
SFI WORKSHOP: RESILIENT AND ADAPTIVE DEFENCE OF COMPUTING NETWORKS 2002 1

Genetically Induced Communication Network
Fault Tolerance

Stephen F. Bush and Amit B. Kulkarni

(Invited Paper: SFI Workshop: Resilient and Adaptive Defence of Computing Networks 2002)

Abstract— This paper presents the architecture and initial fea-
sibility results of a proto-type communication network that uti-
lizes genetic programming to evolve services and protocols as part
of network operation. The network evolves responses to environ-
mental conditions in a manner that could not be pre-programmed
within legacy network nodes a priori. A priori in this case means
before network operation has begun. Genetic material is ex-
changed, loaded, and run dynamically within an active network.
The transfer and execution of code in support of the evolution
of network protocols and services would not be possible without
the active network environment. Rapid generation of network ser-
vice code occurs via a genetic programming paradigm. Complex-

ity and Algorithmic Information Theory play a key role in under-
standing and guiding code evolution within the network.

Index Terms—Active Networks, Algorithmic Information The-
ory, Kolmogorov Complexity, Complexity Theory, Genetic Pro-
gramming, Self-Healing Networks.

I. INTRODUCTION

A
C tive networking is a novel approach to network archi-

tecture in which network nodes – switches, routers, hubs,

bridges, gateways etc. – perform customized computation on

packets flowing through them. The network is called an “ac-

tive network” because new computations are injected into the

nodes dynamically, thereby altering the behavior of the net-

work. Packets in an active network can carry fragments of

program code in addition to data. Customized computation is

embedded within the packets code, which is executed on the

intermediate network nodes.

Many active network components and services have been de-

signed, implemented, and are undergoing experimentation. The

ABone (Active Network Backbone) implements a relatively

large-scale (given the novelity of the technology) active net-

work (O(100) nodes). However, the fundamental science re-

quired to understand and take full advantage of active network-

ing is lagging behind the ability to engineer and build such net-

works. In fact, the current Internet, whose protocols were built

upon the ill-defined goal of simplicity are only slowly being

understood. An outcry from the Internet community, with its

carefully crafted, static protocol processing, with massive doc-

umentation (O(4000) Request for Comments) of passive (non-

executable) packets is that it is already “too” complex.

An adaptive fault tolerant system, no matter how resilient,

would unlikely receive acceptance by industry or the commu-

nity if it were considered “complex” in the colloquial sense.
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How can such systems, which require complexity to be adap-

tive, at the same time appear simple to understand and manage.

Are active networks really more complex than the current In-

ternet? Are adaptive applications built upon active networks

any more or less complex than the same applications built upon

the legacy Internet? Does a measure of complexity exist that

would allow an objective comparison to be made? What are the

benefits of an active network with respect to passive networks?

While these are extremely difficult questions to answer, this pa-

per attempts to lay the groundwork for answering these ques-

tions by proposing a complexity measure, Kolmogorov Com-

plexity, and proposing an adaptation mechanism, Genetic Pro-

gramming, based upon an analogy with biological systems.

Kolmogorov Complexity was applied in [1] as a measure of

potential algorithmic information content for use in prediction

and control of an active network. In the remainder of this paper,

the term complexity will be used to indicate a particular form

of complexity known as Kolmogorov Complexity. Kolmogorov

Complexity is a measure of the length of the smallest program,

such that, when executed upon a Universal Turing Machine, it

generates a particular string of bits x. The length of such a

smallest program K(x) is the complexity of the bit-string, x.

