Set k = k + 1,
if k < K,

- set i = 0
- go to step 2

else
- Φk =

[
ejψ

k
1 ejψ

k
2 ejψ

k
3 · · · ejψ

k
N

]
- F k(u,Bk

best) = ΦkS(u)
end.

From the above algorithm, the GA is used to find the best
phase increments of the elements such that the performance index
is optimum. Then, as proposed in the algorithm, the large phase
perturbations of the antenna elements are calculated by aggregating
those small phase increments.

4. PHASE CONTROL WITH ELEMENT FAILURES

Many practical factors such as aging and accidents may lead to failure
of antenna elements. A random distribution of the element failures
will degrade the initial pattern by filling the suppressed sectors and
by modifying the SLL value. The amount of degradation of the array
pattern depends on the number and the locations of the failed elements.
Also, random element failures will yield a nonsymmetrical distribution
of the array element coefficients [14]. Therefore, the corrected pattern
after F failed elements has the following form

F (u)
∑
n∈Nc

ejφna0ne
(jdnκ sin θ) (20)

where Nc is the set of non-failed elements in the linear array and it has
N -F elements. The correction is done such that F (u) approximates the
template specified by D(θ) which is defined in Equation (5). Following
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the same derivation of the previous section, the performance index can
be written as

Jk(u,Bk
f ) = min

Bk
max
u

(
F k(u,Bk

f )dB −D(u)dB
)

(21)

where the vector Bk
f contains the phase increments of the non-failed

elements at the kth aggregation step.

5. NUMERICAL EXAMPLES AND DISCUSSION

The new GA based method of phase-only control to suppress narrow
and wide band interference is demonstrated using a 20 equispaced
linear array elements of a half wave interelement spacing. The
interference suppression is accomplished such that F (u) approximates
the template specified by D(u) which is formed by maintaining the
mainbeam directed towards the desired source, specifying the sidelobe
level in the sidelobe region, and creating suppressed sectors in the
direction of the interferences. In the following computer simulations,
the desired main beam and the SLL of the template are assumed as a
classical Dolph-Chebyshev linear array design with SLL of 30 dB.

The results of creating multiple suppressed narrowband interfer-
ences in the sidelobe region are presented. Let the template to be
used contains three narrowband interferences at the angular directions
u1 = [−0.5,−0.49], u2 = [0.4, 0.405], and u3 = [0.61, 0.62] as shown in
Figure 1 (dashed). Using the proposed aggregation genetic approach
with a maximum number of iteration, K×I = 200 (K = 10 and I = 20)
and the bounds on the phase increments βnU = −βnL = π

20 for all n,
the phases of antenna elements are computed as given in column 2
of Table 1. The corresponding approximation pattern with the three
prescribed suppressed sectors is shown in Figure 1 (Solid). From the
Figure, the suppressed narrow sectors’ depths {αj , j = 1, 2, 3} are
79 dB, 80 dB, and 78 dB, respectively.

Also, this proposed method can impose symmetrical nulls around
the mainbeam due to the capability of this aggregation method to
obtain large phases even though small phase increments are imposed.
Figure 2 shows the pattern which approximates the template with two
symmetrical suppressed sectors imposed at ∆u1 = (−0.405,−0.4) and
∆u2 = (0.4, 0.405) with a maximum number of iteration, K × I =
200 (K = 10 and I = 20) and the bounds on the phase increments
βnU = −βnL = π

20 for all n. From the Figure, symmetrical suppressed
sectors are achieved around the mainbeam with 75 dB depths for both
sectors. Column 3 of Table 1 gives the computed element phase
perturbations for the Figure. The above results show the ability of



296 Abu-Al-Nadi, Mismar, and Ismail

Table 1. Computed element phases {ψn} for Figures 1, 2, 3, and 4.

