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Genetics and genomics of Parkinson’s disease
Michelle K Lin and Matthew J Farrer*
Abstract

Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. Although best described as a
movement disorder, the condition has prominent autonomic, cognitive, psychiatric, sensory and sleep components.
Striatal dopaminergic innervation and nigral neurons are progressively lost, with associated Lewy pathology readily
apparent on autopsy. Nevertheless, knowledge of the molecular events leading to this pathophysiology is limited.
Current therapies offer symptomatic benefit but they fail to slow progression and patients continue to deteriorate.
Recent discoveries in sporadic, Mendelian and more complex forms of parkinsonism provide novel insight into
disease etiology; 28 genes, including those encoding alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2)
and microtubule-associated protein tau (MAPT), have been linked and/or associated with PD. A consensus regarding
the affected biological pathways and molecular processes has also started to emerge. In early-onset and more a
typical PD, deficits in mitophagy pathways and lysosomal function appear to be prominent. By contrast, in more
typical late-onset PD, chronic, albeit subtle, dysfunction in synaptic transmission, early endosomal trafficking and
receptor recycling, as well as chaperone-mediated autophagy, provide a unifying synthesis of the molecular pathways
involved. Disease-modification (neuroprotection) is no longer such an elusive goal given the unparalleled opportunity
for diagnosis, translational neuroscience and therapeutic development provided by genetic discovery.
Clinical features, main treatments and challenges
Parkinson’s disease (PD) is a progressively debilitating
neurodegenerative disease that becomes increasingly
challenging to manage. Until recently, the underlying
molecular cause(s) have remained elusive, as have hopes
of disease-modification (neuroprotection). The need for
advances in understanding and treating the disease is
great as PD is the second most common neurodegenera-
tive disorder after Alzheimer’s disease. The estimated
worldwide prevalence is 1% in the population >60 years
of age, increasing to 4% at 80 years of age [1]. The
median age of onset is about 70 years but about 4% of
patients manifest early-onset disease (before they reach
50 years of age).
In PD, the clinical heterogeneity, disease course and

response to medication vary widely [2]. Motor symptoms
are associated with profound neuronal loss in the sub-
stantia nigra pars compacta (SN), depleting the striatum
of dopaminergic inhibition. Hence, restorative dopamin-
ergic therapies are the main treatment. Monoamine oxi-
dase inhibitors are initially used to prevent endogenous
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dopamine catabolism; alternatively, L-DOPA, the meta-
bolic precursor of dopamine, and/or dopamine agonists
are used. In selected patients, deep brain stimulation
(DBS) of striatal output pathways has also proven effect-
ive [3]. There are, however, several non-motor symp-
toms, of which many are non-dopaminergic and without
remedy [4]. For example, 30% of patients develop mild-
cognitive impairment within 5 years of motor symptoms
and many develop dementia [5]. PD is clinically and/or
pathologically distinct from other forms of parkinsonism
(Box 1). A definitive diagnosis of PD requires the pres-
ence of Lewy bodies and Lewy neurites (proteinaceous
intracellular inclusions) in the brain stem (midbrain), al-
though these lesions are often more widespread [6,7].
Here, we review recent genetic and genomic findings in
studies of PD, we provide some integration and synthesis
of the molecular pathways involved, and we discuss the
translational implications.

Early linkage and candidate gene studies
Classical linkage analysis has proven a powerful approach
for the identification of specific disease-associated
genes and mutations in families with multi-incident
parkinsonism [8]. Genome-wide association and twin
studies further demonstrate that even idiopathic sporadic
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Box 1. Parkinsonism and Parkinson’s disease

Parkinsonism is used as an adjective to describe a movement

disorder generally consisting of one of more features of tremor,

bradykinesia and rigidity. The most common forms are drug-induced

(for example, as a side-effect of antipsychotic neuroleptics), or

vascular resulting from a stroke. When used as an adjective,

the term parkinsonism does not imply that the symptoms are

progressive or neurodegenerative, or that they are associated

with a specific neuropathology. Parkinsonism may not respond

to levodopa therapy. PD itself has the same core triad of symptoms,

but it begins asymmetrically, one side of the body being more

profoundly affected than the other, and postural instability is

typically a feature. In PD, symptoms respond well to levodopa

replacement therapy, and typically worsen with disease duration

despite medication. Symptoms become bilateral in advanced PD,

and dopaminergic imaging, using modalities such as DaTscan,

highlights the same pattern of progression.

PD, but not parkinsonism, is often associated with a variety of

autonomic problems (constipation, bowel and bladder

incontinence, drooling), cognitive dysfunctions (from mild

impairments in executive function to dementia), motor

problems (from dystonia to dyskinesia), neuropsychiatric

symptoms (mood disorders, such as depression to impulse

control), sensory problems (from unexplained pain syndromes

to hyposmia or anosmia) and sleep disorders (daytime

sleepiness to REM sleep behavior disorder). Several of these

problems, including dyskinesia, mood disorders and daytime

sleepiness, may be associated with levodopa therapy or the

use of dopamine agonists.

A definite diagnosis of PD is reserved for patients with Lewy

body pathology and neuronal loss in the midbrain, which is

often more widely distributed to involve the myenteric

plexus, vagus and olfactory bulb. By contrast, parkinsonism

may be associated with a variety of pathologies, including

neurofibrillary tangles (such as in progressive supranuclear palsy,

corticobasal ganglionic degeneration, or parkinsonism-dementia

complex of Guam), to the predominant oligodendroglial

alpha-synuclein pathology of multiple system atrophy, or

predominant cortical Lewy pathology associated with dementia

with Lewy bodies.

