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Abstract
Considerable advances have been made in our understanding of age-related macular degeneration (AMD) genetics over the
past decade. The genetic associations discovered to date are estimated to account for approximately half of AMD heritability,
and functional studies of these variants have revealed new insights into disease pathogenesis, leading to the development of
potential novel therapies. There is furthermore growing interest in genetic testing for predicting an individual’s risk of AMD
and offering personalised preventive or therapeutic treatments. We review the progress made so far in AMD genetics and
discuss the possible applications for genetic testing.

Introduction

Age-related macular degeneration (AMD) is the commonest
cause of blindness in the developed world, affecting 5% of
those aged >75 years old and an estimated 150-million
people worldwide [1, 2]. Disease onset is in later life,
typically after the age of 60 years, and is characterised
clinically by retinal pigmentary change and the appearance
of drusen at the macula. Central vision may subsequently
decline either gradually with progressive geographic retinal
atrophy (GA), or acutely due to retinal haemorrhage and
fluid exudation from choroidal neovascularisation (CNV) if
neovascular AMD (nvAMD) develops. While the latter may
now be effectively treated with intravitreal anti-vascular
endothelial growth factor (VEGF) injections, there is cur-
rently no therapy for GA available in clinical practice [3].

Over the past decade, considerable progress has been
made in elucidating the genetic architecture of AMD. The
discovery of multiple genetic associations and studies of
their downstream functional consequences has helped
reveal new underlying pathophysiological mechanisms in
AMD, affording the potential to identify molecular targets
for novel therapies. The complement pathway in particular,

an important component of the innate immune system, has
been consistently implicated [4]. Furthermore, there is
growing interest in genetic testing to predict either an
individual’s risk of developing AMD or how well they will
respond to treatment. Ultimately, this could mean that in the
future, patients are offered personalised preventive or ther-
apeutic treatments, tailored to their individual genetic
makeup. In this review, we summarise the current literature
and possible future directions for AMD genetics and genetic
testing.

Genetics of AMD

AMD is a complex disease with multiple environmental
and genetic risk factors. The most consistently associated
environmental risk factors are age and smoking, although
gender, race, cardiovascular disease, and diet have also
been implicated [5]. Evidence for a genetic component
was supported by family aggregation studies and twin
studies. In family aggregation studies, the prevalence
of AMD was higher in first-degree relatives of AMD
patients (23.7%) compared with relatives of controls
(11.6%), with an odds ratio (OR) of 2.4 [6]. By comparing
disease concordance rates between monozygotic and dizy-
gotic twins, the heritability of early and advanced AMD has
been estimated at 46% and 71%, respectively, implying that
46–71% of AMD variation may be explained by genetic
factors [7].

In early efforts to explore AMD genetics, association
studies were performed for candidate genes known to cause
Mendelian macular diseases such as Best’s disease,
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Stargardt’s disease, and Sorsby’s fundus dystrophy. How-
ever, no consistent significant associations were made
[8–11]. Other groups undertook genetic linkage studies
of patient families to identify genomic regions containing
susceptibility loci for AMD. A meta-analysis of these
results showed that the most replicated findings were
on chromosomes 1q25-31 and 10q26 [12]. Their impor-
tance was then validated by subsequent findings of
specific AMD-associated common genetic variants at
these two loci—the complement factor H (CFH) gene on
chromosome 1 and the age-related maculopathy suscept-
ibility 2/HtrA serine peptidase (ARMS2/HTRA1) genes on
chromosome 10.

Common variants

Technological advancements enabling the analysis of whole
genomes, rather than individual genes, have greatly accel-
erated the discovery of new genetic associations with
common complex genetic diseases such as AMD. Genome-
wide association studies (GWAS) examine a genome-wide
set of genetic variants, typically single-nucleotide poly-
morphisms (SNPs), for associations with the disease of
interest. While genetic linkage studies are effective for
investigating high-penetrance single-gene defects under-
lying rare monogenic disorders, GWASs are better able to
detect low-penetrance common genetic variants (with a
minor allele frequency (MAF) >5%) associated with com-
plex genetic diseases.