It should be noted that research has been performed in the use

of genetic programming to evolve the smallest program for a

given bit-string, and thus estimate K(x). Complexity was ap-

plied in [1] to optimize the combined use of communication

and computation within an active network; to determine the

optimal amount of code versus data. It was shown that if the

Kolmogorov Complexity of the information related to the pre-

diction of the future state of the network is estimated to be high,

then the ability to develop code, representing the non-random,

or algorithmic portion, of that information is low. This results

in a low potential benefit for algorithmic coding of the informa-

tion; the benefit of having code within an active packet would

appear to be minimal in such cases. Conversely, if the com-

plexity estimate is low, then there is great potential benefit in

representing information in algorithmic form within an active

packet. In [1] it was suggested that if the algorithmic portion

of information changes often and impacts the operation of net-

work devices then active networking provides the best frame-

work for implementing solutions. This is precisely the case in

genetically programmed network services, a new class of ser-

vices that are not pre-defined but those that evolve themselves

in the network in response to the state of the network. In this

paper, we will restrict this class to those services that are pro-

grammatic solutions for perceived faults that occur in a net-

work. Further research is required to generalize this class to
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include other types of network services.

Frameworks for protocol and service composition have been

developed for active networks, one of which is well described

in [2]. Thoughts on the requirements for protocol and service

composition are also discussed in [3]. However, the work done

to date is lacking in that it does not address how active code will

be generated rapidly enough to make dynamic injection of the

code a significant factor. The argument against active and pro-

grammable networks is that, given enough time, memory, and

processing power, legacy systems could eventually contain all

the functionality that active networks could have injected. To do

this, legacy developers would have to know a priori all possible

functionality that would be required in the network. However,

this paper demonstrates that it is possible for the network to

generate code rapidly and in a manner that can never be known

a priori for every possible condition. The inspiration for a ge-

netic algorithm based approach to solution composition comes

from nature in the form of the docking problem in molecular

biology [4], [5], [6]. Solutions that efficiently match a particu-

lar fault should be able to “dock” with the fault. Prediction for

successful docking in biology can be attempted by searching

for minimal energy or minimal geometric construction combi-

nations. Here we consider a genetic algorithm used to generate

a solution for the self-composition of solutions to mitigate net-

work faults. One goal of the experiment discussed later in this

paper is to study the relationship between complexity and so-

lution composition. In particular, it has been hypothesized that

the complexity of the fault and potential solution will decrease

as the optimal solution is composed. Specific examples of faults

that could be simulated are:

� Network mis-configuration

� Bandwidth and Processor mis-allocation

� Faults caused by Distributed Denial of Service and virus

attacks

� Poor Traffic shaping

� Routing problems

� Non-optimal fused data within the network

� Poor link quality in wireless and mobile environments

� Mal-composed protocol framework models in the network

� Poorly tuned components of network services

A simple fault, namely, mis-allocation of bandwidth and pro-

cessing capability resulting in packet jitter, has been chosen as a

working example. A fitness function defines a metric for “good-

ness” of a population. In this case, “goodness” is the reduction

in the variance of packet arrival times. The fault is represented

by the difference between the actual system and a minimum re-

quired fitness. Genetic material will evolve to minimize the ef-

fect of the fault. The complexity of the combined fault-solution

pair should be at a minimum when the fitness is optimal. We

will borrow a term from molecular biology and call a perfectly

matched fault and solution a successful “docking”.

II. COMPLEXITY AND EVOLUTIONARY CONTROL

Complexity and evolution are intimately linked. Kol-

mogorov Complexity (K(x)) [7] is the optimal compression of

string x. This incomputable, yet fundamental property of in-

formation has vast implications in a wide range of applications

including system management and optimization [8], [9], secu-

rity [10], [11], and Bioinformatics. Active networks [12] form

an ideal environment in which to study the effects of tradeoffs

in algorithmic and static information representation because an

active packet is concerned with the efficient transport of both

code and data. As noted in Figure 1, there is a striking similar-

ity between an active packet and DNA. Both carry information

having algorithmic and non-algorithmic portions. The algorith-

mic portion of DNA has transcription control elements as well

as the codons [13]. The active packet has control code and may

contain data as well.

Kolmogorov Complexity and Genetic Programming have

complementary roles. Genetic Programming has been used to

estimate Kolmogorov Complexity [14], [15]. Genetic Program-

ming benefits from Kolmogorov Complexity as a measure and

means of controlling not only the complexity, but the size and

generality of the result [16]. One of the most obvious uses for

complexity in networking is Programmatic Compression [17].

