
INVITED REVIEW ABSTRACT: Malignant hyperthermia (MH) is a potentially life-threatening
event in response to anesthetic triggering agents, with symptoms of sus-
tained uncontrolled skeletal muscle calcium homeostasis resulting in organ
and systemic failure. Susceptibility to MH, an autosomal dominant trait, may
be associated with congenital myopathies, but in the majority of the cases,
no clinical signs of disease are visible outside of anesthesia. For diagnosis,
a functional test on skeletal muscle biopsy, the in vitro contracture test
(IVCT), is performed. Over 50% of the families show linkage of the IVCT
phenotype to the gene encoding the skeletal muscle ryanodine receptor and
over 20 mutations therein have been described. At least five other loci have
been defined implicating greater genetic heterogeneity than previously as-
sumed, but so far only one further gene encoding the main subunit of the
voltage-gated dihydropyridine receptor has a confirmed role in MH. As a
result of extensive research on the mechanisms of excitation-contraction
coupling and recent functional characterization of several disease-causing
mutations in heterologous expression systems, much is known today about
the molecular etiology of MH.

© 2000 John Wiley & Sons, Inc. Muscle Nerve 23: 4–17, 2000

GENETICS AND PATHOGENESIS OF
MALIGNANT HYPERTHERMIA

KARIN JURKAT-ROTT, MD, 1 TOMMIE McCARTHY, PhD, 2 and

FRANK LEHMANN-HORN, MD 1

1 Department of Applied Physiology, University of Ulm, D-89081 Ulm, Germany
2 Department of Biochemistry, University College Cork, Cork, Ireland

Accepted 16 August 1999

At the start of this century, anesthetic deaths by
so-called late ether convulsions were observed occa-
sionally. But it was after the introduction of halo-
thane and succinylcholine combinations into rou-
tine general anesthesias in the mid-1960s that this
syndrome, characterized by muscle contractures and
high temperature, was distinguished as a new phar-
maco-induced entity with an autosomal dominant
mode of transmission.27 Apparently, symptoms

could be triggered by both nonhalogenated anes-
thetics such as ether, and halogenated anesthetics
such as halothane, and were additionally enhanced
by the administration of depolarizing muscle relax-
ants such as succinylcholine.55

Clarification of the pathogenesis of the condition
denoted as malignant hyperthermia (MH) involved
multiple steps made possible by studies on the physi-
ology of the contraction process and muscle metabo-
lism. In these, calcium plays an important role,
regulating both actin-myosin interaction31 and gly-
colysis,14 disturbances of which account for the ob-
served clinical signs of muscle contractures and hy-
permetabolism.35,73 These studies indicate that the
underlying pathogenesis is an uncontrollably high
myoplasmic free calcium, as later shown directly.67

Another important step to understanding disease
pathogenesis was the identification of the major un-
derlying defect, mutations in the ryanodine receptor
RYR1, the calcium release channel of skeletal
muscle. This required the use of a phenotypically
similar animal model, swine suffering from both
stress-induced and halothane-triggered typical MH
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episodes.45,153 Here, we briefly give an introductory
overview on the genetics and pathogenesis of MH.
More detailed reviews are available for the interested
reader.51,91,109,124

CLINICAL FEATURES

Malignant hyperthermia is an autosomal dominantly
transmitted predisposition of clinically inconspicu-
ous individuals to respond with uncontrollable skel-
etal muscle hypermetabolism upon exposure to vola-
tile anesthetics or depolarizing muscle relaxants.26

The triggering substances lead to an increase in the
concentration of free myoplasmic calcium which is
released from the sarcoplasmic reticulum calcium
stores via the muscle ryanodine receptor, the cal-
cium release channel. During an MH reaction, in-
creased myoplasmic calcium induces contractures of
the (often first-noticed) masseter and potentially
other skeletal muscles, and activates glycogenolysis
and cell metabolism resulting in heat and excess lac-
tate production. Activation of the oxidative cycle
leads to high oxygen consumption and carbon diox-
ide production followed by muscular ATP depletion
and systemic changes such as acidosis, hypercapnia,
and hypoxemia. Tachycardia is a frequent, however
unspecific, early symptom, whereas hyperthermia
may be a late sign. During the course of the crisis,
rhabdomyolysis occurs with subsequent creatine ki-
nase elevation, hyperkalemia potentially leading to
cardiac arrhythmia or even arrest, and myoglobin-
uria with the possibility of renal failure. If an episode
is survived, normalization of edematous muscle and
creatine kinase (CK) levels occur within 10–15 days
(for clinical overview, see Table 1).