nψ (Radians)Element
No. Fig.1 Fig. 2 Fig. 3 Fig. 4
1 -0.0353 -0.0761 0.0621 0.0946
2 -0.1366 0.0015 -0.0463 -0.0533
3 -0.0284 0.0173 -0.0894 -0.1036
4 0.0521 -0.1133 -0.0295 -0.0142
5 -0.0776 0.4289 0.1047 0.0414
6 0.1471 0.3536 -0.0510 0.1168
7 0.0797 -0.1171 -0.0082 -0.1533
8 0.0270 -0.0443 -0.0631 -0.1394
9 0.0377 -0.0968 -0.0358 -0.0199
10 0.0094 -0.2326 0.0529 -0.0519
11 -0.1454 -0.1257 -0.0348 -0.1240
12 -0.0314 -0.3205 -0.0817 -0.0688
13 0.0145 -0.0073 0.0567 0.1669
14 0.0573 -0.1389 0.0709 -0.0344
15 0.0283 -0.3439 -0.1014 -0.0313
16 0.0221 -0.2060 -0.0706 0.0268
17 -0.0848 0.1020 -0.0367 -0.1067
18 -0.0794 0.0829 -0.0051 0.1458
19 -0.0152 0.0971 0.0011 0.0952
20 0.1351 0.0500 -0.1046 -0.1303

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 1. Pattern synthesis using the proposed technique with three
suppressed sectors at [−0.5,−0.49], [0.4, 0.405], and [0.61, 0.62] (solid),
and the fitness template D(θ) (dashed).
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Figure 2. Pattern synthesis with two symmetrical null sectors at
[−0.405,−0.40] and [0.4, 0.405] (solid), and the fitness template D(θ)
(dashed).

this technique to suppress multiple narrow band interfering signals
even when they are symmetrically located around the mainbeam.

To discuss the effect of the maximum number of aggregation K on
the suppressed sector level with fixed number of iteration, K× I = 40,
the same template of the Chebyshev linear array with a SLL of 30 dB is
assumed to contain one wide suppressed sector at the angular direction
∆u1 = (0.4, 0.44) as shown in Figure 3 (dashed). Figure 3 shows the
approximation pattern without aggregation, K = 1 and I = 40, while
Figure 4 shows the approximation pattern with aggregation, K = 4,
and I = 10 and the bounds on the phase increments βnU = −βnL = π

20
for all n. From Figure 3 the achieved suppressed sector level is 45 dB
with SLL of 22 dB. However, Figure 4 shows that the suppressed
sector level is 55 dB with SLL of 22 dB. The corresponding phase
perturbations for Figure 3 and Figure 4 are given in column 4 and
column 5 of Table 1. From the previous results, it is clear that better
performance is achieved with the aggregation method compared to the
other method denoted without aggregation. Also, Figure 5 shows the
performance index, Jk(u,Bk), versus the number of iteration, K × I,
for the patterns shown in Figures 3 and 4. From Figure 5, the speed
of convergence of the aggregation method is faster and the achieved
minimum performance index value is less compared to the method
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Figure 3. Pattern synthesis with a wide band null sector at [0.4, 0.44]
without aggregation, K = 1, and I = 40 (solid) and the fitness
template D(θ) (dashed).
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Figure 4. Pattern synthesis with a wide band null sector at [0.4, 0.44]
with aggregation, K = 4, and I = 10 (solid), and the fitness template
D(θ) (dashed).



Genetically evolved phase-aggregation technique 299

0 5 10 15 20 25 30 35 40
12

14

16

18

20

22

24

26

28

30

Figure 5. The performance index versus (K × I) for the results of
Fig. 3 (dashed: K = 1, I = 40), and Fig. 4. (solid: K = 4, I = 10).

without aggregation.
The effects of limiting the maximum phase increments on the

performance index, Jk(u,Bk), and the speed of convergence with the
aggregation method are simulated. Figure 6 shows these effects with
different bounds on the phase increments, (βnU = −βnL = π

2 ,
π
20 ,

π
40

for all n). From the Figure, the performance index, Jk(u,Bk), is
minimum and the speed of convergence is faster when the ranges of
the phase increments are bounded by βnU = −βnL = π

20 . However,
the speed of convergence is better in the early stages of the iterations
when βnU = −βnL = π

2 due to the large solution space. The ranges
of the phase increments should not be made very small, this will need
more iterations to converge. This proposed aggregation method gives
better rates of convergence and overcomes the problem of restricting
the solution space which is inherent in GA.