Lin and Farrer Genome Medicine 2014, 6:48 Page 2 of 16
http://genomemedicine.com/content/6/6/48
PD has a significant genetic component [9,10]. Mutant
gene discovery by linkage with association provides an un-
equivocal burden of proof, and is the foundation required
for translational neuroscience. Nevertheless, genetically
defined carriers may have variable expressivity and pene-
trance and may never ‘phenoconvert’ to symptomatic dis-
ease. Age remains an important determinant, even in
families with dominant, recessive or X-linked patterns of
segregation. Not surprisingly, in vivo modeling in mam-
malian systems is challenging if the expectation is to re-
capitulate the human phenotype. Gene discovery efforts in
PD have been expertly reviewed and we provide some his-
torical context in Box 2. In this review, we focus on more
typical, late-onset PD with Lewy body pathology, the dis-
ease type suffered by the majority of patients, and suggest
how recent discoveries might unify existing ideas to sug-
gest novel pathways and therapeutic targets.
In this context of genomic discovery, genes at three loci -

alpha-synuclein (SNCA), leucine-rich repeat kinase 2
(LRRK2) and microtubule-associated protein tau (MAPT) -
deserve special mention, although the molecular relation-
ship between them has yet to be elucidated. Both SNCA
and LRRK2 assignments were originally implicated by the
discovery (by linkage analysis) of pathogenic mutations
that segregate within families, and these observations were
extended into idiopathic PD by candidate gene studies.
Combined pooled analysis by the Genetic Epidemiology
of Parkinson’s disease Consortium (www.geopd.org), litera-
ture meta-analysis (www.pdgene.org) and more recent
genome-wide association studies (GWAS) have provided
compelling support for the involvement of these loci.
Missense and multiplication mutations (duplication and

triplication) in SNCA lead to PD, subsequent dementia
and fulminant diffuse Lewy body disease on autopsy [11].
Levels of gene expression are inversely correlated with age
at symptom onset. In rodents, SNCA overexpression may
recapitulate many of the features of PD, whereas knockout
mice are viable and fertile and appear to have little sign of
disease [12]. The alpha-synuclein protein promotes pre-
synaptic SNARE complex assembly, synaptic vesicle exo-
cytosis and reciprocal plasmalemma endocytosis [13].
Alpha-synuclein protein aggregates, however, may also be-
have pathologically as prion proteins [14]. Transplants of
fetal tissue into the striatum of human patients have been
observed to develop Lewy-body pathology [15]. Similarly,
iatrogenic inoculation of alpha-synuclein oligomers into
mouse brain leads to widespread Lewy-like pathology,
albeit requiring endogenous alpha-synuclein for trans-
mission [16]. Hence, down-regulation or suppression of
SNCA may represent one mechanism to slow disease
progression [17]. Similarly, therapies that enhance the
clearance of Lewy aggregates, including immunotherapies
targeting potentially toxic forms of alpha-synuclein, might
be neuroprotective [18].
LRRK2 parkinsonism is clinically indistinguishable

from idiopathic PD. The age of onset and age-dependent
cumulative incidence is similarly broad, although disease
progression in carriers of LRRK2 mutations is more
homogeneous [19]. A founder haplotype has been noted
for LRRK2 p.G2019S in most populations. Penetrance
appears to be ethnic-specific with a lifetime cumulative
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Box 2. Genetic insights and evolving neuroscience

1997 A missense substitution, p.A53T, is discovered in the gene encoding alpha-synuclein (SNCA) in a family from Contursi, Italy whose

members were susceptible to autosomal dominant, late-onset parkinsonism [56]. Alpha-synuclein, then known as ‘Non-amyloid component

of plaques’ (NACP), provides a link between PD and Alzheimer’s disease. Whether alpha-synuclein monomers, oligomers or fibrils are the toxic

species becomes a topic for debate. Physiologically, the Zebra Finch homolog of SNCA is found to be required for song learning, pre-synaptic

plasticity, and vesicle trafficking in neurotransmission.

Alpha-synuclein immunohistochemistry reveals much more occult Lewy pathology than had been visualized previously by hematoxylin

and eosin (H&E) staining, and replaced the use of PGP9.5 (an antibody for Ubiquitin C-terminal hydrolase1 (UCHL1)) [136]. It is argued

that familial and idiopathic forms of parkinsonism are the same disease, with similar ontology. Nevertheless, epidemiologists claim that

the etiology of late-onset PD is environmental, rather than due to a genetic predisposition, supported by the results of twin studies.

Further debate centers on whether ubiqinated Lewy body ‘aggresomes’ are pathologic or protective.

1998 Homozygous parkin deletions are linked to recessively inherited juvenile and early-onset parkinsonism, albeit without documented

Lewy pathology [109]. Parkin mutations soon explain around 15% of all early-onset parkinsonism (in those younger than 45 years) [137]. As

the parkin mutations affect a ubiquitin E3 ligase, the field focuses on proteasome inhibition, attempting to identify parkin’s substrates and to

nominate the toxic species. Patients with parkin mutations and Lewy or tau pathology have subsequently been described [138,139]. The

crystal structure of the ubiquitin ligase reveals how its activity is regulated [116].

1999-2001 Candidate gene studies of polymorphic variability in SNCA and microtubule-associated protein tau (MAPT) highlight the

roles of these genes in idiopathic, late-onset PD [57,140,141]. MAPT is implicated in progressive supranuclear palsy, in part because of

the discovery of splicing mutations in another 4R-tauopathy, frontotemporal dementia with parkinsonism linked to chromosome 17

(FTDP-17) [44]. Large-scale GWAS provide further confirmation [9,52,55,142].

2003 DJ-1 mutations that were discovered in early-onset parkinsonism [123] highlight a role for oxidative stress in PD. The findings

help to justify the use of toxin-based models using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as an analog of the herbicide

paraquat or the pesticide rotenone.

2003-2004 SNCA triplication and duplication mutations demonstrate a dose-dependent relationship between expression and pathogenicity

[58,143-146] that is now supported by several mouse models. Lowering SNCA RNA and/or SNCA protein expression is nominated as a

therapeutic target, supported by in vivo studies.

2004 Recessively inherited mutations are identified in the Pten-induced kinase 1 gene (PINK1) in early-onset parkinsonism [147]. By

2006, PINK1 was found to regulate Parkin recruitment and mitophagy [114,115]. FBXO7 is within the same pathway, pointing to mitochondrial

maintenance as a therapeutic opportunity [68]. Hexokinase is identified through interaction screens as an upstream component of the

pathway [119]. PINK1 is shown to phosphorylate ubiquitin to activate parkin [117].

2004-2005 Dominantly inherited mutations are identified in the LRRK2 gene in late-onset PD [32]. In 2005, LRRK2 p.G2019S was linked

to PD in Norwegian families [148], and found to be the major determinant of sporadic PD in Ashkenazi Jews and North-African Berbers.

Kinase inhibition is nominated as a therapeutic strategy. Pleomorphic alpha-synuclein, 4R-tau or ubiquitin pathologies in affected carriers

suggest that Lewy pathology should not be required for a definite diagnosis of PD [32]. LRRK2 is implicated in protein sorting or trafficking

and in autophagy. Polymorphic variants in LRRK2 are found to lower or increase the risk of sporadic PD [34].