Severity of the MH reaction is defined clinically
by the Larach score, which takes several parameters

of the metabolic disturbance and the rate of progres-
sion into account.85 Without immediate treatment,
up to 70% of patients may die from ventricular fi-
brillation, pulmonary edema, intravascular coagu-
lopathy, cerebral hypoxic damage, cerebral edema,
or renal failure. For patients known or suspected of
being susceptible, potential triggers must be avoided
and alternative methods of anesthesia applied, such
as with propofol and xenon.8,29,57,58,83,99 During a
crisis, treatment consists of early administration of
dantrolene.82 This lipid-soluble hydantoin derivative
acts by inhibiting the release of calcium from the
sarcoplasmic reticulum, therefore inhibiting muscle
contractures induced by triggering agents and
normalizing myoplasmic calcium concentration.34

Recently, a specific protein receptor for dantrolene
located in the skeletal muscle triad has been de-
scribed.129 Early administration of this drug has suc-
cessfully aborted numerous fulminant crises 82 and
reduced the mortality rate from about 70% to the
present 10%125 A further reduction in deaths may be
achieved with earlier recognition of the disorder by
anesthetists, and perhaps in the future by better pre-
vention.

Incidence of MH crises during general anesthe-
sia varies age-dependently from 1:15,000 in children
to 1:50,000 in adults.6,13,118,124 As the triggering sub-
stances elicit an event only in a fraction of anesthe-
sias,30 the true prevalence of MH susceptibility may
be higher51 than the very low clinical penetrance.72

In accordance with the varying severity of the clinical
picture, nonanesthetic MH-like episodes triggered
by overheating,24,65 body exertion,2,12 and infec-
tions28 have been described. Evidence for a relation
to the sudden infant death syndrome27,131 is rather
weak.33 MH-like crises have also been observed in
patients with myopathies such as myotonia fluctu-
ans,141,168 Duchenne and Becker dystrophy,15,78,120

myotonia congenita,62 and myotonic dystrophy. It
seems very likely that the molecular mechanisms un-
derlying these MH-like events differ from those of
true MH susceptibility, i.e., increased sensitivity of
skeletal muscle to the triggering agents by an in-
creased resting calcium level158 or increased myo-
tonic reactions to anesthetic agents.87 This, of
course, does not obviate the need for caution when
considering general anesthesia in these disorders.

The existence of accessory symptoms to the trig-
ger-induced anesthetic episodes is a matter of de-
bate. Strazis and Fox154 reviewed 503 cases from the
literature and found a significantly higher incidence
of musculoskeletal defects such as cleft palate, club
foot, scoliosis, ptosis, strabismus, cryptorchism, or
congenital hernias in the group of MH individuals

Table 1. Clinical features of malignant hyperthermia.

Pathogenetic mechanism Resulting symptoms

Elevated myoplasmic Ca2+ Masseter muscle spasm
Generalized muscle spasms
Heat production
Hypermetabolism
Rhabdomyolysis

Hypermetabolism Tachycardia
Acidosis
ATP depletion
Hypercapnia
Hypoxemia
Heat production

Rhabdomyolysis CK and K+ elevation
Cardiac arrhythmia
Myoglobinuria
Renal failure
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compared to the general surgical population. This
difference was not only visible in the group of pedi-
atric patients, but also in the adult group (classified
as over age 15). In contrast, another study involving
155 Scandinavian patients found no difference in
clinical examination of MH patients compared to
controls, the only potential abnormality being core-
targetoid fibers.138

ASSOCIATED MYOPATHIES

Predisposition to true MH has been established only
for three defined myopathies: Evans myopathy, King
Denborough syndrome, and central core disease. Of
these, the first presents with proximal muscle wast-
ing of the vasti laterales, adductores, and glutei with
hypertrophy of the sternocleidomastoids, peronei,
and thigh muscles. Partial ptosis, lumbar lordosis,
elevated serum CK, and varying myopathic histologic
patterns indicated an autosomal dominant pattern
of inheritance in Denborough’s original family, in
which about 57 persons were known to be af-
fected.26,81

Another, although very rare, MH-associated my-
opathy is King Denborough syndrome80 character-
ized by short stature, cryptorchism, lumbar lordosis,
thoracic kyphosis, pes cavus, pectus carinatum, dis-
locating shoulders and patellas, and high-arched pal-
ate. The children additionally have an unusual face
with low-set ears, micrognathia, ptosis, strabismus,
and down-slanting palpebral fissures.50 Even though
there seems to be considerable overlap with the
Noonan syndrome, no patient with King Denbor-
ough syndrome has been reported yet with the
Noonan combination of hypertelorism, epicanthic
folds, lymphedema, bleeding diathesis, and charac-
teristic heart defects.