In this paper, the foundation is developed for the use of com-

plexity to enable the network to self-heal. In the next section, a

description of the Minimum Description Length algorithm and

its role in Active Networks is explained.

III. THE APPLICATION OF COMPLEXITY IN A

COMMUNICATIONS NETWORK

The goal of the system that has been implemented is to uti-

lize the benefit of an active network to automatically generate

solutions that bring the network back into line with a healthy

model of the system. The fitness function is used to describe

the desired outcome. The concept of molecular docking, men-

tioned previously, requires a more precise measurement of the

degree of “fit” in the docking of a fault and solution. In this

project, we are exploring the use of Kolmogorov Complexity,

estimated via the Minimum Description Length algorithm, as

the means to measure the fit between the fault and the desired

state. The next paragraph describes the Minimum Description

Length complexity estimator and its relationship to active net-

working.

Fig. 1. DNA and an Active Packet.

A question active network application developers must an-

swer is: “How can I best leverage the capabilities that active
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networks have to offer?” Because the word “active” in ac-

tive networks refers to the ability to dynamically move code

and modify execution of components deep within the network,

this typically leads to another question: “What is the optimal

proportion of content for an active application that should be

code versus data?” A method for obtaining the answer to this

question comes from direct application of Minimum Descrip-

tion Length (MDL) [18] to an active packet. LetDx be a binary

string representing x. Let Hx be a hypothesis or model, in al-

gorithmic form, that attempts to explain how x is formed. Later

in this paper, we view Hx as a predictor of x in the analysis of

Active Virtual Network Management Prediction. For now let

us focus on developing a measure of the complexity of x. MDL

states that the sum of the length of the shortest encoding of a

hypothesis of two components will estimate the Kolmogorov

Complexity. The two components are the length of a model

generating string x and the length of the shortest encoding of

x using the hypothesis. This can be represented mathemati-

cally as K(x) = K(Hx) + K(DxjHx). Note that error in

the hypothesis or model must be compensated within the en-

coding. A small hypothesis with a large amount of error does

not yield the smallest encoding, nor does an excessively large

hypothesis with little or with no error. A method for determin-

ing K(x) can be viewed as separating randomness from non-

randomness in x by “squeezing out” non-randomness, which is

computable, and representing the non-randomness algorithmi-

cally. The random part of the string, that is, the part remaining

after all pattern has been removed, represents pure randomness,

unpredictability, or simply, error. Thus, the goal is to minimize

l(He) + l(DxjHe) + l(E) where l(x) is the length of string x,

He is the estimated hypothesis used to encode the string (Dx)

and E is the error in the hypothesis. The more accurately the

hypothesis describes string x and the shorter the hypothesis, the

shorter the encoding of the string. Choosing an optimal propor-

tion of code and data minimizes the packet length.

The proposed hypothesis is that the Kolmogorov Complex-

ity of a combined fault and solution description is minimized

when the optimal solution to mitigate the fault is composed.

A nearly trivial example can be seen with reverse code. As-

sume that fault data, F exists. Assume that the fault does not

erase data but merely transforms it. Define the algorithmic de-

scription of the fault data PF (). The reverse code for PF ()
will be labeled RPF (). Assume PF () and RPF ()are minimal

length programs. Then,RPF (PF ()) = �, where � is the empty

set. RF is the data generated by RPF (). Since the fault does

not erase any data, the process is reversible [7] and therefore,

K(RF ) �K(F ) = 0. The equivalence in complexity of RF
and F follows because there is no loss or gain of complexity

when the system is restored to a prior state using the anti-fault

process RPF ; there is no work performed. The algorithmically

reversed fault will be referred to as an anti-fault in this paper.

