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Abstract

Clinical laboratory tests are a critical component of the continuum of care and provide a
means for rapid diagnosis and monitoring of chronic disease. In this study, we
systematically evaluated the genetic basis of 38 blood and urine laboratory tests
measured in 358,072 participants in the UK Biobank and identified 1,857 independent loci
associated with at least one laboratory test, including 488 large-effect protein truncating,
missense, and copy-number variants. We tested these loci for enrichment in specific
single cell types in kidney, liver, and pancreas relevant to disease aetiology. We then
causally linked the biomarkers to medically relevant phenotypes through genetic
correlation and Mendelian randomization. Finally, we developed polygenic risk scores
(PRS) for each biomarker and built multi-PRS models using all 38 PRSs simultaneously.
We found substantially improved prediction of incidence in FinnGen (n=135,500) with the
multi-PRS relative to single-disease PRSs for renal failure, myocardial infarction, liver fat
percentage, and alcoholic cirrhosis. Together, our results show the genetic basis of these
biomarkers, which tissues contribute to the biomarker function, the causal influences of
the biomarkers, and how we can use this to predict disease.
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Introduction

Serum and urine biomarker measurements are the primary clinical tools for diagnosing adverse
health conditions and monitoring treatment response. As such, understanding the genetic
predisposition to particular phenotype measurements, and the factors that confound them, has
implications for disease treatment. While the genetics of some biomarkers have been
extensively studied, most notably lipids"#®, glycaemic traits “°, and measurements of kidney
function’®, most biomarkers have only had limited measured genetic contribution.

To this end, UK Biobank (UKB) has performed lab testing of >30 proteins, metabolites, and
protein modifications in serum and urine on a cohort of >480,000 individuals with extensive prior
phenotype and genome-wide genotype data including ~360,000 unrelated individuals
(Supplementary Figure 1).

Here, we 1) performed a systematic characterization of genetic architecture in ~360,000
individuals including protein-altering, protein-truncating, non-coding, human leukocyte antigen
(HLA), and copy number variants; 2) built phenome-wide associations for implicated genetic
variants; 3) evaluated causal relationships with 56 diseases and 90 clinically relevant
phenotypes; and 4) constructed prediction models from genome data.
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Figure 1. Schematic overview of the study. We prepared a dataset of 38 serum and urine biomarkers from 358,072 individuals in
UK Biobank. From these data, we analyzed their genetic basis, assessed their relationship to disease outcomes and medically
relevant phenotypes, and generated predictive models from genome data.

Results

Biomarker phenotype distributions

We aimed to examine the consistency of the measurements themselves. Despite extensive
quality control and significant effort to avoid batch effects, even subtle deviations from
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65 expectation can be highly significant in biobank-scale datasets™. First, we assessed the impact
of medication status for individuals that were on lipid-lowering medications at baseline
(2006-2010) by estimating changes in biomarker measurements between visits (a subset of
20,000 individuals that returned for a repeated assessment, Methods). Overall, the estimated
adjustments typically agreed with literature estimates® (Supplementary Table 1). After adjusting

70  for medication status, we fit a regression model for 127 covariates including age, sex, urine and
serum processing metrics, fasting time, and estimated sample dilution factor, along with
numerous relevant interactions between covariates (see Methods). These covariates explained
a range of 1% (Rheumatoid factor) to 81% (Testosterone) of the phenotypic variance observed
(Supplementary Figures 2A-C). Because oestradiol, microalbumin in urine, and rheumatoid

75  factor had a high proportion of values below the lower reportable range (80%, 68%, and 91%,
respectively), which is to be expected given the age range and health status of the UK Biobank
population, we considered these values as ‘naturally low’ rather than missing, and treated these
phenotypes as binary if they were above certain levels (higher than 212 pmol/L for oestradiol™,
higher than 40mg/L for microalbumin in urine, and higher than 16 IU/mL for rheumatoid factor)'.

80 Furthermore, we derived the urine albumin-to-creatinine ratio (UACR), which is indicative of
chronic kidney disease when higher than 30 mg/g". Taking all the 38 lab phenotypes together,
we recover previously estimated phenotype correlations (Supplementary Table 2,
Supplementary Figure 3)"°.

Comparison of self-reported, diagnosed, medication, and
8  |ab-derived disease status

When comparing between studies, disease status is often evaluated in different ways and it is a
challenge to reconcile these differences. In addition to biomarker measurements, UK Biobank
has extensive self-reported disease and diagnosis, nurse interviews with participants, and
inpatient and soon-to-be-released primary care diagnosis and medication codes. This affords a

90 unique opportunity to evaluate the overlap between such measures in the definition of complex
traits.

To examine the validity of our phenotypes and biomarkers, we used type 2 diabetes (T2D) and
hemoglobin A1c (HbA1c) levels as our clinical outcome and biomarker, respectively. Type 2
diabetes is characterized by progressive loss of insulin sensitivity and is commonly diagnosed
95  through hemoglobin A1c (HbA1c), a modification to red blood cells induced by long term
exposure to high serum glucose. We compared self-reported and nurse-collected diagnosis,
medication (sulfonylureas, metformin, and other oral antidiabetic drugs), and serum glucose and
HbA1c as measures of diabetes to the previously published definition that was validated against
a subset of individuals with available primary care data (Eastwood et al. 2016)'°. As expected,
100 HbA1c levels, regardless of residualization or adjustment for statins (Methods), were well
correlated, and thresholded HbA1c (>48 mmol/mol or 6.5%, the clinical threshold for type 2
diabetes) was also similar (Pearson r = 0.72 with residualized, statin adjusted HbA1c). Glucose
levels were not as predictive of T2D status as HbA1c, and medication status was similar to T2D
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itself, consistent with their use in the Eastwood et al. T2D definition (Pearson r = 0.79).