2006 ATP13A2 recessive mutations are identified in juvenile and early-onset parkinsonism [102]. Several lysosome-associated proteins

have subsequently been linked to rare and rather atypical forms, including ATP1A3 in rapid-onset parkinsonism-dystonia, and most

recently ATP6AP2 [71]. Polymorphic variants in the glucocerebrosidase gene GBA1 are reproducibly associated with late-onset PD,

highlighting a role for endosomal trafficking and lysosomal function [98].

2009 GWAS studies in PD confirm associations with SNCA and MAPT, and find evidence for additional loci [50-52].

2011 VPS35 D620N is linked to dominant late-onset PD [63]. Many families have the same, albeit de novo, substitution that supports

pathogenicity. By contrast, mutations in EIF4G1 R1205H require further genetic and functional support for their assignment [149].

2013-2014 Mutations in DNAJC13, along with VPS35, in late-onset Lewy-body PD further highlight involvement of the retromer-WASH

complex, endosomal protein sorting and trafficking [63,64,93].

2014 Further meta-analysis of GWAS supports known and novel loci. Nevertheless, for most loci the precise gene and underlying

variability remain elusive.
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risk of parkinsonism in p.G2019S carriers being 22% for
Ashkenazi Jews (living in the US), 45% for Norwegians
and 80% for Arab-Berbers [20-22], which is an import-
ant consideration for genetic counseling. For Ashkenazi
Jews in Israel and Arab-Berbers in Tunisia the pene-
trance of disease is similar. In these countries, the fre-
quency of LRRK2 p.G2019S carriers in healthy controls
is relatively high at 1 to 2% [23,24]. While genetic drift
may be sufficient explanation for the high frequency of
LRRK2 p.G2019S carriers in healthy controls, positive
selection may also contribute; LRRK2 is associated with
intestinal inflammatory disorders, immune response and
kidney function, which if compromised may be most
deleterious in hot climates [25-27]. Overall, only a small
proportion (approximately 1%) of familial and sporadic
PD is likely explained by LRRK2 p.G2019S; other vari-
ability, such as the p.G2385R mutation, which is fre-
quent throughout Asia, most significantly contributes to
population-attributable risk [28] (Table 1).
At post-mortem, the majority of patients with pathogenic

LRRK2 mutations have Lewy-body disease [29]. However,
even within families with the same mutation, pleomorphic
pathologies have been observed. These include neurofibril-
lary tangles and tufted astrocytes (4R-tauopathies, as in-
clusion of MAPT exon 10 leads to the production of
tau protein with four microtubule-binding domains), Tar
DNA-binding protein 43 and ubiquitin immune-positive
aggregates, or simply nigral neuronal loss with gliosis
[30-32]. The variable penetrance and alternative end-stage
pathologies most likely reflect genetic and/or environmen-
tal modifiers and stochastic factors, and have yet to be de-
fined. Nevertheless, genetically defined cohorts of patients
Table 1 Genomic loci implicated in Parkinson’s disease by ge

Gene Chr AssociatedSNP/locus Genes within locusa

GBA 1q21 N370S TRIM46, MUC1, MIR92B,
CLK2, HCN3, PKLR

SYT11/RAB25 1q21 chr1:154105678 MIR7851, UBQLN4, LAMT

PM20D1 1q32 rs11240572 NUCK1-RAB7L1-SLC41A1

STK39 2q24 rs2102808 STK39

MCCC1/LAMP3 3q27 rs11711441 MCCC1-LAMP3-MCF2L2

BST1 4p15 rs4698412 FAM200B-BST1

GAK/DGKQ 4p16 rs1564282 CPLX1-GAK-TMEM175-D

SNCA 4q21 rs356220 SNCA-MMRN1

HLA-DRB5 6p21 rs2395163 HLA-DRB5-HLA-DRB1, HL

GPNMB 7p15 rs156429 GPNMB-MALSU1-IGF2BP

LRRK2 12q12 rs34778348 SLC2A13-LRRK2-MUC19,

CCDC62/HIP1R 12q24 rs12817488 DENR-HIP1R-VPS37B, AB

MAPT/STH 17q21 H1H2, 900kb inversion ARHGAP27, PLEKHM1, C
LRRC37A, NSFP1, ARL17A

Chr, chromosomal band; CI, confidence interval. aGenes within 100 kb of the most s
Odds ratios and P-values are the most significant findings from the PDGene databa
with parkinsonism such as LRRK2 p.G2019S parkinsonism
might allow the identification of biomarkers of disease pro-
gression and inform clinical trials [19].
As the most common genetic cause of PD, LRRK2 and

its protein interactions are a logical place to search for
novel therapeutic targets. The domains of LRRK2 in-
clude armadillo and ankyrin repeat regions, leucine-rich
repeat (LRR), Ras of complex GTPase (Roc), C-terminal
of Ras (COR), kinase and WD40. LRRK2 is a ROCO pro-
tein, with a Ras GTPase and a kinase in one molecule;
these activities have established roles in other organisms or
cell types in dynamically modifying the actin cytoskeleton
[33]. Pathogenic LRRK2 mutations are primarily found in
the GTPase Roc domain (p.R1437H, p.R1441C/G/H),
the kinase domain (p.G2019S, p.I2020T) and intervening
C-terminal of Roc (p.Y1699C), whereas susceptibility vari-
ants may also be found in protein-protein interaction do-
mains (WD40 p.G2385R) [34]. Competitive inhibition of
LRRK2 kinase is presently considered as one therapeutic
target given that the p.G2019S mutation activates kinase
activity, autophosphorylation and/or phosphorylation of
substrates [35]. However, data on the first identified sub-
strate, moesin, which is a filamentous actin tether, have
not been recapitulated ex or in vivo [36]. LRRK2 protein
levels also diminish with aging, with knock-in of LRRK2
pathogenic mutations into the mouse genome [26] and
with kinase inhibition [37,38]. LRRK2 probably functions
as a dimer or higher molecular weight scaffold, with many
protein-protein interactions. The activities of the Roc,
COR and kinase domains are interconnected [39], and the
many physiologic functions of the protein complex have
yet to be fully elucidated.
nome-wide association analyses