Finally, central core disease (CCD152) has also
been associated with MH episodes.151 This myopathy
is characterized by muscle hypotonia (floppy infant
syndrome), delayed motor development, proximal
symmetrical weakness, and CK elevation. It is the
only known myopathy for which exercise is benefi-
cial.54 The name of the syndrome derives from the
typical histological central cores along the whole
length of type 1 muscle fibers expressing the slow-
twitch Ca2+-ATPase pump. These cores consist of
unstructured myofibrils and areas lacking mitochon-
dria and thus oxidative enzymes enabling histochem-
ical detection. The absence of type 2 fibers express-
ing the fast-twitch and slow-twitch Ca2+-ATPase
pumps is as yet unexplained. Electron microscopic
investigations of CCD muscle tissue have demon-
strated: (a) amorphous central areas (cores) in type
1 fibers with a relative lack, if not complete absence,

of mitochondria in core regions; (b) less numerous
glycogen granules; (c) less well-defined myofibrils
and loss of myofibril alignment in adjacent sarco-
meres; (d) contracted sarcomeres; (e) Z disc stream-
ing; and (f) pathological changes in the sarcoplas-
mic reticulum (SR) and transverse tubules in both
core and noncore regions.60

Pathogenetically in CCD, myoplasmic calcium
overload is thought to cause mitochondrial damage
and thus decreased metabolic activity. Additionally,
compensatory genes are likely to be activated, result-
ing in proliferation of the sarcoplasmic reticulum
and transverse tubules. Both processes can lead to
muscle weakness and loss of muscle fibers. Appar-
ently, the absence of mitochondria per se in central
core regions may not contribute significantly to
muscle weakness since there does not appear to be a
direct relationship between the extent of the central
cores and the clinical severity of the disease. Inher-
itance is autosomal dominant, and not all family
members may develop this myopathy but instead
may only have the MH trait.70

DIAGNOSTIC TESTING

Due to lack of clinical symptoms under normal con-
ditions, an MH in-vitro contracture test (IVCT) for
biopsied muscle bundles was developed by the Eu-
ropean37 and North American84 malignant hyper-
thermia groups (EMHG, NAMHG). This test re-
quires a large fresh muscle biopsy and is therefore
invasive in nature and not easily performed on chil-
dren. It is based on the tendency of MH muscle to be
abnormally sensitive to stimuli that induce SR cal-
cium release. The underlying procedure in both
EMHG and NAMHG test protocols is the measure-
ment of contractures upon flooding or gradually in-
creasing concentrations of halothane (0.5, 1, 2, 3,
and 4% for EMHG, and 3% for NAMHG) or caffeine
(0.5, 1, 2, 3, 4, 32 mmol/l for EMHG, and 0.5, 1, 2,
4, 8, 32 mmol/l for NAMHG). A positive reaction to
a triggering agent is dependent on contracture force
at concentrations below predefined thresholds for
each substance. For EMHG, contractures of at least 2
mN at maximally 2% halothane or 2 mmol/l caf-
feine are considered pathologic, and for NAMHG, a
minimal contracture of 5 g at 3% halothane or 2 g at
2 mmol/l caffeine. Three categories result by each
test according to the European protocol: contrac-
ture under or at the thresholds of both substances is
considered to be MH-susceptible (MHS), one patho-
logic and one normal result is classified as equivocal
(MHE), and two normal reactions to both agents
means not susceptible (MHN).

In general, correlation between the results of
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these two tests is quite good,42 and the test shows a
high sensitivity (true positives, 99% for EMHG, and
92–97% for NAMHG) and specificity (true negatives,
93.6% for EMHG, and 53–78% for NAMHG.3,125 Dis-
crepancies, both false-positive as well as false-
negative results compared to genetic data, have oc-
curred (for review, see elsewhere100). This is because
the concentration threshold values and minimal
contracture values considered as pathologic are (ar-
bitrarily) standardized in a way so that sensitivity ap-
proaches 100%, ensuring identification of as many
patients at risk as possible. Alternative approaches to
improve evaluation such as normalizing the contrac-
ture force to the cross-sectional area or studying time
course of relaxation have been employed in single
studies, but significant data is only available for a
raising of the cut-off contracture value from 0.5 to
0.7g of tension at 3% halothane in the NAMHG pro-
tocol, which increases specificity from 78 to 81% but
decreases sensitivity from 97 to 88%. Therefore, al-
tered IVCT cut-off points in some cases have permit-
ted investigators to link MH families to the RYR1
gene that were previously unlinked when conven-
tional cut-off points were applied.61,97,148