The descriptive complexity of the fault and the solution

should ultimately be as low as possible and the Minimum De-

scriptive Length algorithm can be used, among other complex-

ity estimators, as a technique to guide solution composition. In

fact, this is the case with reversible code. Complexity is impor-

tant information because it is an indicator of both the type of

fault and level of difficulty in correcting the fault and the sever-

ity of the fault; fault severity is important in triage operations

to optimize system health. Second, a more compact algorith-

mic representation of a fault will travel faster and more rapidly

through the network; it is an efficient format for alerting system

management and in triggering automated solutions. Third, it

can be relatively easy to reverse the code of an algorithm, pos-

sibly generating an anti-fault, or solution to a problem in certain

cases. Reversible code has been presented in previous work as

a mechanism for generating anti-messages in Time Warp simu-

lation [19].

Fault tolerant and self-healing systems should have the abil-

ity to self-compose solutions to faults. Ideally, composition

should be an inherent part of system operation, rather than a

structure imposed from “outside” the system. Genetic Algo-

rithms are on the path towards self-composing solutions, how-

ever genetic algorithms, as implemented today, require external

control to manipulate the genetic material. In other words, the

genetic algorithm itself must be programmed into the system;

if the genetic algorithm code failed, then the self-healing capa-

bility would fail. While this situation is not ideal, it is explored

as a possible step towards a truly self-healing system.

One of the contributions of this paper is the study of com-

plexity in genetic algorithms with the goal of eventually design-

ing self-composing solutions. Genetic algorithms are widely

known for their ability to find optimal solutions, avoiding lo-

cal extrema, by using evolutionary-like processes dependent

upon “random” mutation. Kolmogorov Complexity describes

the randomness of information. The Kolmogorov Complexity

of the genetic material during the evolution of a genetic algo-

rithm can be estimated and yields interesting clues about the un-

derlying physics of the information during its evolution towards

a fitness function. It is our hypothesis that, as the evolution

proceeds and the fitness level of the genetic material rises, the

complexity decreases. This result yields an interesting insight

that supports the hypothesis that “solutions” that self-compose

to mitigate a fault will tend to decrease in complexity.

IV. THE GENETIC ALGORITHM

The goal of this study is to examine how complexity, specifi-

cally an estimate of Kolmogorov Complexity, relates to the evo-

lution of a self-composing solution. We consider a genetic algo-

rithm to be an approximation of a self-composing system. De-

tails on the operation of genetic algorithms can be found in [20],

[21], [22]. This paper assumes a basic understanding of genetic

algorithm operation and provides only a brief overview. In this

experiment a pre-existing Mathematica genetic algorithm pack-

age1 is used. The decision to use Mathematica was based upon

its combination of symbolic and arithmetic capabilities and be-

cause many of our research utilities, including Kolmogorov es-

timation functions are implemented in Mathematica.

The genetic algorithm package assumes a population of bi-

nary strings of preset size and whose values, when converted

to a float type, are between zero and one. Similarly, the fitness

function is assumed to accept and return values in the range

from zero to one. Fitness values closer to one are assumed

1Written by Mats G. Bengtsson National Defense Research Establishment
Box 1165, S-581 11 Linkoping Sweden email: matben@lin.foa.se
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indicate more highly optimized results. A genetic algorithm

consists essentially of three parts: selection, crossover, and mu-

tation. In selection, each string is selected with a probability

proportional to its fitness value. In crossover, a pair of selected

strings is determined, a position along the string is chosen at

random, and the right and left parts of each string are swapped.

In mutation, each gene is changed at random with a low proba-

bility, in this case a probability of 0:002 was chosen based upon

repeated experimentation. Each individual is coded as a binary

string of length 10 bits. This length provides the size neces-

sary to achieve numerical precision while being small enough

to allow a large population size and without excessive overhead.

The problem is limited to one-dimension with value x, which

represents the real value of the bits in string x, that varies from

zero to one. The first step is to create a random population. The

population is defined on the real axis from zero to one. The

random values are represented in the form of binary strings.

Next a fitness function is defined. It is defined in the interval

zero to one. The fitness function in this example is defined as

f(x) = sin(�x). Thus, binary representations of values that

are odd multiples of 0:5 will have maximal fitness.