105  Diagnosed T2D (defined by a nurse survey of participant diagnoses) was not similar to either
the Eastwood et al. or biomarker measurements (maximum r = 0.48 with Eastwood et al.
defined T2D, Supplementary Figure 4, Supplementary Table 3).
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Figure 2. Genetics of biomarkers. (A) Summary of large-effect protein-truncating (abs(Beta) >= 0.25) and protein-altering variants
(abs(Beta) >= 0.75). Every point plotted is independent and significantly associated with the given trait, and most variants have
small effect, particularly for protein-altering variants; those with large effect are labeled. All variants are directly genotyped on the
genotyping array, and effect betas are the number of standard deviations changed in the phenotype per alternative allele. Each set
of variants is separated by trait but overlap of individual variants in the same gene between traits is present -- a more detailed table
of individual hits and cascade plots are in Supplementary Tables 5-7 and Supplementary Figures 6-8. (B) Summary of large-effect
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burden of rare CNVs overlapping a gene and the tested biomarkers. Large effect variants (abs(Beta) >= 0.5) are labeled. (C)
115 Correlation of genetic effects plot between the 38 lab phenotypes.

Genetics of biomarkers

We performed association analysis between autosomal genetic variants and 38 biomarkers in
318,984 unrelated self-identified-White-British individuals of European ancestry and stratified
the association into three bins: 1) protein-truncating (27,816), 2) protein-altering (87,407), and 3)

120 non-coding (MAF > 1%, 1000 Genomes Phase 1 variants also present in Haplotype Reference
Consortium [HRC], 9,444,561"") (Figure 2A). Comparison of effect sizes estimated across 42
comparison studies with 25 of the biomarkers show overall high agreement (correlation greater
than 0.5 for 33 comparisons, Supplementary Figure 5, Supplementary Table 4 for
comparison) across previous studies of lipids"#'8', glycaemic®®?', kidney function %2, liver

125  function®, and other biomarkers measurements®*2°.

We adjusted the nominal association p values separately for each annotation bin using
Bonferroni correction for multiple hypothesis testing and identified over 7,000 significant
associations (p < 1 x 107 for coding variants [including protein-truncating and protein-altering], p
< 5 x 10°® for non-coding, posterior probability > 0.8 for model selection of associating with at

130 least one biomarker phenotype for HLA alleles, Supplementary Figures 6-9, Supplementary
Tables 5-8). LD Score intercepts for single-variant association results were between 0.929 and
1.33 for all 38 phenotypes, consistent with anthropometric traits in UKB and suggesting that
population structure in our analysis is well-controlled?®.

Biomarker associated variants prioritize therapeutic targets

135 Protein-altering variants that alter disease risk provide in vivo validation of therapeutic
targets?’?®. For example, recent studies suggest that molecular therapies targeting ANGPTL3
and its encoded protein angiopoietin-like protein 3 have clinical potential comparable to
therapies targeting PCSK9 and its encoded protein proprotein convertase subtilisin/kexin type 9.
By mainly affecting triglyceride-rich lipoproteins, ANGPTL3 inhibition might prove

140  complementary to LDL cholesterol lowering with PCSK9 blockade®*. These therapeutic
hypotheses were catalyzed by the discovery of protein-altering variants in ANGPTL3 and
PCSK9 that affect biomarker levels in humans? "% In this study, we evaluated the relationship
of predicted protein-truncating variants (PTVs) and protein-altering variants across the 38
biomarkers. We found 123 (48 rare, minor allele frequency [MAF] < 0.01) PTVs and 2,737 (253

145  rare) protein-altering alleles associations outside the major histocompatibility complex (MHC)
(chr6:25,477,797-36,448,354; Bonferroni p < 1 x 107). In this study, we found 33 non-MHC
PTVs (30 rare [MAF < 0.01]) with large estimated lowering effects (>0.1 sd) and 27 (22 rare)
with large estimated raising effects (>0.1 sd, Supplementary Table 5) across at least one
biomarker phenotype (Figure 2A, Supplementary Figure 6). Similarly, there were 264 (154

150  rare) and 202 (109 rare) non-MHC protein-altering variants with large estimated lowering and
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raising effects (>0.1 sd) across at least one biomarker phenotype, respectively (Figure 2A,
Supplementary Figure 7, Supplementary Table 6).

For the eight cardiovascular biomarkers, we identified (Supplementary Table 2) three PTVs in
APOB with documented protection against coronary artery disease and a range of strong effects

155  on LDL cholesterol (1.9-3.4 sd), Apolipoprotein B (2.2-2.8 sd), and triglycerides (1.3 sd) in our
dataset®; two PTVs in LPA with strong lowering effects on Lipoprotein A levels (0.36, 0.39 sd)
and an estimated decreased risk of peripheral vascular disease (p = 0.0018; OR = 0.81 [0.70,
0.92]); a 0.2% MAF missense allele impacting the enzyme Acetyl-CoA carboxylase 2 (ACACB)
with LDL, triglyceride, ApoB, and alkaline phosphatase-lowering effects with a trending

160 protective effect on coronary artery disease (OR = 0.801, p = 0.12)*; two independent missense
alleles in PAL2G12A with strong raising effects on triglycerides, SHBG, testosterone, and strong
lowering effects on HDL cholesterol, ApoA, and HbA1c levels (Supplementary Table 6); a
splice region variant in CPT1A, which encodes carnitine palmitoylransferase IA, with lowering
effects on triglycerides; and a missense variant in PCSK6, with strong ApoB and LDL lowering

165  effects.

For the liver biomarkers, we found a 0.05% MAF inframe deletion in GOT7 with a 2.4 standard
deviation lowering effect on aspartate aminotransferase and a strong increased risk of
pancreatitis (p = 8.0 x 10 OR = 4.55 [2.34, 8.84]); four missense alleles in GPT, the alanine
aminotransferase 1 gene with strong alanine aminotransferase lowering effects and an

170  increased risk of primary biliary cirrhosis (p = 0.0018, OR = 2.37 [1.38, 4.07]); and two missense
alleles in DGKD, which encodes diaglycerose kinase delta, an enzyme that phosphorylates
diacylglycerol to produce phosphatidic acid, with raising and lowering effects on direct and total
bilirubin.