Odds ratio[95% CI] P-value

THBS3, GBAP1-GBA-FAM189B, SCAMP3, 3.37[2.67-4.29] 1.11E-24

OR2-RAB25-MEX3A, LMNA 1.67[1.41-1.98] 5.70E-09

, PM20D1 0.74[0.69-0.80] 1.01E-14

1.28[1.19-1.38] 1.54E-11

0.84[0.80-0.89] 8.72E-12

0.87[0.83-0.91] 2.28E-10

GKQ-SLC26A1, IDUA, FGFRL1 1.29[1.20-1.38] 6.54E-13

1.30[1.25-1.34] 3.06E-49

A-DRB6 0.75[0.68-0.84] 2.90E-07

3 0.89[0.86-0.93] 2.69E-10

CNTN1 2.23[1.89-2.63] 2.97E-21

CB9, OGFOD2, 1.17[1.09-1.25] 2.99E-06

RHR1, SPPL2C-MAPT-STH, KANSL1,
/B

0.78[0.75-0.80] 3.54E-52

ignificantly associated SNP annotated from the UCSC genome browser (hg19).
se [150].
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An association between PD and MAPT and the sur-
rounding 17q21 locus results from an ancient paracentric
inversion and was robustly implicated in clinical PD and
in autopsy-confirmed series of PD in Caucasian popula-
tions [40-42]. Of note, similar variability in the MAPT
locus has been unequivocally implicated in progressive
supranuclear palsy, but not in Alzheimer’s disease, al-
though tau is a major component of the neurofibrillary
tangle pathology in both conditions [43]. Splice and mis-
sense mutations were first described in frontotemporal de-
mentia [44] and the inversion region was subsequently
implicated in 17q21.31 microdeletion syndromes [45], but
neither pathologic mutations nor tau pathology are found
in PD. Thus, genetic variability in neighboring genes,
within or flanking the MAPT inversion, may contribute.
Some examples of additional genes and pathogenic muta-
tions discovered through family-based linkage analysis of
parkinsonism are summarized in Table 2.

Genome-wide association studies
While there are several genetic models for disease suscep-
tibility, the ‘rare variant common disease’ model largely
explains Mendelian heritability (one allele of major effect
segregating with familial disease) whereas the ‘common
variant common disease’ model (or multiple rare variants
on common ancestral haplotypes) forms the theoretical
basis of GWAS [46]. Built upon large, multi-institutional
consortia, GWAS have dominated the search for novel
genes in human traits in recent years. Collectively, more
than 2,600 genomic regions (loci) of modest effect size
Table 2 Mendelian mutations in familial parkinsonism

Gene Mutation(s)

Dominantly inherited, late onset parkinsonism with Lewy pathology

SNCA Locus multiplication and missense mutations: A30P, E46K, H5

LRRK2 R1437H, R1441H, R1441G, R1441C, Y1699C, G2019S, I2020T

VPS35 D620N

EIF4G1 R1205H

DNAJC13 N855S

Recessively inherited, early-onset or X-linked atypical parkinsonism

PARK2 (Parkin) Numerous exon deletions, duplications and missense mutatio

PINK1 Rare locus and exon deletions. Numerous missense mutation
G309N W437X, G440E, Q456X

DJ-1 Deletions and missense: dup168-185, A39S, E64D, D149A, Q1

DNAJC6 Splice site c.801 -2 A > G and truncating mutation Q734X

ATP13A2 Missense: L552fsX788, M810R, G877R, G1019fsX1021. Small inse

FBXO7 T22M, R378G, R498X

PLA2G6 D331Y, R635Q,R741Q, R747W

ATP6AP2 Splice site mutations

SYNJ1 Homozygous missense: R258Q

OMIM, Online Mendelian Inheritance in Man, a database that catalogs all the known
(odds ratio <1.5) have been associated with >350 complex
traits and have implicated underlying genes that play a
role in disease causality or susceptibility [47]. Genome-
wide genotyping, with approximately 0.5 to 1 million
markers, is used to assess frequency differences in case-
control designs, and is able to capture common genetic
contributions to disease in linkage disequilibrium.
The first GWAS for PD were small and underpowered,

showing little overlap in results [48,49]. Subsequently,
there was an appreciation that larger numbers of markers
and subjects are required for meaningful discovery and
replication. Past North American and European efforts
included analysis of familial parkinsonism [50] and of
unrelated case-control series [51-54]. A web-based
‘direct- to-consumer’ effort, which is based on self report
rather than clinical exam, is by far the largest study to date
[9]. However, genomic imputation of single nucleotide
polymorphisms (SNPs) in linkage disequilibrium allows
datasets to be combined. In 2011, the International
Parkinson Disease Genomics Consortium conducted a
meta-analysis from five GWAS datasets [55]. Over 7
million SNPs based on approximately 1 million geno-
types per individual were imputed in silico: the data
were collected from 5,333 cases and 12,019 controls in
the discovery phase, followed by 7,053 cases and 9,007
controls in the replication phase. Six loci previously
associated with idiopathic PD were replicated and five
new loci were identified (Table 1). Data from the latest
mega-meta-GWAS, including over 13,000 patients with
PD and 80,000 control subjects, are eagerly awaited.
OMIM Reference(s)

0Q, G51N, A53T 168601, 605543 [56,58]

607060 [20,31,32]

614203 [63,64]

614251 [149]

614334 [93]

ns 600116 [109]

s, including E129X, Q129fsX157, P196L, 605909 [147,151]

63L, L166P, M261I. 606324 [123]

615528 [70]

rtions and deletions: 1103insGA, del2742TT 606693 [102]

260300 [68]

612953 [152]

[71]

615530 [72]

diseases with a genetic component.
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Nevertheless, in the same Caucasian populations, the gen-
etic variance explained is unlikely to increase in propor-
tion to the sample size and investment. While additional
loci may be nominated, these assignments are likely to be
of smaller effect and will require independent validation.
Overall, the most significant GWAS associations are at

chromosomal bands 4q22 and 17q21 and support SNCA
and MAPT assignments, which were first identified in link-
age and candidate gene studies [41,56-58]. Nevertheless,
GWAS illustrates that the etiology of PD is genetically het-
erogeneous and novel loci may yet be identified, especially
within under-represented non-Caucasian populations; for
example, PARK16, BST1 and SYT11 were identified in a
Japanese study [52]. Although a risk allele identified in one
population should be a risk allele for all (the genotypic-
attributable risk), their frequencies may be ethnically spe-
cific and lead to widely divergent population-attributable
risks. For example, Caucasians have two major haplotypes
(H1 and H2) for the MAPT locus; only H1 is present in
Asian populations whereas the frequency of H2 is about
20% in Caucasians. The MAPT locus is significantly asso-
ciated with PD in Caucasian studies but does not appear
in a Japanese GWAS [51,52]. Conversely, the PM20D1
locus was most clearly associated with PD in Japanese
GWAS (5 to 8% differences between cases and controls)
[52], whereas PM20D1 allele frequencies in Caucasian stud-
ies were similar in cases and controls (1% difference) [51].
It is important to note that genomic loci are not dis-