Remarkably in the IVCT as outlined above, con-
tracture threshold concentration and tension values
correlate well for caffeine but not for halothane.
This suggests halothane reacts on an all-or-nothing
basis with a higher rate of nonspecific effects (MHE
results) than caffeine, which produces results linear
to the severity of the mutations104 even though halo-
thane is considered to bind specifically to the cal-
cium release channel while caffeine initiates several
additional pathways. In an effort to employ more
specific activators of the skeletal muscle calcium re-
lease channel than caffeine, IVCT using ryano-
dine59,66,159,169 and 4-chloro-m-cresol9,49,63,126,163

have been tested and show promising results, but are
not yet widely enough adopted to be employed for
routine diagnostic purposes.

In contrast to the IVCT test protocols primarily
aimed at determining the clinical risk of anesthesia-
related events, diagnostic testing in Japan is per-
formed by a functional test based on the quantifica-
tion of calcium-induced calcium release (CICR) in
saponized muscle fibers.36,75 The precision of this
method and correlation to the other protocols is
unknown.

ANIMAL MODELS

So-called stress-susceptible pigs57,111,153 have more
muscle mass and their meat is less fat than other
swine. Boars were therefore selectively bred despite
higher losses during transport and reduced meat

quality of stressed animals (PSE meat = pale, soft,
exudative pork32,110). Upon triggers such as stress or
halothane, susceptible swine may either have acute
localized muscle necrosis of the longissimus dorsi
muscle or generalized attacks of malignant hyper-
thermia with features as in human MH, i.e., changes
in vital signs, metabolism, acid-base balance, tem-
perature, and muscle rigidity.96,139 As over the last
decades meat quality has been considered increas-
ingly important, only pigs negative in the in-vivo
halothane test have been taken for breeding. Nowa-
days with the availability of molecular testing, sows
not carrying the mutation are covered by boars that
are homozygous carriers of the mutation, thus gen-
erating only heterozygous litters. The heterozygous
animals are characterized by large muscle mass simi-
lar to susceptible pigs, and stress resistance like MH-
negative swine. Nevertheless, muscle heterozygous
animals react abnormally when exposed to high con-
centrations of various agents.46,147,170

It was in this animal model that an important
clue to which chromosomal region might bear the
most common human MHS locus was provided.
Soon after linkage of the porcine stress syndrome to
the so-called halothane locus on chromosome 6,4,5,23

the corresponding cluster of genes was linked to
MHS in several human families and localized to
chromosome 19q11.2-13.2.98,105 Likewise, soon after
the mapping of a gene cluster including the calcium
release channel of skeletal muscle, the ryanodine re-
ceptor, ryr1, to porcine chromosome 6q12,21,56 this
gene was found to be linked to the MH locus on
human chromosome 19q.98,101 Even the mutation
detected in the animal model, the first ryr1 muta-
tion, R615C,45,127 is homologous to one of the most
frequent human mutations, R614C 48,64 but shows a
founder effect in contrast to humans.

A mechanism by which the porcine ryr1 mutation
gives rise to lean, heavily-muscled swine has been
proposed: ryr1 hypersensitivity could stimulate spon-
taneous muscle contractions leading to muscle hy-
pertrophy and consequently improved energy utili-
zation limiting fat deposition,102 but the close
association of a “lean meat gene” to ryr1 cannot be
excluded.

Next to swine, alterations of ryr1 have been as-
sumed in chicken dystrophy, an autosomal-recessive
myogenic disease that primarily affects fast-twitch fi-
bers. While in normal muscle SR preparations the
density of ryr1 proteins decreased in the first days
after birth, such decrease did not occur in dystrophic
muscle even though the density of low-affinity bind-
ing sites increased progressively.130 Additionally,
high-affinity ryanodine binding showed an increased
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sensitivity to stimulation by caffeine and to inhibi-
tion by high calcium concentrations.