In 2005, landmark studies associated a common poly-
morphism (Tyr402His or Y402H) in the CFH gene on
chromosome 1 with AMD [13–16]. One of these was
the first GWAS performed for AMD, showing that the
Y402H risk allele had a large effect size (4.6 and 7.4
increased the likelihood of AMD in heterozygous and
homozygous individuals, respectively) [16]. Of note,
this was the first successful GWAS of a ‘complex disease’,
that is, one with both genetic and environmental factors
contributing significantly to the disease. As such, it
represented a major success for genetic approaches
to studying common diseases. Subsequent GWASs and
candidate gene studies have since associated several other
common variants in complement-related genes with AMD,
including C2/CFB [17], C3 [18], C7 [19], CFI [20], and
SERPING [21].

The complement cascade encompasses a family of more
than 30 circulating proteins and their regulators which form
an important part of the innate immune system. Activation
of the complement cascade ultimately results in formation
of the membrane attack complex (MAC), which induces
cell lysis. While the liver is the major source of systemic
complement, retinal cells synthesise their own complement
[22], and complement proteins have been detected in drusen

from human eyes [23–25]. Raised systemic levels of com-
plement have also been reported in AMD patients vs con-
trols [26], and interestingly, patients with dense deposit
disease, a renal condition associated with systemic com-
plement dysregulation and glomerular C3 deposition, often
develop drusen [27, 28]. However, a locally produced,
rather than systemic, complement likely appears to be more
important in AMD [26, 29].

Chronic intraocular complement-mediated inflammation
in genetically susceptible individuals exposed to environ-
mental triggers, such as cigarette smoke and oxidative
stress, may contribute to the progressive retinal changes
observed in AMD. While the functional relevance of most
common AMD-associated genetic variants remains
unknown, a common missense polymorphism in C3 has
been shown to result in reduced binding to CFH, a plasma
regulator of complement, and increased activity of the
alternative complement pathway [30]. Furthermore, a
number of studies have looked at the functional effects of
the non-synonymous CFH Y402H polymorphism. The
minor allele, encoding a histidine amino acid at residue 402
of the CFH protein, alters its affinity for CRP [31], glyco-
saminoglycans in Bruch’s membrane [32, 33], mal-
ondialdehyde [34], and zinc [35]. These changes are
thought to decrease its ability to regulate complement.
Reduced complement regulation may lead to increased
MAC deposition and choroidal endothelial cell death,
impairing the ability of the choriocapillaris to remove debris
and allowing the accumulation of waste products in drusen
[4]. In support of this theory, eyes homozygous for the CFH
Y402H risk variant have thinner choroids [36] and
increased MAC deposition [37] at the choriocapillaris
compared with eyes with low-risk CFH genotypes.

Genes not involved in the complement pathway have
also been associated with AMD. The ARMS2/HTRA1 locus
on chromosome 10q26 has been strongly associated to risk
alleles conferring an OR of 5.0 and a population-attributable
risk up to 57% [38, 39]. As both genes at this region are in
strong linkage disequilibrium with each other and both
harbour functional variants which could plausibly be rele-
vant to AMD, dissecting out which is responsible for the
observed association with AMD has proved to be challen-
ging [40]. Recently, however, analysis of the largest data set
for AMD genetics to date suggested that genetic variants at
ARMS2, but not HTRA1, are responsible for AMD sus-
ceptibility at the 10q26 locus [41]. Further functional ana-
lysis of ARMS2 is required to understand its role in AMD
pathogenesis. Other non-complement associations with
AMD include genes implicated in angiogenesis (TGFBR1,
VEGFA), the extracellular collagen matrix (COL10A1,
COL8A1), the high-density lipoprotein cholesterol pathway
(APOE, CETP, and LIPC), and immune regulation (PILRB)
[42–44].
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Rare variants

