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Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial 
pneumonia (IIP), is characterized by irreversible scarring of the lung parenchyma and 
progressive decline in lung function leading to eventual respiratory failure. The prognosis 
of IPF is poor with a median survival of 3–5 years after diagnosis and no curative medical 
therapies. Although the pathogenesis of IPF is not well understood, there is a growing 
body of evidence that genetic factors contribute to disease risk. Recent studies have 
identified common and rare genetic variants associated with both sporadic and familial 
forms of pulmonary fibrosis, with at least one-third of the risk for developing fibrotic 
IIP explained by common genetic variants. The IPF-associated genetic loci discovered 
to date are implicated in diverse biological processes, including alveolar stability, host 
defense, cell–cell barrier function, and cell senescence. In addition, some common vari-
ants have also been associated with distinct clinical phenotypes. Better understanding 
of how genetic variation plays a role in disease risk and phenotype could identify poten-
tial therapeutic targets and inform clinical decision-making. In addition, clinical studies 
should be designed controlling for the genetic backgrounds of subjects, since clinical 
outcomes and therapeutic responses may differ by genotype. Further understanding 
of these differences will allow the development of personalized approaches to the IPF 
management.
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iNTRODUCTiON

Idiopathic pulmonary fibrosis (IPF) is the most common of the idiopathic interstitial pneumo-
nias (IIPs). IPF is characterized by progressive scarring of the lung parenchyma, which leads to 
dyspnea and declining pulmonary function and eventually to respiratory failure. The median 
survival after diagnosis of IPF is 3–5 years (1). In 2011, the American Thoracic Society/European 
Respiratory Society issued a new classification scheme in which they defined IPF as a specific 
form of chronic, progressive fibrosing interstitial pneumonia of unknown etiology, occurring 
mainly in older adults and associated with radiological and/or histopathological pattern of usual 
interstitial pneumonia (UIP) (2). The prognosis of IPF remains poor despite recently approved 
medical therapies (3, 4).

Numerous epidemiologic and genetic studies illustrate that genetic and environmental factors 
contribute to the risk of IPF (5, 6). The most convincing early evidence to support a genetic basis for 
IPF came from twin studies and studies focusing on familial clustering of the disease, a syndrome 
termed familial interstitial pneumonia (FIP) (7–9). Recent studies have identified several specific 

http://www.frontiersin.org/Medicine
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2017.00154&domain=pdf&date_stamp=2017-09-25
http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine/editorialboard
http://www.frontiersin.org/Medicine/editorialboard
https://doi.org/10.3389/fmed.2017.00154
http://www.frontiersin.org/Medicine
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:susan.mathai@ucdenver.edu
https://doi.org/10.3389/fmed.2017.00154
http://www.frontiersin.org/Journal/10.3389/fmed.2017.00154/abstract
http://www.frontiersin.org/Journal/10.3389/fmed.2017.00154/abstract
http://www.frontiersin.org/Journal/10.3389/fmed.2017.00154/abstract
http://loop.frontiersin.org/people/446855
http://loop.frontiersin.org/people/464938
http://loop.frontiersin.org/people/398144


TaBle 1 | Rare variants in idiopathic pulmonary fibrosis.

Gene Gene function Pathological 
consequence  
of mutation

Reference

SFTPC Component of surfactant  
fluid

Altered trafficking and 
disrupted proteostasis, 
increased endoplasmic 
reticulum (ER) stress

(25–27)

SFTPA2 To modulate innate and 
adaptive immunity

Increase in ER stress (15, 25, 28)

ABCA3 Transport of lipids across 
plasma membrane

Retention of lipids in 
the ER, ER stress, and 
apoptotic signaling

(29–31)

TERT Enzyme in telomerase 
complex

Telomere shortening (7, 18, 27, 
32–36)

TERC Template in telomerase 
complex

Telomere shortening (7, 18, 27, 
32–37)

DKC1 Stabilization of the template  
in telomerase complex

Telomere shortening (19, 27, 38)

TINF2 Telomere maintenance Telomere shortening (20, 39)

RTELI DNA helicase Telomere shortening (21, 22, 40)

PARN mRNA stability Telomere shortening (21, 24)
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genetic variants that confer risk for development of IPF (10, 11). 
Discovery of disease-associated genetic variants has improved 
our understanding of the ways inherited risk factors influence 
disease risk. However, fundamental questions persist regarding 
the ways in which complex genetic risk factors interact with 
environmental exposures to influence disease pathogenesis.