ease genes per se. Within each genomic locus, there may
be numerous genes of which one or all may be candi-
dates contributing to disease risk. An illustration is the
GAK-DGKQ locus that is significantly associated with
PD [9,50,55]. GAK and DGKQ are in complete linkage
disequilibrium and both proteins have important roles in
clathrin-mediated vesicular trafficking [59,60]. Further-
more, no coding mutations have been identified in any
GWAS locus or gene except for those previously identified
through linkage studies in families (that is, LRRK2 and
SNCA). Rather, these associations are ascribed to subtle
differences in wild-type gene expression, for which RNA
silencing and overexpression models may be informative.
Common variants of modest effect, on common haplo-
types, may lead to modest transcriptional or functional
changes. Directly genotyping a ‘causal variant’ will provide
the greatest odds ratio for disease association and provides
the rationale for locus-specific sequencing and further
association testing. For some disease-associated loci, mul-
tiple rare variants of major effect may be responsible, in
aggregate, although they will have occurred on the most
frequent haplotypes.

Next-generation sequencing for PD
Most of the genetic variants in the human genome are a
consequence of mutation with recent population
expansion and are present at very low frequencies
(<0.5%) [61]. Collectively, rare variants are more com-
mon than frequent variants in any given population and
each individual has many unique de novo point muta-
tions. If these cluster within specific genomic loci in pa-
tients with a disease such as PD, they highlight genes or
mutational hotspots likely to confer disease susceptibil-
ity. To Sanger sequence gene-by-gene in search of a
causative variant for PD is a time-consuming and cost-
limited effort. Nevertheless, the detection of rare and
unique variants via direct sequencing has become more
affordable with the advancement of next-generation
methods.
Within families, whole-exome sequencing (WES) has

proven to be effective in uncovering rare causal mutations
of major effect in small sample sizes, and is considerably
less expensive than whole-genome sequencing. The first
proof-of-concept work discovered pathogenic variants in
Freeman-Sheldon syndrome in just four unrelated affected
individuals [62]. The first WES study of parkinsonism re-
vealed the p.D620N mutation in VPS35 (the vacuolar sort-
ing protein 35 gene) by sequencing affected cousin-pairs
in autosomal dominant kindreds with late-onset disease
[63,64]. These findings have been confirmed worldwide,
suggesting that VPS35 contributes to approximately 1% of
familial parkinsonism and 0.2% of sporadic PD [65-67].
WES has become the fastest method for the identifica-
tion of novel genes in parkinsonism, contributing to
the discoveries of FBXO7, WRD45, DNAJC6, DNAJC13,
ATP6AP2 and SYNJ1 in recent years [68-72].
Variants in non-coding and highly conserved genomic

regions may also contribute to risk, and might explain the
‘missing heritability’ underlying complex trait disorders.
Whole-genome sequencing (WGS) now enables the se-
quencing of untranslated regions (UTRs), including gene
promoters, enhancers, introns, and 5′ and 3′ UTRs. These
contribute to the regulation of gene expression directly
through transcription-factor binding, via microRNA and
noncoding RNA mechanisms and through alternative
exon splicing, and can influence the phenotypic variance
of some traits. Two examples relevant to parkinsonism in-
clude 5′ UTR expansions in FMR1 in Fragile X-associated
tremor-ataxia syndrome [73] and non-coding mutations
in ATP6AP2 that contribute to aberrant alternative
splicing [71].
Next-generation DNA-sequencing panels can be used

for novel mutation discovery in a locus-centric approach.
In genome-wide family-based studies, when seeking to
identify novel genes, it is prudent to examine and exclude
those genes already implicated in parkinsonism (including
developmental and aging syndromes as described earlier).
Unique probes or amplicons can cover exonic regions or
span entire loci, and target DNA can be barcoded and se-
quenced in parallel for multiple individuals. Such panels
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have many benefits: first, they provide affordable and rapid
genetic diagnoses to better inform patient treatment, with-
out problems arising from incidental findings [74]; second,
they allow the discovery of as-yet-unknown mutations in
genes known to be related to PD; and third, in aggregate,
the results nominate genetic variants that may further ex-
plain the heterogeneity of clinical and pathologic presenta-
tions. Similar bioinformatic filters might be applied to
WES or WGS in silico. In a gene-centric approach, with a
limited number of genes studied per assay relative to WES
or WGS, the interpretation is simplified. Nevertheless,
custom capture or amplification methods can produce ar-
tifacts as oligomers may not be perfectly complementary
to the human genome being interrogated, and this may
introduce some allelic bias.
Another pitfall of next-generation sequencing (NGS)

methods is the inability to sequence repetitive regions
and structural variations. For example, SNCA multiplica-
tions, the GBA loci versus its pseudogene, or indeed any
repetitive regions may confound sequence analysis; most
sequence read lengths are relatively short (approximately
100 to 200 bp) and may be misaligned as a consequence.
Almost half of the human genome consists of repeats that
play an active role in genome evolution, although large
structural rearrangements may result in disease [75]. Inad-
equate sequence read-depth may also lead to annotation
errors. Most publically shared WGS has been performed at
relatively low read depths; for example, the 1000 Genomes
effort achieved 2x to 6x coverage (www.1000genomes.org).
For WES, >100x coverage is considered necessary for diag-
nostic testing [76]. Nevertheless, specific NGS results
should be validated by Sanger sequencing to prevent false
positives. Higher-coverage sequencing, longer read lengths
and innovative bioinformatic approaches continue to offer
significant improvements.
In studies involving WES or WGS of familial PD, rare

variants can be prioritized for validation and replication
in additional samples by looking at the intersection of
those shared by affected family members and not shared
by elderly unaffected relatives. Typically, in approximately
58 Mb of exome sequencing approximately 80,000 single
nucleotide variants are observed per individual, of which
approximately 250 encode substitutions not annotated in
public databases. To further reduce this number, a power-
ful approach has been to compare affected cousin-pairs, in
contrast to affected sibling-pairs, to reduce the number of
alleles shared by descent (from approximately 125 to ap-
proximately 31 variants). In ‘pair-wise sharing analysis’
non-synonymous missense mutations that have a fre-
quency less than the incidence of PD (<0.003), which are
evolutionarily conserved and predicted as damaging, are
prioritized as good candidates for follow-up. However,
caution is warranted in comparative analyses: the pheno-
copy rate of late-onset PD is approximately 18% in
families in which a monogenic cause of disease is already
defined [77]. The strategy may also exclude causal or risk
variants. For example, SNCA p.A53T was the first muta-
tion identified in PD but is neither evolutionarily con-
served nor predicted to be deleterious [56].