A. Kolmogorov Complexity

This section discusses a general approach for self-composing

solutions using lessons learned from the previous section. The

approach can be described as the automated generation of a so-

lution hypothesis Hs = R(He � Hf ), that is, the reverse of

the algorithmic difference between the faulty and correct al-

gorithmic representation of behavior by controlled means. As

Hf deviates from He, complexity or heat as presented here, is

generated. In [8] the relationship between fault and energy is

explored and simulated (see [11], [10], [23] for recent work on

complexity and energy and Information Assurance). The moti-

vation for that experiment came from the relationship between

Kolmogorov Complexity and entropy. The definition and ap-

plication of Kolmogorov Complexity to vulnerability analysis

identified how Kolmogorov Complexity can be used to deter-

mine vulnerabilities in a system as areas of low complexity.

An underlying hypothesis of our work is that computation and

communication are fundamentally related through complexity

theory, and, thus, bandwidth and processing utilized in denial

of service are fundamentally interrelated. Low complexity data

or code consuming large amounts of bandwidth or processing

indicates the likelihood of an attack. A model of complexity

evolution within a closed system is described in reference [10].

That reference developed an abstract model with which to study

complexity, specifically Kolmogorov Complexity, of informa-

tion within an information system. That model explores K(x),
a measurement of length in bytes, and K(x)=s, a measure of

the maximum increase in complexity of the system due to code

entering a system such as code carried by active packets. The

rate of complexity increase in terms of algorithmic active packet

complexity in units of K(x)=s within the closed system was

measured. Significant changes in system complexity indicate

the presence of faults. Reference [24] reported the results of

Kolmogorov Complexity probes that detect Distributed Denial

of Service attacks.

An active network environment is used to emphasize that in-

formation assurance laws must be able to deal with many alter-

native and dynamically changing representations of informa-

tion. With regard to active packets and information theory,

passive data is simple Shannon compressed data, and active

packets are a combination of data and program code whose ef-

ficiency can be estimated by means of Kolmogorov Complexity

[25]. The active network Kolmogorov Complexity estimator is

currently implemented with a variety of compression estimators

ranging from simple empirical entropy to more complex algo-

rithms beyond the scope of this conference. The probe returns

an estimate of the smallest compressed size of a string. The

simplest estimator, trading accuracy for speed and low over-

head, is based upon computing the entropy of the weight of

ones in a string. Specifically it is defined in Equation 1 where

x#1 is the number of 1 bits and x#0 is the number of 0 bits

in the string whose complexity is to be determined. Entropy is

defined in Equation 2. See [25] for other measures of empiri-

cal entropy and their relationship to Kolmogorov Complexity.

The expected complexity is asymptotically related to entropy

as shown in Equation 3. Observe an input sequence at the bit-

level and concatenate with an output sequence at the bit-level.

This input/output concatenation is observed for either the entire

system or for components of the system. Low complexity in-

put/output observations quantify the ease of understanding by

a potential attacker. Previous work has demonstrated the use

of Kolmogorov Complexity for Distributed Denial of Service

(DDoS) attack detection [24].

K̂(x) = l(x)H(
x#1

x#1 + x#0
) + log2(l(x)) (1)

H(p) = �p log2 p� (1:0� p) log2(1:0� p) (2)

H(X) =
X

l(x)=n

P (X = x)K(x) (3)

Because Kolmogorov Complexity was originally derived for

the study of randomness, it is interesting to note that random-

ness plays a significant role in the operation of the genetic al-

gorithm itself. The initial genetic material should be generated

randomly. Selection of genes for mutation and crossover points

should also be done randomly. Finally, selection of gene pairs

is done randomly, but in proportion to their fitness value.

Given the randomly generated nature of the initial genetic

material, one would expect the complexity of the genetic mate-

rial to decrease as the genetic algorithm evolves. This is clearly

the case in the initial steep downward spike shown in Figure 2.