In this review, we briefly discuss the current literature regard-
ing the role of common and rare variants in disease pathogenesis 
and prognosis and how this may influence clinical management 
in the future. Genetic variants and loci associated with IPF 
involve abnormalities in alveolar stability, host defense, cell–cell 
barrier function, and cell senescence, all of which are all thought 
to contribute to the pathogenesis of IPF. We conclude by discuss-
ing how treatment decisions might be affected by these findings 
and how better understanding of genetic variation and disease  
could allow for a more personalized approach to the treatment 
of IPF.

Rare and Common variants associated 
with iPF
Genetic variants, both rare and common, are associated with 
sporadic and familial forms of pulmonary fibrosis. Numerous 
rare variants (those with minor allele frequency of <0.1%) play 
a role in FIP (≥2 members of the same family with interstitial 
pneumonia; FIP) (Table 1). Familial studies have identified FIP- 
associated variants related to alveolar stability [SFTPC (12, 13), 
SFTPA1 (14), SFTPA2 (15), ATP-binding cassette-type 3 (ABCA3) 
(16), and NAF1 (17)] as well as five genes linked to telomere  
biology [TERT (18), TERC (18), DKC1 (19), TINF2 (7, 20), RTEL1 
(21–23), and PARN] (24).

Common variants (defined as minor allele frequency of 
>5%) also appear to play a role in FIP risk (1). The most widely 
replicated risk variant (rs35705950), located in the promoter 

region of MUC5B, was initially identified in a combined link-
age and association study (41) and has been strongly associated 
with IPF and FIP. Two large GWAS of IPF subjects (both familial 
and sporadic) with controls have been conducted in pulmonary 
fibrosis (10, 11). In addition to confirming the role of TERT at 
5p15, MUC5B at 11p15, and the 3q26 region near TERC, the 
GWAS identified seven newly associated loci, including FAM13A 
(4q22), DSP (6q24), OBFC1 (10q24), ATP11A (13q34), DPP9 
(19q13), and chromosomal regions 7q22 and 15q14-15 among 
others that have been nominally associated (Table 2).

Rare variants are thought to be highly penetrant and to have 
a greater effect size, but given their low frequency, they account 
for a smaller proportion of overall disease risk in the general 
population (51). Alternatively, in general, common variants have 
a smaller effect size but are present at higher frequency and, in 
aggregate, may contribute to a larger proportion of disease risk 
(Figure 1). However, the MUC5B promoter variant rs35705950 is 
a common variant with a large effect size and therefore accounts 
for a substantial risk in IPF. In fact, it has been estimated the 
MUC5B promoter variant accounts for 30% of the risk of develop-
ing IPF (41, 51).

alveolar Stability
Surfactant proteins are synthesized in the endoplasmic reticulum 
(ER) of alveolar type II cells (AECII) and transported to and 
stored in the lamellar bodies until secretion into the alveolar 
space (25, 26). Rare variants identified in the genes encoding 
surfactant protein C and A (SFTPC, SFTPA1, and SFTPA2) have 
been associated with pulmonary fibrosis (53). SP-C is a small 
hydrophobic protein produced by AECIIs that requires the 
C-terminus for initial folding steps in the ER before secretion 
into the alveolar space (26). SFTPC rare variants are mutations 
that lie in the BRICHOS domain within the C-terminus of SP-C.  
The BRICHOS domain is critical for proper folding and traffick-
ing (5, 26). Coding mutations in this region lead to accumulation 
of misfolded protein resulting in increased ER stress and activa-
tion of the unfolded protein response (26, 54). Mutations in the 
gene that encodes surfactant protein A (SFTPA2) have also been 
linked to FIP (15) and have been associated with increased ER 
stress as well (28, 55). Rare variants have also been identified 
in another gene involved with surfactant processing, ABCA3, 
in FIP families (16, 56). ABCA3 is a transporter protein mainly 
expressed in AECIIs and is involved in the transport of lipids 
across plasma membranes (29, 57). In AECIIs, ABCA3 mutations 
cause abnormal processing, trafficking, and functionality of the 
ABCA protein, leading to retention of lipids in the ER, ER stress, 
and apoptotic signaling (30). These mutations are expressed in a 
recessive manner, where as mutations in SFTPA2 and SFTPC are 
dominantly expressed (56).