For the renal biomarkers, we found a PTV in COL4A4 with effects on microalbumin in serum

175  and urine (1.95 and 0.68 sd), and urine albumin to creatinine ratio (2.29 sd), and an estimated
increased risk of kidney problems (p = 6.7 x 10", OR = 6.9 [4.06, 11.60]) and gout (p = 0.0004,
OR =2.3[1.44, 3.57]) in UK Biobank; a PTV in SLC22A2 with strong lowering effects on eGFR
(0.34 sd) and increasing effect on creatinine (0.50 sd), and an estimated increased risk of
kidney problems in UK Biobank (p = 0.00077; OR = 2.77, 95% CI: [1.53, 5.01]); a PTV in

180 SLC22A11 with raising effects on urate (0.14 sd), and increased risk for gout (p = 0.00015; OR
=1.50 [1.22, 1.85]); a 0.1% rare missense allele in SLC34A3 with strong eGFR lowering, serum
creatinine and Cystatin C raising effect, and increased risk to kidney stones (p = 0.00066; OR =
2.52[1.48, 4.29])*"; SLC47A1 (also known as MATE1) with multiple independent coding alleles
with increasing effect on serum creatinine and increased risk to renal failure requiring dialysis (p

185  =0.00031; OR = 3.07 [1.67, 5.66]); a missense allele in SLC6A19, LRP2, ALDOB, SLC7A9, and
SLC25A45, all with high expression in kidney with creatinine lowering and eGFR raising effects,
among other examples (Supplementary Table 6). Together, these results suggest that the
genetics of biomarkers will aid in prioritizing disease associated variants.
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CNVs influencing biomarkers

190  Copy number variations (CNV) constitute a significant fraction of the genetic differences by
affected base pairs between individuals. We found 17 associations from 13 contributing CNVs
(Bonferroni p < 5 x 10, Supplementary Table 9, Supplementary Figure 10A).

We perform aggregate rare-variant burden tests, pooled by gene for 23,598 genes. We found a
total of 29 unique 300kb windows containing genetic associations (Bonferroni p < 2.5 x 10°¢;

195  Figure 2B, Supplementary Table 10) including a burden of rare CNVs overlapping HNF1B
associate with Urea, eGFR, Creatinine, and Cystatin-C (p < 8.8 x 10™"®) and are estimated to
have large effects on these biomarkers (Beta = 0.77, -0.90, 0.93, 0.98 s.d, respectively;
Supplementary Figure 10B). HNF1B is a membrane bound transcription factor part of the
family of hepatocyte nuclear factors, believed to play a role in renal and pancreatic

200  development. Previous studies have associated mutations in HNF1B with maturity onset
diabetes of the young (MODY) and altered kidney function®. Consistent with its developmental
role and clinical associations, the rare CNVs overlapping HNF 1B associate with renal failure in
UK Biobank (p =1 x 107; OR = 4.94, SE = 0.30; Supplementary Figure 10B)**. These
results highlight the value of high-resolution analysis of copy number variation with potentially

205 large effects on lab measurements.

Global and local heritability of biomarkers

To characterize the heritability of the 38 biomarkers we first applied LD-score regression*'. We
further applied the Heritability Estimator from Summary Statistics (HESS), an approach for
estimating the phenotype variances explained by all typed SNPs at a single locus in the genome

210  while accounting for LD among the SNPs*?*, We found that both LD-score regression and
HESS find that common SNPs explain a large fraction of the heritability (5.3% [Potassium in
urine] to 34.3% [HDL cholesterol] across the studied continuous phenotypes in HESS,
Supplementary Table 11A). We compare the polygenicity of all 38 biomarkers by computing
the fraction of total SNP heritability attributable to loci by the top 1% of SNPs. We found that 10

215  phenotypes have more than 25% of the SNP heritability explained by the top 1% of genetic
associations (Lipoprotein (a) 44%, Total and Direct bilirubin 31 and 30%) and the remaining 28
phenotypes show patterns of high polygenicity (Supplementary Table 11B, Supplementary
Figure 11).

Cell type decomposition of genetic effects

220 We used tissue and cell type expression data to assess whether SNPs within epigenetic
annotations of a given tissue/cell type are enriched for heritability*. Overall, we found that 20 of
the 38 biomarkers are at least 20-fold enriched (p < 1 x 10°) in either kidney, pancreas, or liver,
highlighting the primary role of these tissues in the phenotypes we studied (Figure 3A,
Supplementary Figure 12, Supplementary Table 11C); and observed broadly consistent
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225 enrichments in individual annotations that comprised the pancreas, liver, and kidney ChlP-seq
experiments (Supplementary Figure 13).

We hypothesized that further integration with single cell data may help refine the enrichment
across these bulk tissues*. As such, we downloaded marker genes of clusters from single-cell
RNA-seq of liver (adult human), kidney (adult mouse, fetal human, and adult human), and

230 pancreas (adult human) and ran LD Score regression to test for enrichment of single cell
types*®. Consistent with previous reports*’“¢, we found that numerous traits were significantly
enriched in podocytes, proximal and distal tubule, and hepatocytes, with our large sample sizes
capturing a novel enrichment of variation near marker genes of mesangial cells across many
traits and yO T cells in HbA1c, possibly due to their role in inflammation during diet induced

235  obesity (Figure 3B-D, Supplementary Table 11D)*.

Targeted phenome-wide association study

We performed a phenome-wide association analysis (PheWAS) to detect whether the variants
we implicated might impact other diseases or clinically relevant phenotypes (Supplementary
Table 12, Supplementary Figures 14,15). We find a total of 218 associations across 86

240 phenotypes for 25 protein-truncating and 80 LD-independent protein-altering variants that were
also associated with increased risk for 68 disease outcomes, and lower risk of 39 disease
outcomes (p < 1 x 10°). Overall, these results demonstrate that variants with effects on
biomarkers have pleiotropic effects across diverse phenotypes.