MAJOR GENETIC BACKGROUND

In over 50% of the MH families, linkage of the au-
tosomal dominant MHS trait to the so-called MHS-1
locus, i.e., the gene encoding the human skeletal
muscle ryanodine receptor RYR1, can be found.6

When reflecting the decreasing expressivity with age,
the low estimated clinical penetrance, and thus the
limited predictive value of the IVCT for milder cases,
a higher percentage of MH families linked to RYR1
would be expected by lowering the standardized
thresholds in the IVCT.97 Further linkage concern-
ing the MH-associated CCD confirmed the suspected
allelism of the two disorders,53,74,114,146 showing mu-
tations in RYR1 in CCD (Table 2).

RYR1, named after a plant alkaloid binding spe-
cifically to the channel, is one of the largest known
proteins, with 2,200 kDa corresponding to 5,000
amino acids encoded by 106 exons.132 This complex-
ity of the gene makes the detection of new mutations
very time-consuming. Even so, mutations have been
reported for both MH and CCD, clustering in two

main regions ranging from amino acid residues 35 to
614 (exons 2 to 17) and a mid-region ranging from
residues 2163 to 2458 (exons 39 to 46), both situated
in the long N terminus of the protein, the so-called
foot of the channel complex (Table 2 and Fig. 1).
Additionally, the recent discovery of the I4898T mu-
tation for CCD suggests that the C-terminal region of
the RYR1 may represent a third mutation hot spot,95

all three of which are highly conserved across all
known ryanodine receptor isoforms. Other regions
of the gene have not yet been studied to the full
extent but may yield additional hot spots.

The most frequent RYR1 mutations in MH are
R614C, the porcine homologue, G2434R, and
G341R, the three together making up over 10% of
the cases. Regional differences occur, with G341R
being very frequent in Ireland, England, and Scan-
dinavia,104,39,136 and R614C appears more often on
the mainland of Europe.11 Only in approximately
20% of all affected families can one of the known
mutations be identified, suggesting that genetic
screening cannot replace IVCT phenotyping at this
time. General testing is further complicated by het-
erogenity with the possibility of false-negative results

Table 2. Mutations in proteins of the excitation-contraction coupling complex of skeletal muscle: dihydropyridine receptor a1 subunit
(DHPR) and ryanodine receptor (RYR1).

Nucleotide Exon Substitution Disorder Frequency First report (ref. no.)

DHPR: hypokalemic periodic paralysis (HypoPP) and malignant hyperthermia (MH)
G1583A 11 R528H HypoPP 40% 71
C3256T 26 R1086C MH 1 family 145
G3257A 26 R1086H MH 1 family 113
C3715G 30 R1239G HypoPP 3% 133
G3716A 30 R1239H HypoPP 40% 133

RYR1: malignant hyperthermia (MH) and/or central core disease (CCD)
T103C 2 Cys-35-Arg MH 1 family 94
C487T 6 Arg-163-Cys MH;CCD 2% 134
G742A 9 Gly-248-Arg MH 2% 47
G1021A 11 Gly-341-Arg MH 6% 136
C1209G 12 Ile-403-Met CCD 1 family 134
A1565C 14 Tyr-522-Ser MH;CCD 1 family 135
C1654T 15 Arg-552-Trp MH 1 family 76
C1840T 17 Arg-614-Cys MH 4% 48
G1841T 17 Arg-614-Leu MH 2% 137
C6487T 39 Arg-2163-Cys MH 4% 104
G6488A 39 Arg-2163-His MH;CCD 1 family 104
G6502A 39 Val-2168-Met MH 7% 104
C6617T 40 Thr-2206-Met MH 1 family 104
C6617G 40 Thr-2206-Arg MH 1 family 11
G7303A 45 Gly-2434-Arg MH 4% 77
G7307A 45 Arg-2435-His MH;CCD 1 family 172
G7307T 45 Arg-2435-Leu MH 1 family 7
G7361A 46 Arg-2454-His MH 1 family 7
C7360T 46 Arg-2454-Cys MH 1 family 11
C7372T 46 Arg-2458-Cys MH 4% 103
G7373A 46 Arg-2458-His MH 4% 103
T14693C 102 Ile-4898-Thr CCD 1 family 95

8 Malignant Hyperthermia MUSCLE & NERVE January 2000



in families in which MH-causing mutations segregate
independently.30 Of the over 20 mutations causing
MH, four are also associated with CCD.