In 2011, Lawson et al. (58) demonstrated that fibrotic remod-
eling in response to low-dose bleomycin was more severe in mice 
in which ER stress was induced, either through mutant SFTPC 
in AECIIs or by administration of tunicamycin, a chemical 
known to induce ER stress. In addition to effects on apoptosis, 
ER stress may induce biological pathways involved in cell dif-
ferentiation (59, 60) through which epithelial cells acquire phe-
notypic characteristics of mesenchymal cells, a process known as 
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FiGURe 1 | Adapted from figure published previously in BMC Medicine with 
permission (52).

TaBle 2 | Common variants in idiopathic pulmonary fibrosis (IPF).

Risk allele(s) Gene Gene function Observed effect of risk variant on 
survival in iPF

Reference

rs408392 IL1RN Inhibitor of pro-inflammatory effect of IL-1alpha and IL-1beta (27, 42)
rs419598
rs2637988
rs4073 IL8 Pro-inflammatory cytokine Reduced (43, 44)
rs2227307
rs2609255 FAM13A Signal transduction (10)
rs3775291 TLR3 Pathogen recognition and activation of innate immunity Reduced (45)
rs2736100 TERT Enzyme in telomerase complex maintaining telomere length Reduced (10, 27, 46, 47)
rs2395655 HLA-DRB1 Major histocompatibility complex—immune system (48)
rs2076295 DSP Tightly links adjacent cells (10)
rs11191865 OBFC1 Stimulates the activity of DNA polymerase-alpha-primase (10)
rs35705950 MUC5B Influence on rheological properties of airway mucus, mucociliary  

transport, and airway defense
Improved (10, 11, 27, 41, 49, 50)

rs7934606 MUC2 Mucin production (10)
rs111521887 TOLLIP Regulator of innate immune responses mediated by toll-like receptor  

and the transforming growth factor β signaling pathway
Reduced (11)

rs5743894
rs2743890
rs1278769 ATP11A Phospholipid translocation (10)
rs7144383 MDGA2 Cell–cell interaction (11)
rs1981997 MAPT Promotes microtubule assembly and stability (10)
rs17690703 SPPL2C Protein cleavage (11)
rs12610495 DPP9 Cell–cell adhesion (10)
rs1800470 TGFB1 Set of peptides that controls proliferation, differentiation,  

and other functions in many cell types
(11)
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epithelial-to-mesenchymal transition (EMT), in IPF lungs (61). 
EMT is hypothesized to increase the number of cells responsible 
for collagen production and matrix deposition thereby leading 
to fibrosis (13, 59, 60). To date, published data suggest that ER 
stress predisposes to AECII apoptosis and subsequent lung 
fibrosis. Surfactant proteins have been recognized as crucial 
in maintaining lung alveolar structure and function. However, 
the precise role of alveolar stability, ER stress, and EMT in IPF 
pathogenesis remains an area of active investigation.