To validate the correction of the array pattern with suppressed
sectors with random element failures, assume that one suppressed
sector was designed using the same initial pattern without element
failures as shown in Figure 7 (dashed). From the Figure, the mainbeam
width and the sidelobe level of the initial pattern are 5.3◦ and
22 dB, respectively, while the suppressed sector depth is 55 dB. The
corresponding elements’ coefficients of the designed pattern with the
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Figure 6. The performance index versus number of iterations (K = 4
and I = 10) for three different bounds on the phase increments
(βnU = −βnL = π

2 ,
π
20 ,

π
40 for all n) shown as dashed, solid, and dash-

dotted curves, respectively.
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Figure 7. The initial array pattern with one suppressed sector
(dashed), and the degraded array pattern due to the defective elements
of indices 2 and 10 (solid).
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Table 2. Phases in radians for the initial pattern and the corrected
pattern with failure of elements 2 and 10.

Element
No

Phases of
Initial
Pattern

Phases of
Corrected

Pattern
1 -0.0068 0.0665
2 -0.2173 0
3 -0.2231 -0.0185
4 0.0395 -0.490
5 0.0122 0.0211
6 -0.0832 0.0162
7 0.0887 0.1567
8 -0.1503 -0.0952
9 0.1159 -0.1875

10 -0.0471 0
11 0.2650 0.2907
12 -0.0850 0.2137
13 -0.0293 -0.0229
14 0.1857 -0.0353
15 -0.1906 -0.1801
16 -0.1987 -0.1318
17 -0.0026 -0.1796
18 0.2352 -0.0716
19 -0.1084 0.1437
20 -0.1183 0.0796

prescribed suppressed sector are given in Column 2 of Table 2. Now,
assuming that the 2nd and the 10th elements are defective, then the
corresponding array factor can be calculated using equation (1) with
as shown in the Figure 7 (solid). From the Figure, the suppressed
sector is filled and the sidelobe level is degraded due to the effect of
the defective elements. Using the proposed aggregation GA, the array
pattern is corrected using only the phases of the non-defective element
set with maximum aggregation number, K = 4, and I = 10 where the
bounds on the phase increments βnU = −βnL = π

20 for all n as given in
column 3 of Table 2. Figure 8 shows the corrected pattern using the
calculated phases (solid) compared with the template (dashed). The
corrected pattern shows that the recovered suppressed sector depth is
55 dB and the sidelobe level is 21 dB while the mainbeam is almost
unchanged.
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Figure 8. The corrected array pattern with defective elements of
indices 2 and 10 (solid), and the fitness template D(θ) (dashed).

6. CONCLUSIONS

A new aggregation method using a genetic algorithm to suppress
a multiple narrow and wide band interferences using phase-only
control has been presented. Genetic algorithms can solve high
nonlinear problems like the one at hand where large phases are
required to obtain global minimum of the performance index. The
large phase perturbations of the antenna elements are calculated by
aggregating small phase increments using the proposed aggregation
genetic algorithm. The modified GA is used to find the best
phase increments of the elements such that the performance index
is optimum. This modification gives better rates of convergence and
overcomes the problem of the large solution space which is inherent in
GA.

The computer simulation results show that the phase-only control
using the aggregation method, is more efficient compared with the
classical genetic method. Unlike small phase perturbations techniques,
the aggregation genetic algorithm can impose symmetrical nulls around
the main beam. The suppressed sectors using the full phase-only
control are accomplished with and without element failures.
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