Whether the King Denborough syndrome too is
associated with RYR1 mutations has not been clari-
fied, but the so-called crooked neck dwarf mutation
of embryonic chicken, a potential animal model,
may indicate that this is so. In skeletal muscle of this
chicken, normal ryr1 isoform could not be detected,
and the extremely low levels of ryr1 immunoreactiv-
ity found showed atypical distribution and pointed
to the presence of abnormal protein.1

SECONDARY LOCI

In the past, a number of families not linked to chro-
mosome 19 linked have been reported, pointing to
considerable genetic heterogeneity (reviewed else-
where102). In North America, the first alternative lo-
cus to chromosome 19q was assigned to chromosome

17q11.2-q24,90 the MHS-2 locus, suggesting the volt-
age-dependent sodium channel of skeletal muscle
membrane as a candidate gene.112,123,168 The findings
could not be confirmed in Europe69,156 perhaps point-
ing to a regional type of MH or to the fact that myo-
tonic syndromes caused by sodium channel mutations
predispose to MH-like events.141 Suggestions of further
loci have been made not only for MH,142 but also for
CCD.38

The candidate gene approach was applied to
screen loci containing genes encoding proteins in-
volved in excitation-contraction (EC) coupling, such
as the pentameric dihydropyridine receptor (DHPR)
which acts as the voltage sensor for RYR1. By this
method, one European family was found to be
linked to a locus on chromosome 7q21.1 containing
the gene encoding the a2/d DHPR subunit with a
lod score of 2.91 (MHS-3 locus68). No mutation in
this gene, however, has been identified yet.

By a systematic genome screening on several
large, apparently non-chromosome 19 linked Euro-
pean MH families, the MHS-4 locus on chromosome
3q13.1 was identified in a single family generating a
lod score of 3.22.157 Sequencing of candidate genes
at this location is currently in progress in this pedi-
gree. Further studies identified one new MHS locus
on chromosome 1q32 (MHS-5) and a tentative locus
on chromosome 5p (MHS-6143), each in a single
pedigree. For the MHS-5 locus, two disease-causing
mutations were identified in the candidate gene of
the region encoding the DHPR a1 subunit (Table 2
and Fig. 2113,145). The mutations affecting the same
amino acid residue are located in an intracellular
loop of the protein whose functional significance for
EC coupling is unknown, but whose functional link
to RYR1 has been demonstrated recently.89 This
could indicate that a possible pathogenetic mecha-
nism for MH might be disturbance of DHPR activa-
tion. Interestingly, mutations linked to hypokalemic
periodic paralysis have been reported in the same
gene,71,133 although the disorder is not thought to
be associated to MH susceptibility.87 For the MHS-6
locus, no causative gene has been identified to date.

In contrast to the MHS-1 locus, the other MHS
loci have been described only in one or two pedi-
grees each, a fact that does not point to a second
major locus explaining the MH families not linked to
RYR1, but perhaps implying false exclusion of RYR1
locus. A recent linkage analysis study of 20 large,
well-defined MHS families confirms this, demon-
strating linkage to chromosome 19q in 9 families, a
single recombinant perhaps pointing to misdiagno-
sis by IVCT phenotyping in 8 families, and definite
exclusion of MHS-1 by multiple recombinants in 3

FIGURE 1. The homotetrameric ryanodine receptor, the calcium
release channel situated in the membrane of the sarcoplasmic
reticulum (SR). The cytosolic part of the protein complex, the
so-called foot, bridges the gap between the transverse tubular
system and the SR. Mutations have been described for the skel-
etal muscle ryanodine receptor (RYR1), which cause susceptibil-
ity to malignant hyperthermia and central core disease. Conven-
tional abbreviations are used for the replaced amino acids whose
positions are given by the respective numbers of the human
RYR1.
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families.142 If the 8 familes with one recombinant
were indeed linked to MHS-1, this study would sug-
gest that more than 85% of the families are linked to
RYR1. Examples of families with false IVCT results
have been reported61,97,148 and as mutational screen-
ing progresses, judgment of quality of the IVCT
based on genetic data will be enabled.