Cell Senescence
Telomeres are repetitive nucleotide sequences at the ends of 
chromosomes that protect them from progressive shortening 

during the normal cell replication process (62). Telomerases 
restore telomere length and consist of two major components: 
telomerase reverse transcriptase (encoded by TERT) and 
telo merase RNA (encoded by TERC) (18, 37). Mutations in 
telomerase components were initially identified in the setting 
of dyskeratosis congenita (DKC), a rare inherited syndrome 
of telomere shortening characterized by oral leukoplakia, 
abnormal skin hyperpigmentation, and dystrophic nails, with 
pulmonary fibrosis present in about 20% of patients; bone 
marrow failure can also be a complication of DKC (32). More 
recent studies have found an association between numerous 
genes in the telomerase maintenance pathway and FIP, includ-
ing those related to catalytic activity (TERT and TERC) (7, 32) 
and telomere stabilization (DKC1, PARN, and RTELI) (19, 21). 
These pathogenic variants cause dysfunction of telomerase 
activity leading to accelerated telomere shortening (32, 63) in 
peripheral blood and the lung (32–34). Thus far, TERT variants 
are the most frequently identified rare variants associated with 
pulmonary fibrosis; they are found in ~15% of FIP (7, 32) and in 
1–3% of sporadic cases (34). A recent whole-exome sequencing 
study identified TERT, RTEL1, and PARN variants previously 
associated with FIP to be associated with sporadic IPF, further 
supporting the role of telomere dysfunction in IPF pathogenesis 
and highlighting the genetic commonalities between FIP and 
sporadic IPF (64).

Telomere dysfunction has further been implicated in IPF as 
evidence has suggested that short telomeres are not exclusively 
related to telomerase rare variant mutations. One study found 
that 25% of sporadic IPF subjects and 24% of familial IPF sub-
jects, without identified mutations for TERT or TERC, had short 
telomeres. In addition, all subjects within this specific study who 
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had a mutation in TERT or TERC and pulmonary fibrosis also 
had short telomeres (33).

The mechanisms by which telomere defects provoke lung 
disease are not fully understood. Defects in telomere main-
tenance have been linked to epithelial cell senescence and an 
impaired response to epithelial injury (65). During successive 
cycles of cell division, telomere shortening occurs and eventu-
ally leads to activation of the DNA-damage pathways, which 
result in apoptosis or senescence (32). In certain  situations, 
cellular senescence is appropriate, but premature senescence 
can impair lung epithelial homeostasis and lead to stimulation 
of a lung remodeling response (66), resulting in fibrotic lesions 
(63). One study demonstrated increased epithelial cell senes-
cence in IPF lung tissue by measuring B-galactosidase staining 
(a marker of senescence) and found that B-galactosidase stain-
ing was positive in all IPF cases but was not present in normal 
lung (67) supporting a role for senescent epithelial cells in IPF 
pathogenesis. Future studies are necessary to clarify the precise 
role of cellular senescence in lung injury response and fibrotic 
remodeling in IPF.

Host Defense
In 2011, genome-wide linkage analysis and targeted genetic 
sequencing identified a single nucleotide polymorphism (SNP) 
on chromosome 11 that was associated with both FIP and IPF 
(41). The SNP, rs35705950, was found to be a gain-of-function 
variant associated with increased expression of MUC5B. Hete-
rozygous (GT) and homozygous (TT) individuals had an odds 
ratio for developing disease of 6.8 and 20.8 for FIP, and 9.0 and 
21.8 for IPF, respectively, supporting the strength of the SNP’s  
association with development of both IPF and FIP (41). MUC5B 
encodes Mucin 5B, which is a major gel-forming mucin in 
mucus and expressed by airway epithelial cells (68, 69). The 
association of the MUC5B promoter polymorphism with IPF 
has been replicated and confirmed in nine independent cohorts 
(10, 11, 49, 50, 70–74), including in a 2013 GWAS (OR for  
T minor allele = 4.51; 95% CI = 3.91–5.21; P = 7.21 × 10−95) (10). 
Additional genotyping studies have noted that the MUC5B vari-
ant is associated with disease in a Mexican cohort of IPF patients, 
but not in Asian cohorts (75). Most recently, a study of select 
loci in various European cohorts, including Czech and Greek 
IPF patients, also confirmed the association between rs35705950 
and IPF (76).