Molecular pathways in PD
Many genetic components now appear to contribute to
the pathogenesis of parkinsonism. It is largely unknown
whether the proteins involved function in overlapping
biological pathways, whose dysfunction results in the
progressive loss of striatal dopaminergic innervation and
death of midbrain nigral neurons. Nevertheless, some re-
lationships, involving the perturbation of relatively few
cellular systems, are apparent (Figure 1). The affected
systems include synaptic transmission, endosomal traf-
ficking, lysosomal-autophagy and energy metabolism or
mitophagy.

Synaptic transmission
Alpha-synuclein protein is found abundantly at the pre-
synaptic terminals of neurons and is involved in synaptic
release [13] (Figure 1). Monomeric forms of alpha-
synuclein may contribute to endophilin-A1-related
membrane curvature, facilitating both synaptic vesicle
exo- and endocytosis [78]. A tetrameric conformation
has been proposed for alpha-synuclein and this might pro-
vide a parsimonious explanation of how amino-terminal
point mutations lead to the same functional deficits
[79,80]. The conformation of alpha-synuclein has previ-
ously revealed physiologic interactions with mitochondria
[81] and with presynaptic tubulovesicular or endosomal
structures when alpha-synuclein is overexpressed in trans-
genic mice [82].
At the synapse, LRRK2 levels regulate glutamate trans-

mission, dopamine-dependent plasticity and striatal signal
transduction [83,84]. LRRK2 protein levels and mutant-
specific phenotypes have long been observed in neuritic
outgrowth (affecting branching and length) in primary
cultures [85,86] and in neurogenesis in vivo [87]. In
Drosophila, LRRK2 kinase has been shown to regulate the
EndoA phosphorylation cycle, and pathogenic mutations
appear to impede synaptic endocytosis [88] (Figure 1).
LRRK2 protein is also reported to interact with the
dynamin superfamily of GTPases, which mediate both
membrane scission in clathrin-induced endocytosis and
mitochondrial fission and fusion [89]. In Caenorhabditis
elegans, knockout of LRK-1 (the single homolog of
mammalian LRRK1 and LRRK2) leads to impairment
in presynaptic protein sorting and axonal trafficking
[90]. Several important functions have also been as-
cribed to the LRRK2 protein complex in non-neuronal
cells, including kidney cells [26,91], and in innate
immunity [92].

http://www.1000genomes.org/
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Figure 1 Cellular processes implicated in familial late-onset, Lewy body parkinsonism. In late onset parkinsonism, which is most
reminiscent of Lewy body PD, a novel synthesis is emerging whereby regulatory steps in synaptic neurotransmission, receptor recycling,
endosomal trafficking and lysosomal degradation are controlled by relatively few proteins. Studies in neurons and brain are limited but many
reciprocal connections are apparent [8]. For example, (a) SNCA functions with heat shock chaperone Hsc70 and SNAP25 to promote membrane
SNARE complex assembly and exocytosis in neurotransmission. (b) In mammalian cells, LRRK2 may also regulate cleavage of invaginated
endocytic membrane through interaction with dynamin. Several other genes, including DNAJC6 (with homology to GAK) and SYNJ1, encode
proteins important in clathrin uncoating. In Drosophila, LRK1 (the homolog of mammalian LRRK1 and LRRK2) phosphorylates endophilin A to
directly regulate endocytosis. In the mammalian striatum the expression levels of SNCA and endophilin A are reciprocally related. (c) In the endosome,
VPS35 and the retromer cargo-selective-complex (CSC; comprising VPS35-VPS26 and VPS29) play an important role in membrane protein cargo
sorting. The CSC is best described in endosome to trans-Golgi network retrieval in the soma, most specifically in recycling cation-independent
mannose-6-phosphate receptor that traffics acidic hydrolases (including GBA) to the lysosome. However, recent studies in neurons have revealed that
VPS35 and WASH are also crucial in protein recycling (d) of specific synaptic receptors from early endosome to plasma membrane, and (e) in
the V-ATPase required for lysosomal acidification. Importantly, CSC trafficking can be mediated by sorting nexin interaction with dynactin
p150Glued (DCTN1), dynein, tau (MAPT) and microtubules, or via the WASH complex, DNAJC13 and actin polymerization. DNAJC13 was first
described in endocytosis in C. elegans, rather than in post-endocytic trafficking, and like SNCA requires Hsc70 to function. LRRK2 has also been
shown to interact with VPS35 and microtubules, and like SNCA may be intrinsically targeted to lysosomal membranes by protein motifs for
chaperone-mediated autophagy. Clearance of insoluble SNCA aggregates is also mediated by the endosomal system and lysosomal degradation [153].
Several other lysosomal proteins, including ATP13A2 and ATP6AP2, have been implicated in atypical parkinsonism. EIF4G1, through mTOR regulation
of protein translation, serves to balance autophagic activity and metabolism or ATP levels, whereas (f) PINK1 and Parkin are intrinsically involved in
mitochondrial quality control in early onset parknsonism.
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Recessively inherited mutations in DNAJC6 have recently
been identified in juvenile parkinsonism [70]. DNAJC6
encodes auxilin, a homolog of cyclin-G associated kin-
ase (GAK; Table 1), which is preferentially expressed
in neurons and involved in clathrin uncoating and syn-
aptic vesicle recycling. Similarly, recessively inherited
mutations in SYNJ1, encoding synaptojamin, that com-
plexes with Hsc70 and auxilin, have been implicated in
disease [72].