EXCITATION-CONTRACTION COUPLING

The DHPR and RYR1 are situated in the triadic junc-
tions of the T-tubular system and the SR respectively
(Fig. 3). The latter has a quatrefoil structure with the
hydrophobic parts of the four subunits forming an
SR-membrane spanning baseplate and the hydro-
philic segments forming a cytoplasmic domain, the
foot, which bridges the gap between T-tubular and
SR membrane. This cytosolic part of RYR1 contains
binding sites for various activating ligands like cal-
cium (µM), ATP, calmodulin (which binds in the
absence of calcium), caffeine and ryanodine (nM),
and inactivating ligands like calcium (>100 µM) and
magnesium in mM concentrations.22,106 RYR1 activ-
ity is modulated by exogenous ligands including rya-
nodine, caffeine, and dantrolene sodium.173 Ryano-
dine modulates RYR1 in a biphasic manner with nM
concentrations activating and >100 µM concentra-

tions inhibiting the channel,16 caffeine activates
RYR1 by increasing the affinity of the calcium acti-
vation site,10,107 and dantrolene sodium inhibits
RYR1 by limiting channel activation by calmodulin
and calcium.44

Despite the huge size of over 5,000 amino acids,
RYR1 channels can be functionally expressed by
transient transfection. In Chinese hamster ovary
cells, immunoreactivity, ligand binding160 and single
channel recordings19 resembled native channel
properties, but there were some differences in gating
modes and subconductance states. In human embry-
onic kidney (HEK-293) cells, however, even calcium
conductance of 116 pS in 50 mM luminal calcium
and an open time constant of 0.22 ms were identical
to that of the native protein.20

Functional significance was studied by a RYR1
knockout mouse.159 Skeletal muscle from these mice
did not show any contractile response to electrical
stimulation and calcium release induced by caffeine,
ryanodine, and adenine nucleotides was attributable
to the residual expression of another isoform,
RYR3.161 At the subcellular level, the cytoplasmic
foot domain of triads was missing, although junc-
tions between SR cisternae and T-tubules were still
formed. This led to the term “dyspedic mice.”

FIGURE 2. Subunits of the voltage-gated calcium channel. The a subunit consists of four highly homologous domains (repeats I–IV)
containing six transmembrane segments each (S1–S6). The S5–S6 loops form the ion selective pore, and the S4 segments contain
positively charged residues conferring voltage dependence to the protein. The repeats are connected by intracellular loops; the II–III and
III–IV interlinker interacting with the ryanodine receptor to mediate excitation-contraction coupling. a2/d, b1 to b4, and g are auxilliary
subunits. Mutations in the a1S subunit of the skeletal muscle L-type calcium channel (= dihydropyridine receptor, DHPR) have been
described for humans (HypoPP, MHS5). Conventional abbreviations are used for the replaced amino acids whose positions are given by
the respective numbers of the a1S subunit. The symbols used for the point mutations indicate the resulting diseases as explained at the
bottom of the left-hand side.
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The DHPR is a calcium channel with a long-
lasting (L-type) current sensitive to dihydropyridines
and acts as the voltage sensor for RYR1. The a1 sub-
unit of the a1-a2-d-b1-g pentameric DHPR complex
determines main characteristics of the complex con-
veying ion selectivity and containing the ion con-
ducting pore, voltage sensors, gates for the different
opened and closed channel states, and important
binding sites for endogenous and exogenous ligands
(reviewed elsewhere88). It consists of four domains
of internal homology each containing six transmem-
brane a-helical segments, numbered S1–S6, con-
nected by both intracellular and extracellular loops,
the interlinkers (Fig. 2). Voltage sensitivity is associ-
ated with the S4 segments that contain a density of
positively charged amino acid residues, and the in-

terlinkers S5–S6 are thought to contribute to the
lining of the pore.

The a1 DHPR subunit has been shown to inter-
act with RYR1 by the interlinker between domains II
and III, residues 666–690 and 724–760, for mediat-
ing EC coupling.52,93,144,162 Corresponding regions
of RYR1 binding to the DHPR are residues 1303–
1406 whose deletion preserved the function of the
channel but led to loss of EC-coupling.171 Recently,
inspired by the detection of the MH-causing muta-
tions in the intracellular loop between domains III
and IV,113,145 both this part of the protein and the
II–III loop have been shown to also bind to RYR1
residues 954–1112.89

RYR1 not only receives an activating signal from
DHPR, but also gives a retrograde signal enhancing