Correlation of genetic effects between biomarkers, diseases, and
245 medically relevant phenotypes

Given the widespread polygenicity and pleiotropy observed in the GWAS and PheWAS analysis,
we then estimated global genetic correlation patterns between the biomarkers, diseases, and
medically relevant phenotypes. We applied LD-score regression to estimate genetic
correlations®® among the 38 biomarkers and an additional 146 summary statistics including 56

250 diseases and 90 previously published medically relevant phenotypes (Figure 2C, 4A,
Supplementary Figures 16-18, Supplementary Table 13). Overall, we found that between the
38 biomarkers and the 146 other phenotypes, there exist 1,127 significant non-zero correlations
of genetic effects (Figure 4A, p <1 x 10®).
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Figure 3. Cell type decomposition of genetic effects. (A) (x-axis) Fold enrichment for each biomarker across 10 tissues (y-axis).
(B) Structure of the renal corpuscle, the blood-filtering component of the nephron of the kidney. (C) Single cell heritability
enrichment across the 38 biomarkers (y-axis) for single cell types with large numbers of enriched traits in kidney, liver, and pancreas
(x-axis). Cells with P-value < 107 in cell types for which more than 20 biomarkers are enriched are shown. (D) Genetic variants (cell
coloring and size denotes effect direction and size) associated to renal failure biomarkers (y-axis) in gene markers of single cell
gene expression shared between adult mouse kidney proximal tubule and adult and fetal human kidney proximal tubule (x-axis).
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260

Causal inference

The patterns of significant correlation of genetic effects between the 38 biomarkers and 123
diseases and medically relevant phenotypes raised the possibility that some of these
associations might be causally relevant.

First, to estimate causal effects we used MR-Egger to perform Mendelian Randomization,

265  treating the genome-wide significant variants for each trait as instrumental variables®’
(Methods). Using MR-Egger we find 86 causal relationships at an FDR of 10%, many of which
are causal relationships to disease outcomes (Supplementary Table 14).

It has been noted that Mendelian Randomization can be confounded by genetic correlations
reflecting shared etiology, and sometimes instruments with pleiotropic effects may introduce

270 limitations in evaluating causal relationships. Hence, to distinguish between genetic correlation
from causation we used the O’Connor and Price Latent Causal Variable (LCV) Model*>. We
found that 49 of the 86 causal relationships inferred by Mendelian Randomization are recovered
by LCV (Figure 4B). 344 additional causal relationships are unique to LCV, highlighting
potentially novel causal associations (Supplementary Table 14). Many of these are

275  well-described -- such as that of LDL cholesterol on coronary artery disease and angina, which
we estimate using MR-Egger at 0.34 log odds change per standard deviation (LCV causal
percent 0.75) and 0.313 LOR/SD (LCV genetic causal percent [GCP] 0.8) respectively, or the
effect of urate on gout (MR-Egger slope 1.2 LOR/SD, LCV n.s.). Our large sample size provide
unique genetic evidence supporting the effect of calcium levels on kidney stones (0.625

280  LOR/SD and GCP 0.48), and testosterone on diabetes (0.49 LOR/SD, LCV n.s.) consistent with
existing epidemiological reports®**. We also discovered novel associations, such as that of AST
levels on hernia (-0.319 LOR/SD, GCP 0.14), that warrant further study.

Polygenic prediction of biomarkers within and across populations

The vast size of our cohort affords the opportunity to build predictive polygenic risk models of

285 biomarkers from genotype data alone®. We constructed PRS for all 38 biomarkers using batch
screening iterative lasso (BASIL) implemented in R snpnet package®*'(Methods). To do this,
we split the self-identified White British sample set into 60% training, 20% validation, and 20%
test sets, and evaluated the trained models using goodness-of-fit (R) for the quantitative
phenotypes or the area under the receiver operator curve (AUC) for the binary phenotypes

290 (Supplementary Figure 19A, Supplementary Table 15). The inclusion of the lasso coefficients
for all these phenotypes is shown in the form of “lake” plots showing shrinkage and variable
selection (Supplementary Figure 20). We observed strong concordance between predicted
and observed phenotypes (Supplementary Figure 19 B-D). We found that predicted
Lipoprotein (a) level stratified individuals into two groups, which reflects the huge contribution of

295  the LPA gene (Supplementary Figure 19B). To assess whether this prediction performance
could translate to other populations, we compared predicted genetic scores for the 38

11
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biomarkers to their true measured or derived values in 24,131 self-identified Non-British White,
6,951 South Asian, 1,950 East Asian, and 6,056 African individuals in the UK Biobank. Overall,
these 4 populations experienced median reductions in prediction performance of 6.4%, 30.0%,
300  43.2%, and 72.0% respectively, suggesting these polygenic models have somewhat limited
generalizability across populations (Supplementary Figure 19A, E, Supplementary Tables
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Figure 4. Correlation of genetic effects, causal inference, and complex trait association in polygenic risk tails. (A)
Correlation of genetic effects plot between the 38 biomarkers and 123 complex traits using LD-score regression. Cells with p < 0.001

305 are highlighted, and traits (n=26) with no associations are not shown. (B) MR-Egger and LCV predict causal links between
biomarkers (blue nodes) and selected complex traits (red nodes). Association arrows are drawn based on MR-Egger (red, blue),
LCV (gray), or both (dark), and multiple arrows indicate support from multiple studies. MR-Egger and LCV were jointly adjusted for
FDR 10% cutoff across all tests. Triangles are used for binary and circles for continuous summary statistics. Edge width is
proportional to the absolute causal effect size, estimated by MR Egger. A complete listing of discovered associations is provided as

310 a table (Supplementary Table 14). (C) (x-axis) Biomarker polygenic risk scores for the top 0.1%, top 1%, bottom 0.1%, and bottom
1% of individuals and their association to different diseases in UK Biobank, represented as the odds ratio of the disease in this
group relative to the middle 40-60% of individuals.
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Multiple regression with PRSs for biomarkers improves prediction
of traits and diseases

315  We then tested the hypothesis that the 38 biomarker PRSs may improve the prediction of
higher-level traits and diseases in combination with the PRS for the trait or disease itself. To this
end, we constructed multi-PRS models for renal failure, alcoholic cirrhosis, myocardial
infarction, kidney cancer, liver cancer, and liver fat percentage by using multiple regression to
predict the trait or disease from a) its own PRS, b) the PRSs for each of the 38 biomarkers, and

320  c) relevant covariates such as age and sex (Methods).

We selected these multi-PRSs by considering the enrichment of disease prevalence in the UK
Biobank at the tails of the distribution of predicted values (Figure 4C). We calculated the top
and bottom 0.1% and 0.1-1% bins of self-identified-White British individuals by polygenic score
and compared them to the 40-60% center of the distribution with a Fisher exact test. Traits with

325 low case numbers and multiple enriched biomarkers, which we reasoned would benefit most
from the combination of multiple biomarker PRSs, were selected for further analysis.