In 2013, the AMD Gene Consortium published the largest
GWAS for AMD conducted up until that time, evaluating
>2.4 million SNPs in >17,100 cases and >60,000 controls.
However, they estimated that only 15–65% of AMD her-
itability was explained by the 19 loci discovered [42].
Several theories seeking to explain the missing heritability
exist, including gene–environment interactions, gene–gene
interactions, epigenetics, copy number variation, and rare
variants [45]. In particular, the focus of genetic research for
complex diseases in general has shifted towards identifying
low-frequency (MAF 1–5%) and rare variants (MAF≤1%)
with relatively large effect sizes [46]. Furthermore, a recent
simulation study demonstrated that the clustering of AMD
in densely affected families was insufficiently explained by
the genotypic load of common genetic risk variants and that
rare variants may be more important [47].

Various approaches have been successful in discovering
new rare genetic variants associated with AMD. Next-
generation sequencing technology can be used to compre-
hensively analyse variation within candidate genes between
cases and controls. The first rare variant to be associated
with AMD, CFH R1210C was identified in this way [48]. It
demonstrated high penetrance (present in 40 cases vs 1
control, P=7.0 × 10−6, and OR 18.8) and was associated
with an earlier onset of the disease. Similar studies have
also identified rare variants in CFI, C3, and C9 [49–51].
Whole-exome or whole-genome sequencing is expensive to
carry out in large numbers but has been performed in an
Icelandic case–control cohort [52], as well as in large AMD
families, thought to be enriched for rare variants [53–59]. In
2016, the International AMD Genomics Consortium
(IAMDGC) identified 52 independently associated common
and rare variants distributed across 34 loci [44]. The
group performed a GWAS using an exome chip, customised
to analyse >12 million variants (including >163,700
directly genotyped, mostly rare, protein-altering variants) in
>16,100 patients and >17,800 controls. This is the largest
study of AMD genetics performed to date, more than
doubling the number of known associated variants and
identifying the first variant specific to one advanced AMD
phenotype (MMP9 and nvAMD). Rare variants were dis-
covered in CFH and CFI, as well as the non-complement
genes TIMP3 and SLC16A8 [44].

Compared with common variants, highly penetrant rare
variants often have clearer functional effects [60]. For
example, in a large advanced AMD cohort, rare CFH var-
iants tended to be located in functional domains and
resulted in low CFH serum levels [61]. Rare variants
in CFI, another regulator of the complement system, have
also been associated with decreased serum CFI levels [54],
and carriers of rare variants in both CFH and CFI

have impaired ability to regulate complement activation
[54, 59]. Furthermore, the rare C3 Lys155Gln variant has
been shown to impair C3b regulation by CFI with bound
CFH [49]. Overall, these findings support the hypothesis
that increased complement activity may contribute to AMD
pathogenesis.

Carriers of rare variants appear to have differing phe-
notypes compared with non-carriers. A number of studies
have shown rare variants to be associated with earlier
onset of advanced AMD [48, 58, 59, 62, 63]. Carriers
of rare CFH variants have increased drusen load, are
more likely to have extramacular drusen, drusen nasal to
the optic disc, and crystalline or calcified drusen [62, 63,
64]. In addition, rare variants in CFH, CFI, C9, and C3 have
been more frequently observed in patients with GA than
those with nvAMD [58, 63]. Interestingly, a rare missense
mutation in TIMP3 (C1113G), identified by the IAMDGC,
is associated with earlier age of disease onset (average age
65 years) and bilateral CNV [65]. Other mutations in
TIMP3 cause Sorsby’s fundus dystrophy, an autosomal
dominant fundus dystrophy characterised by a similar
clinical phenotype to AMD, although typically, age of onset
is in the fourth decade of life. Further, genotype–phenotype
correlations are needed to determine whether the phenotype
associated with this mutation more closely resembles AMD
or Sorsby’s fundus dystrophy.