As the algorithm continues to evolve and the fitness of the ge-

netic material improves, one would expect structure and order

to appear. As mentioned earlier, in this specific case, the al-

gorithm encourages the growth of binary strings that represent

odd multiples of 0:5.

Figure 3 shows the complexity, estimated as the compressed

size, of the genetic material as a function of evolutionary steps.

Compare with Figure 4, which shows the sum of the fitness

values as a function of evolutionary steps. The complexity de-

creases as the cumulative fitness function increases, then rises

again while evolution continues however, the fitness function
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Fig. 2. Complexity of Genetic versus Evolutionary Time Steps with Population
128.

does not significantly increase. The complexity measure seems

to indicate that the first optimal genetic composition was found

near evolution step 50. As the genetic algorithm continued

beyond that point, the genetic material became more complex

again with no corresponding benefit in fitness. This result was

unanticipated, but is plausible as new solutions evolve, with

varying complexity, attempting to maximize fitness.

Fig. 3. Cumulative Fitness Function of Genetic Material with Population 128.

The cumulative fitness function results (multiplied by 10 to

shift upward for easier comparison with the estimated complex-

ity) are shown in Figure 4. Note that the points of high com-

plexity always coincide with points of low cumulative fitness.

Points of relatively low complexity correspond to high cumu-

lative fitness. Arrows point to the extrema in the cumulative

fitness function and estimated complexity that can be seen to

align with extrema in the fitness function. In particular, minima

in estimated complexity occur simultaneously with opposing

maxima in the fitness. This indicates an inverse relationship

between complexity and cumulative fitness extreme points.

Consider the complexity of the fitness function itself. The

fitness function is an algorithmic representation of the fitness of

a chromosome. The range resulting in maxima generated from

the fitness function forms a string that represents the target com-

plexity. In this particular genetic algorithm example, a solution

of 0:5 for all 128 members of the population would yield an

estimated complexity of 611:3. This low a level of complexity

was never reached for two reasons: there are multiple optimal

solutions, namely odd multiples of 0:5, and the algorithm never

Fig. 4. Complexity and Fitness Comparison.

exactly achieved odd multiples of 0:5, but rather approximately

close values. The remaining sections discuss how these con-

cepts have been implemented to construct a fault tolerant net-

work.

B. Towards a Self-Evolving Network System

Other papers from the Imperishable Networks Project have

developed complexity-based techniques for fault detection and

identification as discussed in [26] and [9]. The focus of this

report is on progress towards self-composition of solutions as-

suming that other techniques, particularly complexity-based

techniques, have identified faults. A problem with the genetic

algorithm-based approach as previously described for use as a

self-evolving system is that control is generally external to the

genetic material and the genetic material is generally consid-

ered to be passive data. Instead the genetic material should be

capable of being algorithmic information, that is, program code

or objects. In addition, each chromosome, as an object, should

contain the necessary capability to run the genetic algorithm.

This would allow for a highly distributed and robust genetic

algorithm capable of fault mitigation where the fault is repre-

sented through the fitness function.

A criticism of this approach might be that a genetically-

engineered protocol stack will create a complex framework that

will be difficult to understand and maintain. However, our ap-

proach is to compose the framework from simple components.

Each of these components will be individually verifiable with

respect to its properties and actions. As the components are

arbitrarily composed to form a protocol stack, some protocol

stacks may be generated that violate the principles of safety,

consistency and correctness. One way to approach this is to

define a fitness function that verifies the suitability of the stack

with respect to the properties desired. Any mis-configured pro-

tocol stacks are automatically eliminated from consideration if

the fitness function is carefully defined to check for the above-

mentioned properties. However, this might make the definition

of the fitness function itself cumbersome as every possible stack

composition property will have to known a priori and an appro-

priate fitness “filter” defined. This will lead to a loss of ele-

gance in the fitness function definition and consequently poor

maintainability. A better approach would be to define syntactic

and certain semantic composition properties in the individual
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components themselves, possibly in the form of logical expres-

sions. These expressions will enforce constraints on the behav-

ior of the components, which can be verified at run-time. The

run-time system will embed a theorem-prover, which can be ei-

ther a full-blown prover like PVS, NuPrl or SPIN or a reduced

version of one, to systematically verify properties during com-

position itself. This reduces the burden on the programmer to

define a proper fitness function that can catch and eliminate all

types of composition errors.