We further tested multiple disease outcomes and liver fat percentage (LFP), a quantitative
measure derived from costly MRI images of the liver obtained approximately 8 years after the
initial assessment visit where the serum and urine samples used for our polygenic score

330 calculation were collected®®. Liver fat is driven by a combination of alcohol use and metabolic
disorder®. Only 4,617 individuals thus far have quantified LFP in UK Biobank, and we reasoned
that the substantial power increase from the full cohort might help with prediction of this
important physiological parameter.

First, we ran ordinary least squares, predicting LFP from covariates (including alcohol and

335 interactions; see Methods). Covariates were moderately effective at predicting liver fat
percentage (adjusted r-squared 0.024, Supplementary Table 17), and adding our
snpnet-derived polygenic risk score increased the predictive power substantially (Figure 5A,
Supplementary Tables 17,18, Supplementary Figure 21a, adjusted r-squared 0.050, F test p
<1 x 10™"%). Adding the 38 biomarker PRSs to the regression improved predictive capacity

340  further (0.087, F test vs LFP PRS alone p <1 x 10™"°, Supplementary Tables 17,18). The PRS
for Alanine aminotransferase, sodium in urine, urate, SHBG, and triglycerides all had significant
coefficients (Supplementary Tables 19), supporting the previously described notion that
complex interplay between organ systems, or multiple underlying disease states, might
contribute to LFP®'. Meanwhile, the myocardial infarction snpnet PRS was equally stratifying to

345  the multi-PRS, with both explaining a substantial portion of trait heritability (R*> = 0.15-0.16;
Figure 5B). This suggests that the genetic basis of MI, as previously reported, is largely driven
by lipids (Supplementary Figure 21b, Supplementary Table 21). In contrast, for renal failure,
the multi-PRS resulted in the highest risk individuals having a nearly 30% prevalence (compared
to 5% with the snpnet PRS alone, Figure 5B, Supplementary Table 21). This effect was
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Figure 5. Multi-Polygenic Risk Scores improve disease incidence and prevalence prediction. (A) Improvement in prediction
accuracy of traits when including biomarker polygenic risk scores. Each trait was tested against a model with just the covariates (for
liver fat, including alcohol and interactions; for all traits, including age, sex, Townsend Deprivation Index, principal components, and
interactions); with the covariates and the polygenic score for the trait (trained using snpnet), termed “Trait PRS”; with the covariates
and all the polygenic scores for biomarkers, termed “Biomarker PRSs”; and with covariates and all PRSs, termed “All PRSs.” In

355 each case, the trait PRS only was outperformed by including all the biomarker PRSs as well. See F-test results and regression
terms in Supplementary Tables 18-21. (B) (x axis) quantiles of polygenic risk score, spaced to linearly represent the mean of the
corresponding bin of scores. (y axis) Prevalence of renal failure (defined by verbal questionnaire and hospital in-patient record ICD
code data) within each quantile bin of the polygenic risk score. Error bars represent the standard error around each measurement.
(C) Hazard ratios for incidence of renal failure (n=3,058), myocardial infarction (n=7,913), and cirrhosis (n=845) in FinnGen using the

360 standard PRS trained on UK Biobank using snpnet versus the multi-PRS including both biomarker PRSs and the trait PRS. Error
bars represent 95% confidence intervals. (D) Cumulative renal failure rate in quantiles of Finnish individuals in FinnGen. Individual
estimates were predicted from existing polygenic scores and the bins of individuals in both the snpnet PRS for renal failure and the
multi-PRS are shown. The central dark color corresponds to the 40-60th percentile of renal failure (grey; ‘ESRD PRS’) or multi-PRS
(red, ‘multi-PRS’) bins, and the lighter color corresponds to the top and bottom 1 percentiles.

365 replicated, albeit with a smaller effect, in self-identified non-British White individuals
(Supplementary Figure 22, Supplementary Table 21).

Encouraged by these findings, we evaluated the potential of these improved polygenic scores in
cases of incident disease. We examined myocardial infarction (Ml), renal failure, alcoholic
cirrhosis, kidney and liver cancer, all of which had improved predictive power in the presence of
370 the biomarker PRSs (Figure 5A, Supplementary Tables 20,21), but which varied in total
predictive power and in improvement from inclusion of the biomarker PRSs. To assess whether
the improvement in predictive performance was transferable, we applied both trait specific PRS
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and combined PRS in FinnGen (n = 135,500, Supplementary Tables 22). Here, we found
strong evidence that the combination of PRS increased the effect size in myocardial infarction

375  (hazard ratio = 1.18 per SD increment for snpnet PRS and 1.26 for multi-PRS), renal failure
(hazard ratio = 0.99, p = 0.46 for snpnet PRS and hazard ratio = 1.14, p = 9.3 x 10" for
multi-PRS, Figure 5C,D, Supplementary Tables 23,24), and alcoholic cirrhosis (hazard ratio =
1.00, p = 0.98 for snpnet PRS and hazard ratio = 1.14, p = 1.8 x 10™ for multi-PRS,
Supplementary Tables 23,24) and increased lifetime prevalence and cumulative disease rates

380  over time at the tails of polygenic risk (Supplementary Figures 23,24). This suggests that
multiple regression of polygenic risk for biomarkers might capture multiple underlying disease
states and/or underlying causes, similar to what has recently been reported for neuropsychiatric
disease®, and that these multiple states are predictive of incident disease.

Discussion

385 Using data from 38 biomarkers in ~360,000 UK samples, we provide a systematic assessment

of genetic associations, as well as their disease relevance and predictive performance.

Detailed analysis of HLA alleles, and copy number, protein-altering, and protein-truncating
variants highlight potential drug targets. In contrast, in non-coding variants, we found strong
enrichment of polygenic heritability in specific single-cell clusters from kidney and liver tissue,

390 including podocytes, stellate cells, and the descending loop of Henle. These results are
corroborated by mouse knockout data®®. By expanding single-cell gene expression and
epigenetic resources, particularly under stress and disease conditions, we will likely reveal
additional novel cellular enrichment signatures to inform the mechanism underlying our novel
large-effect variants.

395  The genome-wide resource made available with this study provides a starting point for
cataloging variants affecting the 38 biomarkers, and larger datasets across under-represented
populations may improve their generalizability. These results highlight the benefits of direct
measurements of biomarkers for interpretation of genetic variation.