The IAMDGC estimates that the 52 currently known
variants account for approximately half the genomic herit-
ability of AMD [44]. Despite this significant progress, there
is still therefore a large portion of missing heritability. The
IAMDGC highlights the need for very large sample sizes
and extensive genome coverage in population studies
looking for novel rare variants in complex diseases. Future
studies looking at other potential sources of missing herit-
ability and functional studies of known associated variants
are also needed.

Genetic testing for AMD

As the list of known AMD-associated genetic variants
continues to grow, so too does interest in developing
predictive risk models incorporating these alleles. The
ability to accurately predict a person’s risk of developing
AMD would be an important step towards personalised
medicine, allowing appropriate preventive measures to
be taken in high-risk individuals. Pharmacogenetic
testing could furthermore help identify which AMD
patients are most likely to benefit from certain treat-
ments. For example, it is conceivable that novel therapies
modulating the complement system may be most
effective in patients harbouring complement-related risk
alleles.
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Genetic risk models for AMD

In contrast to rare monogenic disorders, complex genetic
diseases such as AMD are associated with multiple
environmental and genetic risk factors. Possession of an
allele known to be associated with the disease increases
an individual’s risk of developing the condition and
possessing multiple risk alleles, or exposure to certain
environmental triggers may further increase this risk. Such
individuals could however either remain healthy or
only ever progress to a mild asymptomatic stage. Risk
models for complex diseases therefore aim to accurately
predict risk by incorporating multiple alleles or environ-
mental risk factors.

A common method for describing the accuracy of a risk
model is to calculate the area under the receiver-operating
characteristic (ROC) curve (AUC), the ROC being a plot
of all possible (sensitivity, specificity) pairs for the model
(Fig. 1). The AUC can theoretically take values between 0
and 1, but in practice varies from 0.5 to 1. A score of 1
means perfect accuracy, whereas a score of 0.5 indicates
that the predictive ability of a model is equivalent to random
chance or zero accuracy. A model with a score between 0.5
and 1.0 therefore has greater ability than chance to dis-
criminate between cases and controls. It has been suggested
that an AUC>0.75 is acceptable and >0.9 is excellent [66].

Existing risk models for AMD predict either the risk of
developing AMD or of progressing from the early and
intermediate stages to advanced disease [66]. Models

incorporating only genetic information have achieved
AUCs>0.8 [67, 68], and models combining both genetic
and environmental risk factors have reported AUCs>0.9
[69, 70, 71]. Interestingly, a model which only included
environmental risk factors predicted the risk of developing
advanced AMD with a similar AUC of 0.88 [72], leading
some to question the usefulness of genetic data in predictive
models [73]. Baseline macular phenotype in particular is a
strong predictor of AMD progression. While some groups
have shown improved risk model accuracy for disease
progression when the genotype is included with fundus
phenotype [69, 70], a recent study found only a small
addition to predictive power [74]. Future studies looking at
which genetic variants associate specifically with progres-
sion of AMD may be useful.

While the AUC broadly measures the accuracy of a
model to distinguish between cases and controls, additional
factors need to be considered when evaluating a model’s
ability to estimate the risk for individuals. One method is
to use the reclassification approach, which classifies
individuals into risk strata. In a worked example,
Jakobsdottir et al. [75] applied a genetic risk model for
AMD with an AUC of 0.79 to a theoretical population with
an AMD prevalence of 5.5% (corresponding approximately
to AMD prevalence in patients older than 65 years). For a
sensitivity of 74 and specificity of 31%, the model classified
individuals with >4% risk of AMD as cases (‘high risk’)
and those with <4% risk as controls (‘low risk’). The cor-
responding positive predictive value was only 12%, mean-
ing that 88% of those patients classified as ‘high risk’
should actually have been in the ‘low risk’ group. The
authors also demonstrated how the model’s predictive
ability is heavily influenced by disease prevalence, which is
highly age dependent for AMD. Applying their model with
the same sensitivity and specificity to a population with a
15% AMD prevalence (the approximate prevalence for
patients older than 80 years) classified individuals as >10%
risk (cases) or <10% risk (controls) of AMD, with an
improved positive predictive value of 30% [75].