Endosomal trafficking
Endosomal trafficking is a highly complex and dynamic
cellular process whereby vesicles or cargos that are inter-
nalized at the plasma membrane are subsequently
recycled, directly or via the trans-Golgi network, and
targeted for degradation by lysosomal autophagy. Muta-
tions in VPS35 and RME-8 (receptor-mediated endo-
cytosis 8, also known as DNAJC13) were recently linked
to late-onset Lewy body parkinsonism and directly im-
plicate endosomal trafficking in disease pathogenesis
[63,93]. Neurons have a critical need to recycle membrane
receptors. This can be accomplished through the clathrin-
independent retromer system, a tubulovesicular tripartite
complex of VPS26 (vacuolar sorting protein 26), VPS29
and VPS35 that relies on sorting nexins to stipulate the
destinations of specific cargos, such as neurotransmitter re-
ceptors. Multiple VPS35 subunits coalesce about FAM21, a
subunit of the WASH (Wiskott-Aldrich syndrome protein
and scar homolog) complex, to mediate dynamic actin re-
modeling [94]. RME-8 also binds sorting nexins and
FAM21 to influence WASH and cargo trafficking [95].
VPS35 may also physically interact with LRRK2 and
Rab7L1 (within the PM20D1 locus; Table 1) to influence
these processes [96].
Lysosomal autophagy
Lysosomes have an essential function in maintaining
protein and organelle integrity within cells and impaired
lysosomal function may play an important role in the
pathogenesis of PD. Aggregated alpha-synuclein, in the
form of Lewy neuritic or Lewy body inclusions, that fails
to be degraded by proteosomal or lysosomal systems is
the pathologic hallmark of PD. It is presently unknown
whether the intracellular protein aggregation observed
in most late-onset neurodegenerative diseases is a cause
or consequence of dysfunction in these pathways [97].
The formation of intracellular aggregated alpha-synuclein
or tau inclusions, albeit not a primary pathology, is also
found in several ceroid lipofuscinosis disorders. These in-
clude glycolipid storage diseases such as Gaucher disease
and Niemann-Pick type C that are most prevalent in Ash-
kenazi Jewish communities. Although the GBA (glucocer-
ebrosidase gene) mutations are recessively inherited in
Gaucher disease, heterozygote carriers have an increased
prevalence of PD and dementia with Lewy bodies (Table 1)
[98]. A lysosomal pathway for parkinsonism centered
around ceramide metabolism has been hypothesized [99].
Loss of GBA activity increases intracellular glucosylcera-
mide accumulation, resulting in decreased lysosomal deg-
radation and subsequent accumulation of alpha-synuclein
[100]. Whether the latter reflects impaired GBA trafficking
from the endoplasmic reticulum and Golgi to lysosomes
or whether it results directly from lysosomal dysfunction
is unclear. In genetically engineered mice, GBA mutations
promote alpha-synuclein accumulation in a dose- and
time-dependent manner, with the animals developing
Lewy-like pathology in the brain and associated motor
and cognitive phenotypes. By contrast, loss of GBA ac-
tivity results in neuronal ubiquitinopathy and formation
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of axonal spheroids, a phenotype that is shared with
other lysosomal storage disorders prior to increased
alpha-synuclein concentrations [101].
Two juvenile or early-onset forms of atypical parkin-

sonism result directly from mutations in lysosomal
proteins. X-linked parkinsonism, with onset in males
between 14 and 50 years of age and associated with
post-mortem tau pathology, is a consequence of spli-
cing or protein isoform deficits in ATP6AP2 (encoding
ATPase, H+ transporting, lysosomal accessory protein
2) [71]. Recessively inherited pathogenic mutations in
ATP13A2 (ATPase type 13A2 gene) also result in im-
paired lysosomal proteolysis, leading to Kufor-Rakeb
syndrome [102]. Patients and knock-out mice develop
ceroid lipofuscin neuronal pathology, and the mice show
concomitant upregulation of alpha-synuclein protein in
the hippocampus [103]. Many genes are implicated in
neurodegeneration with brain iron accumulation, includ-
ing ATP13A2, PLA2G6, PANK2, C19orf12, FA2H, WDR45,
FTL, CP, and DCAF17 [104].

Mitochondrial metabolism
The earliest link between mitochondrial dysfunction and
parkinsonism was observed in illicit drug users. MPTP
(1-methyi-4-phenyl-1,2,3,6-tetrahydropyridine) is specif-
ically transported into dopamine neurons via the dopa-
mine transporter and is then oxidized into toxic MPP+, a
non-competitive complex inhibitor of the electron trans-
port chain [105]. Deficits of mitochondrial complex I have
been noted in idiopathic PD [106], although evidence from
direct sequencing studies of normal brain has proven
equivocal. Mitochondrial mutations in humans lead to
several neuromuscular disorders [107]. While the majority
are not associated with parkinsonism, similar movement
disorders with or without chronic progressive ophthalmo-
plegia can be caused by mutations in mitochondrial DNA
polymerase γ (POLG), a proofreading enzyme. Mouse
models with defective POLG exhibit premature ageing
whereas older homozygous, but not heterozygous, POLG
mice show significant reductions in striatal dopaminergic
terminals as well as deficits in motor function [108].
The importance of mitochondria in parkinsonism is

highlighted by the identification of mutations in several
genes within a common pathway for mitophagy. Muta-
tions in the PARK2 (parkin) gene result in a recessive
form of early-onset parkinsonism [109]. Parkin protein
was first described as a proteosomal E3 ubiquitin ligase re-
sponsible for K48 substrate polyubiquination (targeting to
the proteosome) and K63 monoubiquination (for signaling)
[110]. In addition, parkin may have several physiological
roles in neurons - for example, in Eps15 monoubiquination
[111] and in the regulation of neuronal apoptosis as part of
a SCF-like complex [112]. Most highlighted is the role
of parkin in regulating the degradation of depolarized or
uncoupled mitochondria, in concert with PINK1 (Pten-
induced kinase 1) and FBXO7 (F-box domain-containing
protein), which are also genes implicated in recessive early-
onset parkinsonism [68,113]. Drosophila parkin and PINK1
knockout models exhibit similar mitochondrial and wing
phenotypes, and a series of elegant experiments has dem-
onstrated that PINK1 is required for the recruitment of
parkin to mitochondria [114,115]. The crystal structure of
parkin has now been solved [116] and PINK1 has been
shown to phosphorylate ubiquitin required for parkin’s ac-
tivation [117]. Two recent RNA interference screens have
identified upstream regulators of mitophagy, albeit with
limited overlap [118,119]. These include TOMM7, essential
for stabilizing PINK1 on the outer mitochondrial mem-
brane; HSPA1L and BAG4, which may help to regulate
parkin translocation to mitochondria; and SIAH3, which is
localized to mitochondria and inhibits PINK1 after mito-
chondrial damage, thereby reducing parkin translocation.
Hexokinase activity, occurring downstream of Akt but up-
stream of PINK1, may also be required in the recruitment
of parkin to depolarized mitochondria [119]. STOML2,
mitofusin1/2, GRP75, HSP60, LRPPRC, and TUFM have
been nominated as downstream targets of the PINK1/
parkin pathway [120-122]. DJ-1 mutations, which result
in early-onset parkinsonism [123], may also regulate
PINK1-dependent parkin translocation to depolarized
mitochondria [124]. DJ-1 deficiency leads to altered
mitochondrial morphology and increased levels of react-
ive oxygen species (ROS) [124]. Traditionally, knock-
out mouse models of parkin, PINK1 or DJ-1 result in
mitochondrial dysfunction [125] but do not develop the
locomotor phenotype of parkinsonism, nigral neuronal
loss or Lewy-body pathology; rather they have elevated
dopaminergic tone due to deficits in D2 presynaptic
regulation of release [126,127]. However, a recent condi-
tional parkin knockout mouse model demonstrated pro-
gressive loss of dopamine neurons in a PARIS-dependent
pathway [128]. Thus, protein components of the parkin/
PINK1 mitochondrial pathways remain plausible thera-
peutic targets for human carriers of these mutations and
potentially for idiopathic PD.
While mitochondrial mutations and proteins involved in