To assess the translatability of our findings, we built predictive models aggregating trait PRS
400  with those of the biomarkers, improving the predictive accuracy of multiple disease outcomes
both overall and especially at the extremes of genetic risk. Methodologies such as this will
improve resolution in dissecting personalized drivers of disease. Integration with independent
population biobanks and prospective cohorts will help elucidate the extent to which these
combined risk models can be transferred. Together, we anticipate this will inform clinical practice
405 in the coming years as a larger fraction of the population is genotyped and sequenced.
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Methods

Genotype and phenotype data

We used genotype data from the UK Biobank dataset release version 2 and the hg19 human
genome reference for all analyses in the study®. To minimize the variability due to population
410 structure in our dataset, we restricted our analyses to unrelated individuals based on the
following four criteria reported by the UK Biobank in the file “ukb_sqc_v2.txt™:
1. used to compute principal components (“used_in_pca_calculation” column)
2. not marked as outliers for heterozygosity and missing rates (“het_missing_outliers”
column)
415 3. do not show putative sex chromosome aneuploidy (“putative_sex_chromo-
some_aneuploidy” column)
4. have at most 10 putative third-degree relatives (“excess_relatives” column).
We used a combination of self reported ethnicity and principal component analysis (UK Biobank
field ID: 21000) and analyzed 5 subpopulations in the study : self-identified White British (n =
420 337,151 individuals), African (6,497), East Asian (2,061), South Asian (7,363), and
self-identified non-British White (26,471). Using the imputed common variants on chromosome 1
(MAF >=10%, 443,757 variants remained), we applied principal component analysis (PCA)
implemented in PLINK v2.00aLM (17 Jul 2017) with --pca approx 10 and characterized the top
10 components. We defined threshold on PC2 as shown below and defined European, African,
425 East Asian, and South Asian individuals (Supplementary Figure 1).
e PC2 <=-0.011 indicates East Asian ancestry
e PC2inrange [-0.007, -0.004] indicates South Asian ancestry
e PC2inrange [-0.002,0.002] indicates European ancestry
e PC2>=0.003 indicates African ancestry
430  These cutoffs were selected by overlaying self-reported ancestry from UK Biobank field 21000,
which revealed distinct ancestry clusters. Individuals between the boundary regions (i.e. no
confident ancestry grouping) were excluded from the analysis. For European individuals, we
identified self-reported White British individuals and self-identified non-British White Europeans.
We subsequently focused on a subset of individuals with non-missing values for covariates and
435  biomarkers as described below.

We annotated variants using the VEP LOFTEE plugin (https://github.com/konradjk/loftee) and
variant quality control by comparing allele frequencies in the UK Biobank and gnomAD
(gnomad.exomes.r2.0.1.sites.vcf.gz) as previously described®®. We focused on variants outside
of major histocompatibility complex (MHC) region (chr6:25477797-36448354) and performed

440  LD-pruning using PLINK with "--indep 50 5 2" as previously described®®®®. The LD-pruned sets
are used for targeted PheWAS analysis described below.
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We focused on 32 biomarkers (UKBB field ID column in Supplementary Table 2) and also
defined two derived phenotypes, estimated glomerular filtration rate (eGFR) and non-albumin
proteins. The eGFR measure is an indicator of renal function and is defined by the CKD-EPI
445 equation®. We defined non-albumin protein as the difference between the total protein and
albumin. Given the dominance of signals below the detection limit for some biomarkers, we
additionally defined four binary phenotypes:
e Urine albumin to creatinine ratio >30 mg/g
e Microalbumin >40 mg/L
450 e Rheumatoid factor >16 1U/mL
e QOestradiol >212 pmol/L
We treated individuals beyond the detection limit for those biomarkers as cases in those four
binary phenotypes, and below the detection limit as controls, as reported by the corresponding
reportability fields.

455 Statin identification and LDL adjustment
We reviewed the medications taken by one or more participants in the UK Biobank and
identified 13 medication codes corresponding to statins (1141146234, atorvastatin; 1141192414,
crestor 10mg tablet; 1140910632, eptastatin; 1140888594, fluvastatin; 1140864592, lescol 20mg
capsule; 1141146138, lipitor 10mg tablet; 1140861970, lipostat 10mg tablet; 1140888648,

460 pravastatin; 1141192410, rosuvastatin; 1141188146, simvador 10mg tablet; 1140861958,
simvastatin; 1140881748, zocor 10mg tablet; 1141200040, zocor heart-pro 10mg tablet). We
then identified participants (n ~ 1,427) with biomarker measurements who were not taking a
statin upon enrollment (years 2006-2010), but who were taking a statin at the time of the first
repeat assessment visit (years 2012-2013). For each participant, we divided their on-statin

465 biomarker measurement by their pre-statin biomarker measurement. The mean of this value
was considered to be the statin correction factor within the UK Biobank. For all individuals who
were taking statins upon enrollment, we divided their on-statin measurement by the correction
factor to yield an adjusted biomarker measurement value. For all traits, we calculated a p-value
from a wilcoxon signed rank test for paired samples comparing whether the pre- and on-statin

470  values were significantly different, and only traits with a significant non-zero effect were
evaluated with adjustment for statins. The following list of statins were identified in the UK
Biobank for the purposes of adjusting by the estimated factor: 1140861958, simvastatin;
1140888594, fluvastatin; 1140888648, pravastatin; 1141146234, atorvastatin; 1141192410,
rosuvastatin; 1140861922, lipid-lowering drug; 1141146138, lipitor 10mg tablet.

475

Covariate correction

Raw UK Biobank measurements for all reported individuals (excluding out of range and QC
failed measurements) were fit with linear regression against the 127 covariates. These included
demographics (age, sex, age*sex, age?), population structure (the top 40 principal components
and indicators for each of the assessment centers in the UK Biobank), temporal variation

480 (indicators for each month of participation, with the exception that all of 2006 and August
through October of 2010 were considered single months), socioeconomic status indicators
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(townsend deprivation indices and interactions with age and sex), the genotyping array used,
and technical confounders (blood draw time and it's square and interactions with age and sex;
urine sample time and its square and interactions with age and sex; sample dilution factor;

485  fasting time, its square, and interactions with age and sex; and interactions of blood draw time
and urine sample time with dilution factor). The residual from this regression was inverse normal
transformed using the Blom transform and then used as the tested outcome. For sensitivity
analysis, we also applied covariate transformation within just the self-identified White British
individuals and obtained similar estimates.