MUC5B expression in IPF is localized in the distal airway, 
respiratory bronchiole, honeycomb cyst (77), and the bronchi-
olar epithelium (78). Overexpression of MUC5B in these areas 
of the lung and especially in the honeycomb cysts, which are 
a histopathological finding in IPF (77), further supports the 
notion that MUC5B is important in the pathogenesis of IPF. 
Evans and colleagues (51) hypothesize that IPF is caused by 
recurrent injury/repair/regeneration at the bronchoalveolar 
junction secondary to overexpression of MUC5B, mucociliary 
dysfunction, retention of particles, ER stress, and disruption of 
normal reparative and regenerative mechanisms in the distal 
lung (51).

Interestingly, the MUC5B promoter polymorphism may be 
specific to IIP, since studies have illustrated that rs35705 950 is  

not associated with increased risk of sarcoidosis and scleroderma-
related ILD, two other fibrotic lung diseases (10, 50, 70). However, 
recent data have shown that MUC5B rs357057950 variant is asso-
ciated with radiographic evidence of interstitial lung abnormali-
ties (ILA) studied in the Framingham cohort (79–81). Increasing 
age and number of copies of MUC5B promoter polymorphism 
were associated with ILA progression, which has been linked  
to increased mortality (80, 81). In addition, there are some data  
to suggest that rs357057950 genotype may be associated with 
higher likelihood of radiographic UIP pattern in the setting of 
fibrotic IIP (82).

The mechanism by which variants in MUC5B confers risk  
of lung fibrosis is an active area of investigation. Given that 
mucins play a role in innate immunity (68, 83), immune dysregu-
lation could be a possible mechanism by which increased mucin 
expression contributes to the pathophysiology of IPF (84). Alter-
natively, IPF may be a disease of mucociliary clearance in which 
overexpression of MUC5B leads to impaired ciliary function, 
thereby allowing retention of particles and, subsequently, recur-
rent lung injury (51).

Several studies have also implicated the human leukocyte 
antigen (HLA) region in IPF (85–89). The HLA region is located 
on chromosome 6p21.31 (90), and its main function is regulation 
of immune response. The DRB1*15:01 allele has been shown 
to be more prevalent among IPF patients and associated with 
greater impairment of gas exchange (89). Recently, a genome- 
wide imputation-based association analysis identified two risk 
alleles, DRB1*15:01 and DQB1*06:02, found to be associated 
with fibrotic idiopathic interstitial pneumonias (48). Although 
not definitive, HLA association with IPF may suggest that 
autoimmunity may play a role in pulmonary fibrosis; further 
characterizing the pathophysiologic connection between this 
gen etic variation and disease this remains an area of active 
investigation.

epithelial integrity
The 2013 GWAS by Fingerlin et al. (10) identified multiple sus-
ceptibility loci for fibrotic IIP, including two cell–cell adhesion 
molecules, DSP and DPP9. DSP gene expression was increased 
in lung tissue of individuals with IIP and varied by genotype 
for a variant in intron 5 (10, 91). DSP encodes for desmoplakin, 
a critical component of desmosome structure important in 
cell–cell adhesion. Desmosomes mechanically link cells and 
stabilize tissue architecture. In addition, they are involved in the 
regulation of cell proliferation, differentiation, migration, and  
apoptosis (92). The association between DSP variants and IPF, as 
well as the relationship between DSP variants and lung expres-
sion of this gene, was confirmed more recently by Mathai et al. 
(91) IPF lung has higher gene expression of DSP. However, IPF 
subjects with the rs2076295 variant were found to have lower 
DSP expression, suggesting that differential DSP expression 
may play a role in a subset or sub-phenotype of IPF (91). This 
association further implicates the airway epithelium in the 
pathogenesis of IPF, as DSP appears to be localized primar-
ily to the airway epithelia and not to alveolar epithelial cells. 
The role of DSP in IPF pathogenesis remains an area of active  
investigation.
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PROGNOSiS

Genetic variants, both rare (telomere related) and common 
(MUC5B and TOLLIP), may play a role in predicting disease 
outcomes and have prognostic implications. Short telomeres 
(<10th percentile adjusted for age) have been identified in a con-
siderable portion of IPF patients, regardless of genetic mutations  
(33, 34). Patients with shorter telomeres have worse transplant- 
free survival in multiple independent cohorts (46, 93). Further-
more, a small observational study suggested that increased rates 
of bone marrow suppression and medication-related complica-
tions following lung transplantation are more common in IPF 
patients with telomerase mutations and/or short telomeres (94). 
Telomere length testing has been suggested as a component of 
pretransplant workup in IPF patients, although further prospec-
tive study is required before these observations can be utilized 
routinely in patient care (95).