C. Approach

Genetic material begins in a random state (M ), and con-

verges to the complexity of the optimal value produced by the

fitness function. This enables true solution composition from

a wide range of possible solutions. One problem with this ap-

proach is the time required evolving towards a feasible solu-

tion. Another problem is the fitness function itself has to be

self-generated in some manner. Using Active Virtual Network

Management Prediction [12], the fitness function exists in the

form ofHe whereHe is the estimated correct operation hypoth-

esis of the system as described in [1].

In summary, the experiment in this section has shown a rela-

tionship among fitness, complexity, and the evolution of genetic

material. Complexity estimation probes have been embedded in

the General Electric Global Research Center Active Network

test-bed for use in security experimentation. The next section

explains the framework developed to utilize the same complex-

ity probes described in [24] to control the evolution of a genetic

program within the active network. This makes the network

highly resilient to faults by enabling the capability to adapt in a

wide variety of ways.

V. GENETIC NETWORK PROGRAMMING ARCHITECTURE

The Magician Active Network [12] overlay network is used

to test the feasibility of the genetically programmed network

service concept. An active packet representing the nucleus (as-

suming network nodes are like eucaryotes- cells containing nu-

clei) is injected into all the ‘network nodes. The nucleus con-

tains a population of chromosomes– strings of functional units.

Operation of Genetic Network Programming begins with the in-

jection of basic building blocks, known as functional units, into

the network as shown in Figure 5. Currently, this “genetic ma-

terial” is flooded into each active node. However, the material

will remain inactive in each active node until a fitness function

is injected into the network. Receipt of a fitness function will

cause evolution to proceed.

Functional units are very small pieces of code blocks that

perform simple, well-defined operations upon an active packet.

Examples of functional units are Delay, Split, Join, Clone, and

Forward. There is also a Null functional unit whose use is

explained later. Chromosomes are strings of functional units

as shown in Figure 6. Once a chromosome is assembled, the

codons can be translated into Amino Acids at the Ribosomes. In

other words, the string of functional units will operate upon ac-

tive packets from other applications (or other functional units)

that traverse through the node. The chromosome is represented

Fig. 5. Injection of the Nucleus.

Fig. 6. Functional Units, Evolution, and Fitness.

in the code in a form similar to a Lisp symbolic expression, for

example: ((Null Join Split) (Delay Split Join Delay)).

Mutation and recombination occur among a population of

genes. Mutation is a probabilistic change of a functional unit

to another functional unit. Recombination is the exchange of

chromosome sections from two different chromosomes. In Fig-

ure 7, a close-up of a single node can be seen containing a very

short chromosome strand.

A single incoming traffic stream, as shown in Figure 8 enter-

ing the center node, is split into multiple streams. Each stream

is processed by a different chromosome. Note that currently in

our implementation, the full traffic stream is split along each

chromosome, however, it is hypothesized that traffic sampling

could be used to reduce the overhead in creating the multiple

streams.

As shown in Figure 9, fitness functions can be designed to

measure quality at different layers of the traditional protocol

stack. In this particular case, fitness measures are shown at the

Transport, Network, and Link Layers. As a particular example,

jitter control might have a fitness function that minimized per

frame variance at the Link Layer. The Network Layer would
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Fig. 7. Single Node Genetic Programming Architecture.

Fig. 8. Breeding Traffic Streams.

attempt to maximize packet arrives at the destination in the rea-

sonable time period, that is perform the routing function. The

Transport Layer would have a fitness function that attempts to

minimize end-to-end packet variance. The key is that each of

these fitness functions need to work together towards reaching

the stated goal in a reasonable manner. More will be said about

the fitness function later.