490

Genome-wide association analysis

We performed association analyses using imputed 1000 Genomes Phase | variants (for
non-coding variants), directly genotyped variants on array (for protein-truncating and
protein-altering variants), imputed HLA alleles, and copy number variations (CNVs).

GWAS of imputed 1000 Genomes Phase 1 variants

495  We employed a GWAS without covariates of the residuals computed above. This was run using
plink v2.00aLM with the following parameters:
--glm cols=chrom,pos,ref,alt,altfreq,firth,test,nobs,orbeta,se,ci,t,p hide-covar --pgen <imputed
PGEN> --remove <non-White-British individuals> --keep <all individuals, males, or females>
--geno 0.1 --hwe 1e-50 midp;

500 For binary traits, a logistic glm was fit directly with covariates to age, sex, genotyping platform,
10 PCs, age?, and fasting time, with the --vif 999 parameter to avoid the collinearity of age and

age?.

Derivation of independent loci

Once we ran the GWAS, full summary statistics were clumped to r? > 0.1 using the following
505 clump command:

plink1.9 --bfile <1000G Phase 3 European plink file> --clump <summary statistics> --clump-p1

1e-6 --clump-p2 1e-4 --clump-r2 0.1 --clump-kb 10000 --clump-field P --clump-snp-field ID

Then, to avoid calling very large signals as multiple associations, these were further filtered
such that any SNPs within 0.1¢cM of each other (as annotated by 1000 Genomes) were

510 considered part of the same association signal, with the cM annotation derived from the 1000G
Phase 3 European samples (n = 489)*' -- variants within 0.1cM were chose to only have the
minimum p-value. For the final results, all lead variants with p < 5 x 10°® were kept for the
mendelian randomization analyses.

In order to report independent signals, we ran the following plink command:
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515  plink1.9 --bfile <1000G Phase 3 European plink file> --extract <all unique hit SNPs, n = 6269>
--indep 50 5 2

And counted the number of independent SNPs it reported.

GWAS on coding variants on genotyping array

Univariate association analyses for single variants were applied to the 38 phenotypes

520 independently using PLINK v2.00aLM (2 April 2019). For binary phenotypes, we performed
Firth-fallback logistic regression as previously described®. For the residuals of the quantitative
phenotypes after adjusting the 127 covariates, we applied generalized linear model association
analysis.

Cascade plot visualization of coding and non-coding variants

525  We visualized the minor allele frequency and effect size estimates in a series of cascade plots.
For protein-truncating and protein-altering variants, we focused on genome-wide significant
associations with p < 1 x 107" and annotated the corresponding gene symbols for variants with
absolute value of betas greater than 0.1 (outliers). For non-coding variant associations
characterized on the imputed 1000 Genomes Phase 1 variants, we focused on the clumped set

530  of associations (described above in “Derivation of independent loci” section above) and applied
the following procedure to determine and highlight the outliers:

e Fit a univariate linear regression model with absolute value of effect size estimate (BETA
or log odds ratio) as the response and the log of minor allele frequency as the predictor.
e Find the residuals from the regression model and find the mean and standard deviation

535 of the residuals.

e \We defined association is an outlier on cascade plot if and only if the residuals from the
regression model above is outside of the mean plus or minus 1 SD range.

Association and Bayesian model averaging analyses for HLA alleles

The HLA data from the UK Biobank contains all HLA loci (one line per person) in a specific order

540 (A, B, C, DRB5, DRB4, DRB3, DRB1, DQB1, DQA1, DPB1, DPA1). We downloaded these
values, which were imputed via the HLA:IMP*2 program (Resource 182); the UK Biobank
reports one value per imputed allele, and only the best-guess alleles are reported. Out of the
362 alleles reported in UKB, we used 175 alleles that were present in >0.1% of the population
surveyed.

545  We performed association analysis for our 38 phenotypes and 175 HLA alleles using PLINK
v2.00aLM (2 April 2019). We included only self-identified White British individuals (n = 337,151).
We used generalized linear models for quantitative traits and generalized linear models with a
Firth-fallback method for binary traits.
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To identify the HLA alleles that were not simply associated to a particular phenotype due to LD,
550  we used Bayesian Model Averaging (BMA), implemented in the ‘boma’ R package®”. BMA is a
model selection method that trains a variety of models, one on each possible subset of alleles.
The posterior probability of each model being the correct one given the data is determined, and
subsequently, a BIC per model is calculated. The degree to which an allele is included across
models (posterior probability) is then deemed a measure of confidence in the association
555 between allele and phenotype.

We first filtered the allele dosage file to those columns that were not sparse, making sure that
each allele in the analysis had more than 5 entries. We then identified all of the allele-phenotype
pairs that had BY-adjusted p-value <0.05 from PLINK. If there were >10 alleles below this
threshold for a given phenotype, we used the 10 alleles with the lowest adjusted p-value in order

560 to maintain computational tractability. If there were >2 such alleles for a given phenotype, we did
not run BMA for that phenotype. These requirements filtered our testing base down to 33
phenotypes, with 56 alleles included in at least one analysis.

In order to maintain computational tractability, only models whose posterior model probability
was within a factor of 1/5 of that of the best model were kept for the final analysis. We focused

565  on alleles with posterior probabilities > 0.8 based on our BMA analysis. We ran BMA with a
binomial error distribution and link function for binary traits and Gaussian ones for quantitative
traits.

We used the in-built “imageplot.oma” function to produce the plots of the model architectures,
and report allele, phenotype, posterior mean effect size, standard deviation of said effect size,
570 and the posterior probability that the effect is not equal to 0.