As illustrated by the example above, a risk model with a
seemingly acceptable AUC may therefore not be useful
clinically as a predictor of individual risk. In addition, some
genetic risk variants discovered in one population may not
be as important in others. To date, the majority of AMD
genetic associations have been studied in populations of
European ancestry. The 19 risk loci discovered by the AMD
Gene Consortium in a non-Amish Caucasian population
appear to account for a lower proportion of AMD in Amish
individuals, and a rare CFH variant (P503A) associated
with AMD in the Amish population was absent in non-
Amish cases and controls [42, 55]. The common CFH
Y402H risk variant is present in ~30% of Utah residents of
Northern and Western European ancestry, but only ~5% of

Fig. 1 An example of a receiver-operating characteristic (ROC) curve.
The solid black line represents an area under the ROC (AUC) of 0.5,
which indicates random chance. The dashed black line indicates an
AUC of 1.0, a perfect model. The dotted grey line represents an ROC
curve with an AUC between 0.5 and 1.0, as may be generated by a
predictive risk model. Specificity decreases with increasing sensitivity.
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Japanese and Chinese individuals [76]. A recent
study showed both the CFH Y402H and ARMS2 A69S
variants to be associated with AMD in European Americans
but not in African Americans, Mexican Americans, or
Singaporeans [77]. Furthermore, in another study, the
common ARMS2 A69S variant was associated with
increased risk of AMD in non-Hispanic whites and Mexican
Americans but was found to be protective in non-Hispanic
black individuals [78]. This implies that differing genetic
loci underlie AMD in different populations, and predictive
risk models should account for these ethnic variations
accordingly.

Despite the limitations of predictive testing in AMD, a
number of commercial companies now provide genetic
AMD tests. Improved accuracy of these tests could in
the future aid the detection of high-risk individuals who
may benefit from early preventive measures. However,
there is currently no evidence that changes to the
management of such patients beyond current practice are
beneficial. For these reasons, the current recommendations
from the American Academy of Ophthalmology (AAO)
include avoidance of routine genetic testing for complex
disorders like AMD, until prospective clinical trials have
shown specific surveillance or treatment strategies to be of
benefit [79].

Pharmacogenetics and AMD

Another potential use for genetic testing is to identify which
AMD patients may respond best to specific treatments. The
Age-Related Eye Disease Study (AREDS) antioxidant and
zinc formulation is the only therapeutic intervention that has
been shown prospectively to significantly reduce the risk of
progression to advanced AMD [80]. Genetic testing to
guide preventive treatment with the AREDS formulation
has proved to be controversial. Awh et al. [81, 82] recently
published retrospective analyses on patients from the
AREDS trial, reporting that certain CFH and ARMS2
genotypes were associated with potentially harmful
responses to dietary antioxidant and zinc supplementation.
The authors therefore concluded that favourable outcomes
may be achieved by assigning nutritional supplementation
based on CFH and ARMS2 genotypes. Subsequent analyses
by the original AREDS investigators, however, found the
AREDS formulation to be beneficial for all genotypes, as
well as pointing out statistical errors made by Awh et al.
[83, 84]. Other studies have shown the effectiveness of
nutritional supplementation to differ by genotype, but no
harmful effects were observed [85, 86]. Prospective clinical
trials are needed to more definitively address this issue, but
at present, there is insufficient evidence to support genetic
testing prior to recommending AREDS nutritional supple-
mentation [87, 88].