mitophagy have been directly implicated in parkinsonism,
there is accumulating albeit indirect evidence that mito-
chondrial function is central to disease pathogenesis and/or
progression. For example, alpha-synuclein overexpression
may impair mitochondrial activity, thereby accumulating
mitochondrial DNA damage and degeneration, ultimately
resulting in neuronal death [129]. For LRRK2, mitochon-
drial pathology was observed in human dopaminergic neu-
rons derived from inducible pluripotent cell lines of LRRK2
p.G2019S carriers [130] and in aging p.G2019S transgenic
mice [131]. In primary cortical neurons, overexpression
of wild-type LRRK2 and of pathogenic mutant LRRK2
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proteins both increased recruitment of mitochondrial
dynamin-like protein to fragmenting mitochondria [132].

Conclusions and future directions
Idiopathic PD, albeit a sporadic disorder with low herit-
ability, now appears to have a significant genetic compo-
nent. Many genes have been identified and several more
will probably emerge from a variety of complementary ap-
proaches. Most immediately, targeted genomic sequencing
might identify functional variants in GWAS-associated
loci, whereas additional GWAS in non-Caucasian popula-
tions might identify novel loci. WES in families with par-
kinsonism is also a pragmatic step to identify more genes
using a concordant ‘pairwise’ approach. Ultimately, collab-
orative pooled analysis of exome data might facilitate asso-
ciation analysis; power estimates suggest that as few as 50
exomes may be sufficient to identify a novel locus for re-
cessive disease, although 10,000 are likely to be required
to identify a novel dominant gene mutation [133]. Never-
theless, segregation of rare mutations with disease and/or
functional studies will be needed. Inevitably, with less
penetrant variants, the results from these approaches will
become increasingly difficult to interpret. Hence, rather
than focusing on PD as the trait, more investment may
be warranted on longitudinal studies. In addition, better
characterization of trait components, such as cognition in
PD, symptom progression and response to medication,
would enable further genetic variability to be identified.
Similar analyses in more genetically homogeneous popula-
tions (employing linkage, association and genome sequen-
cing) and in sample series or pedigrees of sufficient size
and structure may enable the joint contribution of genes
and environment to be assessed meaningfully. We suggest
that a genetic predisposition to PD should not be consid-
ered ‘causal’, rather disease reflects chronic molecular dys-
function and the failure of age-associated compensation.
To date, four biological pathways have been impli-

cated in familial parkinsonism: synaptic neurotransmis-
sion, endosomal trafficking, lysosomal autophagy and
mitochondrial metabolism. Direct interactions between
genetic components and these pathways are emerging,
whether VPS35 and RME-8 in late onset PD, or parkin
and PINK1 in mitophagy in early onset parkinsonism.
Although the processes highlighted may be viewed
separately, several employ the same protein machinery
and may be temporally and functionally related. For ex-
ample, synaptic dysfunction, resulting from or leading
to alpha-synucleinopathy, impairs the balance of exo-
and endocytosis, neurotransmission and early endosomal
receptor recycling. These changes will alter flux through
the endosomal pathway and ultimately place demand on
autophagy and lysosomal fusion with multivesicular bod-
ies. Many of the same proteins are involved in more than
one of the four pathways; for example, VPS35 directly
affects both early-endosome receptor recycling in den-
dritic spines and lysosomal ATPase recycling from multi-
vesicular bodies [134]. Similarly, LRRK2 appears to be
centrally involved in neurite outgrowth and in membrane
protein cargo sorting and trafficking, interacts with dyna-
min GTPases, and may regulate endophilin phosphoryl-
ation, membrane scission and endocytosis. VPS35, RME-8
and potentially LRRK2 coordinate the WASH complex in
specific actin networks underlying membrane deform-
ation, tubulation and cargo trafficking. The caveat is that
many of the biological insights may be model specific, or
have yet to be performed in vertebrate systems in post-
mitotic neurons or in brain.
In conclusion, genomic and genetic investigations should

continue to be a main priority for future research. Know-
ledge of the pathogenic pathways underlying the etiology
and ontology of PD clearly facilitates an understanding of
common protein components and central processes that
are crucial for therapeutic development. Our understand-
ing of the normal physiology of the brain, of specific neur-
onal populations, protein pathways and the function of
individual proteins, is rudimentary. When it comes to for-
mulating a molecular synthesis of the pathways involved in
parkinsonism, genetic insights may be unbiased and un-
equivocal but those insights must be carefully weighted.
Genetic association is far from causation and much work is
required to understand the specific contribution of GWAS,
let alone to translate the information from such studies
into novel treatments to slow or halt the progression of
idiopathic PD. In interpreting linkage and exome studies,
the phenotypes of patients and families must be care-
fully considered. The heterogeneity of parkinsonism is
considerable and there are many forms that may not be
etiologically related. Arguably, findings from familial
late-onset Lewy-body parkinsonism may be more rele-
vant to idiopathic PD than those from atypical and/or
early-onset forms. Brain pathology, long required for a
definite diagnosis, appears increasingly pleomorphic in
genetically defined disease, even for the same mutation
in the same family. Such alternative pathologic outcomes
become more intriguing as specific molecular deficits in
membrane protein sorting and cargo trafficking are
revealed. That aggregate alpha-synuclein and tau path-
ologies may be seeded and transmissible throughout the
cerebrum presents an attractive means to explore Braak
staging (a regional and temporal scheme for the progres-
sion of these inclusion body pathologies) and vulnerable
cell populations in specific genetic backgrounds. Much
neuroscience in PD was derived from model systems
based on toxin administration, and may not accurately
reflect the human condition. Why the substantia nigra
pars compacta is selectively lost in PD remains enig-
matic, but through human genetics we now have rele-
vant molecular targets and tools to investigate this.
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With such advances, therapeutic prospects for disease
modification (neuroprotection) should be viewed with
more optimism [135].
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