FIGURE 3. The triadic junction between a transverse tubule and the sarcoplasmic reticulum is the place of interaction; of the two calcium
channels of skeletal muscle, the L-type calcium channel, also called dihydropyridine receptor (DHPR), and the calcium release channel,
also called ryanodine receptor (RYR1). The coupling between the two channels is not fully elucidated, although several contributing
mechanisms are known: (i) at the level of T-tubular membrane; are the additional subunits of the pentameric DHPR (ii) various cyto-
plasmic accessory proteins influence the activity especially of RYR1, i.e., kinases and calmodulin at micromolar calcium concentrations
decrease RYR1 activity while phosphatases, S100 and calmodulin at nanomolar calcium concentrations increase the activity; sorcin
binding to the DHPR helps to mediate the interaction with RYR1; and the FK506 binding proteins (FKPB) are involved in protein folding
and association of RYR1; (iii) integral membrane proteins like triadin and junctin form a quaternary complex together with RYR1 and
calsequestrin whereby triadin also interacts directly with the DHPR; additional anchoring proteins support the vicinity of the regulatory
kinases; and (iv) intraluminal proteins like calreticulin and calsequestrin influence luminal calcium binding and thus rate of calcium release,
or increase RYR1 activity like annexin VI.
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DHPR activity, which is mediated by the RYR1 resi-
dues 2659–3720.115

DISEASE PATHOGENESIS

The diagnostically important increased sensitivity of
MHS muscle to caffeine has been related to altered
RYR1 function.108 Functional tests on isolated SR
vesicles have shown that calcium regulation is dis-
turbed: lower calcium concentrations activate the
channel to a higher than normal level, and higher
than normal calcium concentrations are required to
inhibit the channel (reviewed elsewhere109). Investi-
gations of reconstituted RYR1 in lipid bilayers, de-
signed to find the reason for the increased calcium
and caffeine sensitivity of MH muscle, led to contro-
versial results: electrophysiological single-channel
measurements on RYR1 did not show increased sen-
sitivity (porcine R615C17,40,79,149,150), whereas other
studies showed both increased affinity (porcine
R615C63) and sensitivity (human G2434R,140 human
and porcine MH122,167). The inhibiting properties of
calmodulin were found unaltered in mutant RYR1,
but its activating properties in the absence of cal-
cium were drastically increased (porcine R615C119).
Due to lack of calcium inactivation, the open prob-
ability of RYR1 was higher in mutants than in wild-
type at low pH (porcine R615C92,150) or under
halothane stimulation (human MH117). Recently, re-
duced inhibition of calcium release by magnesium
was reported as a possible pathogenetic mechanism
(porcine R615C).86

In skinned fibers obtained from MH patients and
swine, an increased rate of SR calcium release36,75

and increased sensitivity to caffeine were observed
(porcine R615C116,121), whereas the threshold for
calcium-induced calcium release was unchanged
(human and porcine MH41,43).

Functional characterization by calcium photom-
etry of mutations in the N-terminus and the central
part of the RYR1 foot in heterologous expression
systems revealed comparable results, i.e., increased
sensitivity of the mutant RYR1 to activating concen-
trations of calcium and exogenous and diagnosti-
cally used ligands such as caffeine, halothane, and
4-chloro-m-cresol, whereas there was no difference
to wildtype in the resting intracellular calcium level
(porcine R615C mutant in myotube C2C12 cell
line,128 porcine R615C in COS-1 cells,166 human
R163C in human primary myotubes18). In HEK-293
cells, increased sensitivity to halothane and caffeine
was demonstrated for 15 MH-causing RYR1 mutants,
whereby the photometric responses correlated with
the IVCT for caffeine but not for halothane and in-

dicated the IVCT to be the less precise examination
system.165 In the same cell line, expression of RYR1
MH mutants revealed higher resting calcium,
smaller endoplasmic reticulum calcium stores, and
reduced maximal calcium release compared to wild-
type; CCD-causing mutants showed the strongest ef-
fects of all.164,95 Complex studies on excised native
muscle fibers from MH susceptible individuals re-
vealed a threefold higher maximal peak rate of cal-
cium release than for normal muscle, whereas nei-
ther kinetics nor voltage dependence of the release
were affected.155

PERSPECTIVES

Since the description of MH almost 40 years ago, a
good understanding of the physiological and genetic
basis of MH in humans and the porcine animal
model has been achieved. For the future, the iden-
tification of all genes associated with MH suscepti-
bility and all of the mutations therein is one of the
main goals. The mechanism of pathogenesis will
then have to be elucidated more precisely in order to
identify important regulatory domains in EC cou-
pling proteins and determine modulating factors
that might influence the occurrence of crises in sus-
ceptible individuals. A third goal will be to clarify the
relationship of MH to other myopathies and acces-
sory symptoms and provide a reliable method for
both diagnosing the predisposition and performing
precise differential diagnosis. In order to achieve
these goals, basic scientists, anesthesiologists, neu-
rologists, and geneticists will have to cooperate in
making MH an interdisciplinary field of research.
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