Common polymorphisms, MUC5B and TOLLIP, have also 
shown promise as prognostic indicators (11, 50). A retrospective 
study of two separate IPF cohorts demonstrated improved survival 
in patients with the rs35705950 variant (49). In addition, carriers 
of at least 1 T allele of MUC5B polymorphism were found to have 
at least 50% improved survival and better lung function compared 
to those with the GG genotype (49). These findings were consistent 
with previous studies, which demonstrated an association between 
MUC5B variant and less severe pathological changes (96) and 
slower decline in FVC (50). Similarly, a TOLLIP variant was also 
associated with differential survival. The minor allele at rs5743890 
(G) in TOLLIP is protective and associated with reduced suscepti-
bility to IPF. However, those who developed IPF despite having the 
protective allele had increased mortality (11). At this time, there 
are no clinical guidelines suggesting genetic testing in the routine 
care and counseling of IPF patients (95), and further research  
is needed to identify the clinical implications of these preliminary 
findings.

TReaTMeNT

Approaches to therapy in IPF have been limited by the poorly 
understood pathophysiology of this progressive disease. In addi-
tion, the unpredictable clinical course of IPF, lack of validated 
biomarkers, and low clinical predictive value to animal models 
(97) have been barriers to identifying therapies. Despite these 
challenges, recent advances in understanding the pathophysiol-
ogy of IPF have allowed for identification of novel treatment 
targets. Currently, two available medications, pirfenidone (4) 
and ninetedanib (3), have been shown to reduce the rate of lung 
function decline among IPF patients. However, neither approved 
drug is curative.

With survival-associated variants (e.g., MUC5B and TOLLIP) 
(74), it is possible that genotypes will define subtypes with differ-
ential responses to therapy. Identifying distinct sub-phenotypes 
in IPF may enable the application of targeted therapy on a 
pathway-specific basis. For example, it may be possible to use 
telomere length or TERT genotype to identify a group of patients 
who would benefit from telomere-directed therapy (95). Oldham 
and colleagues (98) found that some carriers with TOLLIP poly-
morphism may benefit from treatment with oral N-acetylcysteine 
(NAC). More specifically, of those that received NAC, subjects 
with TT genotype for rs3750920 (TOLLIP) had decreased risk 
for the trial’s composite end point of death, hospitalization, or 
10% decrement in forced vital capacity. In contrast, subjects 
with the CC genotype for rs3750920 had increased risk for the 
composite endpoints of the NAC intervention study (98). While 
NAC has not been shown to be effective in IPF in aggregate 
(99), it is possible that patients have differential response to this 
therapy (or other therapies) based on TOLLIP genotype (100). 
More prospectively designed studies are needed before genetic 
variation can be utilized routinely when choosing therapies for 
individual patients.

CONClUSiON

This review focuses on the relationship between genetic variants 
and IPF. In addition to sequence variation, epigenetic changes 
(such as DNA methylation) (101–104) and gene expression 
changes are associated with disease risk and phenotype (103, 
105, 106). Further studies are necessary to better understand the 
relationships between genetic variation and epigenetic and gene 
expression variation in terms of disease risk and phenotype.

Given the growing body of evidence that genetic variants 
influence disease risk as well as disease progression and clinically 
meaningful patient outcomes, it will be critical to account for 
genetic variation in future clinical trials. Such prospective stud-
ies and analyses that focus on the relationship between genotype 
and therapeutic response will be crucial in personalizing and 
improving IPF therapy.
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