In Figure 10, recombination can occur both within a node or

between two nodes. In addition, as shown in Figure 11, chang-

ing the route of a packet also effectively accomplishes a recom-

bination because the packet processing will be dependent upon

the genetic material at each node traversed.

A key component of the evolutionary process is the fitness

function. Fitness functions are “user” defined and injected into

the network to control the evolution of the genetic population.

For example, in our initial tests, minimizing variance in trans-

mission time was used as a simple fitness function. However,

initial experiments quickly demonstrated that the design of the

fitness function is the most critical element. It reminds one of

the saying, “Be careful of what you pray for..., because you

might get it.” Often the fitness was achieved, but in ways that

Fig. 9. Multiple Levels of Fitness.

Fig. 10. Recombination Levels.

Fig. 11. Chromosomes and Routing.
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were unexpected and sometimes detrimental to the intended op-

eration of the network. As a trivial example, the variance can

be minimized by slowing the traffic to a near halt. Thus, a low

latency term had to be added to the jitter control fitness func-

tion.

A. Genetically Programmed Active Network Jitter Control

As a feasibility test, an adaptive jitter control mechanism was

developed on a fixed, wired active communication network hav-

ing the topology shown in Figure 11. The genetic algorithm was

implemented as an active application in the Magician Active

Network Execution Environment [12]. Packets originate from

the left-most node in Figure 11 and are destined for the right-

most node in the figure. The dominant contributors to packet

link transit time variability given the topology shown in Figure

11 are the fact that the active network is an overlay network that

has unspecified lower-layer traffic and that packets are loaded

and executed within a Java Virtual Machine residing in each

node and are subject to Java garbage collection which runs at

unspecified times.

The fitness function on all nodes returns a greater fitness as

the result of a Simple Network Management Protocol query of

an Object Identifier that measures packet link transfer time vari-

ance on the destination node is minimized. As previously men-

tioned, the fitness function is itself an active packet that consists

of an objective function. The function is highly general and can

be comprised of any mathematical function of accessible met-

rics.

Figures 12 through 14 show packet link transit variance

through three of the chromosomes on the destination node and

Figure 15 shows packet link transit variance without any jit-

ter control mechanism at the destination node. Initial observa-

tion of the graphs shows that, overall, particularly as time pro-

gressed, the Chromosomes significantly reduced packet transit

variance.

Fig. 12. Packet Link Transit Variance (milliseonds2) on Destination Node
Through Chromosome One.

Another observation of the experimental data is that the ge-

netically programmed transit variance was initially worse than

transit variance without any control mechanism. The reason for

this is that the chromosomes begin operation with a random set

of functional units and require time to converge to an optimal

value.

Fig. 13. Packet Link Transit Variance (milliseonds
2) on Destination Node

Through Chromosome Two.

Fig. 14. Packet Link Transit Variance (milliseonds
2) on Destination Node

Through Chromosome Three.

Fig. 15. Packet Link Transit Variance (milliseonds2) on Destination Node
Without Jitter Control.
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VI. SUMMARY

This report has shown that a genetic algorithm shows sud-

den decreases in complexity of the population between gener-

ations as the algorithm evolves in response to the fitness func-

tion. Lower complexity correspond to greater homogeneity in

the population and greater fitness to the chosen criterion. Thus

it can be clearly seen that complexity can be used as one indica-

tor of progress in evolution of the genetic algorithm. A frame-

work for testing the injection of fitness functions into an active

network that evolves solutions via a genetic programming tech-

nique has been implemented. Future work involves testing the

response time to heal and the resiliency of the network in the

presence of faults.
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APPENDIX

Jitter Control: A Simple Test Case

While a priori techniques have been developed for jitter con-

trol in legacy networks, jitter control forms a simple, easily

measured and controlled application for the network genetic

programming technique. The functional units injected into the

network should allow evolution of a variety of interesting so-

lutions to reduce variance, including adding delays, forward

along different paths, or perhaps new ideas that have not been

thought of yet.
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