A number of studies have also examined whether
AMD-associated risk variants and VEGF-related gene
polymorphisms affect response to anti-VEGF therapy
in nvAMD. Although the majority of patients do well
with anti-VEGF treatment, 10–15% respond poorly and lose
vision [89]. Variation in treatment outcomes is related
to clinical characteristics, such as baseline visual acuity
and central retinal thickness, and may also be influenced
by genetic factors. A single GWAS identified an association
between a variant in the OR52B4 gene and response to
anti-VEGF; however, this is yet to be replicated [90].
Small retrospective studies have found statistically
significant associations between variants in candidate
genes, either related to angiogenesis or known to confer
AMD risk, and response to anti-VEGF [91]. In contrast,
no such genetic associations were observed in the
major Comparison of AMD Treatments Trial (CATT)
and Inhibit VEGF in Patients with Age-Related CNV
Study (IVAN) randomised control trials [92–96]. Recent
meta-analyses pooling data from these smaller studies
with the major trials have reported positive associations
between anti-VEGF treatment response and the CFH
Y402H and AMRS2 A69S variants, as well as polymorph-
isms in VEGF-A and VEGFR-2, but all acknowledge
the need for large prospective trials to validate their
findings [97–100].

Genetic testing in AMD research

Routine genetic testing for AMD is therefore currently not
advised in clinical practice, and further supportive evidence
from prospective clinical trials is needed before recom-
mending genetic testing to guide treatment with AREDS
nutritional supplementation or anti-VEGF [79, 87, 88].
Genetic testing may however be useful as a research tool,
for example, to select suitable patients for future clinical
trials of novel therapeutics designed to prevent AMD.
Restricting patient recruitment to those individuals at the
highest risk of developing advanced AMD is likely to
decrease the sample size requirements for adequate pow-
ering of such studies. Reconsidering the predictive model
with an AUC of 0.79 by Jakobsdottir et al. [75] discussed
earlier, while a positive predictive value of 12–30% may be
poor in the clinical setting, it might prove cost-effective to
help improve the proportion of participants at high risk of
developing AMD in a clinical trial.

Genetic testing could also be useful in therapeutic clin-
ical trials. To date, the complement system has been most
frequently implicated in AMD, and consequently, several
trials of complement inhibitors have been initiated [60].
AMD is genetically heterogeneous and it is possible that
patients with certain risk variants in complement-related
genes may respond differentially to complement inhibition.
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Recently reported findings from the phase II MAHALO trial
of lampalizumab, a monoclonal antibody inhibitor of
complement factor D, in GA support this concept. Pro-
gression of GA lesion size over 18 months follow-up was
significantly less in patients treated with monthly intravi-
treal injections of lampalizumab; however, this response
was only observed in those patients carrying a common CFI
risk allele (rs17440077) [101]. Results from phase III trials
are currently awaited, although preliminary results from one
of these phase III trials, Spectri, showed no benefit of
lampalizumab therapy overall. It will be interesting to see
full results including results in genetic subgroups [102].

Summary and conclusions

The proportion of AMD heritability now explained by known
genetic risk variants is estimated at ~50%. Identification of
disease-associated common and rare variants has implicated
various biological pathways in AMD pathogenesis. The
complement system in particular appears to play an important
role, and functional studies are beginning to elucidate how
complement dysregulation may contribute to AMD. These
discoveries have furthermore led to the development of
potential novel therapies modulating complement activity.
Promising results have now been reported in a phase II trial of
the anti-complement factor D antibody lampalizumab in a
genetic subgroup [101], (although early results from the phase
III Spectri trial showed no benefit overall) 102], and also in a
phase II trial inhibiting C3 in AMD patients [103]. Further
work is needed to uncover the remaining heritable component
of AMD and better understand how genetic and environ-
mental factors interact to cause the disease.

An improved understanding of AMD genetics will also
aid the development of risk models that can more accurately
predict disease occurrence and progression. It is possible
that such predictive tests may guide AMD patient man-
agement in the future if effective preventive therapies and
pharmacogenetic associations are discovered, although, for
now, there is insufficient evidence to recommend genetic
testing in clinical practice [79, 87, 88]. Genotype-restricted
sampling for clinical trials, however, may help accelerate
progress in translational AMD research.
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