Copy number variants

CNVs were called by applying PennCNV v1.0.4 on raw signal intensity data from each array
within each genotyping batch as previously described®, with the notable difference that here, all
analyses are conducted within the self-identified-White-British unrelated cohort described

575  above. Data for phenome-wide associations were derived from UK Biobank data fields
corresponding to anthropometric measurements, laboratory tests, disease diagnoses, and
medical procedures from medical records, as well as a questionnaire about lifestyle and medical
history. We compute generalized linear models using the PLINK v2.00aLM (31 Mar 2018) --gim
option. For burden tests, we add number and total length of CNV as covariates for both binary

580  and quantitative traits. See the “GWAS on genetic variants on genotyping array” section for
further description of PLINK’s implementation of these model specifications.
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Heritability estimates

LD Score regression

We used the default LD Scores from the 489 unrelated European individuals in 1000 Genomes

585  as our reference. We converted our summary statistics to LDSC format using munge_sumstats,
munging against the set of 1000 Genomes Phase 1 variants with calls of an ancestral allele in
1000 Genomes Phase 3. We ran Idsc.py with the following parameters:

ldsc.py --h2 <trait summary statistics> --ref-Id-chr <ldsc/1000G.EUR.QC/>
--w-ld-chr <ldsc/weights_hm3_no_hla/
590 weights.>

HESS

We performed standard stage 1 fitting*?, then removed all regions which contained no SNPs
with MAF > 5% (5/~1700 bins genome wide) and generated stage 2 estimates from the resulting
matrices. We used the same munged sumstats described above, which were generated using a

595 modified version of the munge_sumstats.py which also outputs chromosome and position. We
confirmed heritability estimates of select associations using GCTA-GREML and genotyped array
variants on a subset of individuals (data not shown) to ensure estimates were comparable to
this model.

Cell-type enrichment analysis

600  We ran stratified LD Score regression with the 53 baseline annotations and included all 10
tissue type annotations and the Roadmap control regions. The exact command was:
ldsc.py --h2 <trait sumstats> --ref-ld-chr
Idsc/1000G_EUR Phase3_baseline/baseline.,ldsc/1000G_Phase3_cell_type_groups/cell_type
group.1.,ldsc/1000G_Phase3_cell_type_groups/cell_type_group.2.,1dsc/1000G_Phase3_cell_ty
605  pe_groups/cell_type group.3.,Idsc/1000G_Phase3 cell _type groups/cell_type group.4.,Idsc/10
00G_Phase3_cell_type_groups/cell_type_group.5.,1dsc/1000G_Phase3_cell_type_groups/c
ell_type group.6.,ldsc/1000G_Phase3_cell type groups/cell_type group.7.,ldsc/1000G_Phase
3_cell_type_groups/cell_type_group.8.,1dsc/1000G_Phase3_cell_
type_groups/cell_type group.9.,ldsc/1000G_Phase3_cell_type groups/cell_type group.10.,ldsc
610  /ldscores/Roadmap/Roadmap.control. --w-ld-chr Idsc/weight
s_hm3_no_hla/weights. --overlap-annot --frgfile-chr Idsc/1000G_frg/1000G.mac5eur.

We also ran each of the 394 Roadmap experiment annotations independently, including just the
Roadmap control and baseline annotations as covariates®.
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Single-cell enrichment analysis

615  We ran stratified LD Score regression with the 53 baseline annotations and included all 10
tissue type annotations and the Roadmap control regions. To this, we extended the RefSeq
gene region of each marker gene by 100kb and used these as a separate annotation, which we
tested for enrichment. This was done separately for each of the single cell clusters for each
experiment.

620

Targeted Phenome-wide association analysis

We prioritized the following sets of variants for targeted phenome-wide association analysis.
1. PTVs with at least one significant associations (p < 1 x 10”) with the 38 biomarkers
2. Protein-altering variants with at least one significant associations (p < 1 x 107) with the
38 biomarkers
625 For each set of variants, we used Global Biobank Engine (GBE) to query significant
associations (p < 1 x 10°°) across previously reported binary phenotypes®®*®°. We visualized
association results for both 38 biomarkers and other GBE traits as heatmaps and sorted
variants and phenotypes with hierarchical clustering.

Correlation of genetic effects across relevant phenotypes

630  We used LD Score regression in genetic correlation mode to estimate genetic correlation effects
between biomarkers and other traits. The exact arguments were:
Idsc.py --rg <traits> --ref-ld-chr Idsc/1000G.EUR.QC/ --w-Id-chr
Idsc/weights_ hm3_no_hla/weights.

Causal inference

635  We ran LCV with a number of LDSC-formatted summary statistics files with the default
parameters, using a customized script which takes in a list of summary statistics and applies
LCV between the first and all others sequentially.

For MR, we used TwoSampleMR to calculate MR Egger regressions and perform trait
munging’®. To scale betas from the Neale lab binary trait outcomes, we considered the

640 prevalence of the trait and raw mendelian randomization beta (with units of change of outcome
per standard deviation change in the biomarker), and calculated the log odds ratio as log((prev
+ beta) / prev). In our simulations (data not shown), this is approximately equivalent to logistic
regression across a range of prevalences and betas.

All MR and LCV results were jointly adjusted for multiple comparisons using the standard BH
645 FDR algorithm (at 10%). Network visualization of the results was done using Cytoscape’" 2.
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Scripts are provided on our github repository
https://qgithub.com/rivas-lab/public-resources/tree/master/uk_biobank/biomarkers.

Polygenic prediction within and across populations

We applied the batch screening iterative lasso (BASIL) algorithm implemented in R snpnet
package to find the exact lasso solution for ultra-high dimensional large dataset through an
iterative procedure built on top of the R gimnet package®**"">. For each trait, we randomly split
self-identified-White-British individuals with non-missing values into 60% training, 20%
validation, and 20% test sets and fit a multivariate Lasso regression model. With the 127
covariates described above, we used training and validation sets for training using R-snpnet
package with the default parameters for phenotypes after the statin adjustments. For
microalbumin in urine, we used a simpler model with a limited set of covariates -- age, sex, and
the first 10 PCs -- given the smaller number of individuals. For two traits, Lipoprotein A and total
bilirubin, we noticed that the snpnet package did not find the optimal lambda within the default
maximum number of iterations (100). We took the model from the 100th iteration as the best
model among the tested during the training phase.

Using the beta values for array-genotyped SNPs and covariates from multivariate Lasso
regression, we computed polygenic risk score for each individual with PLINK2 --score
subcommand and evaluated the goodness of fit using the test set. Specifically, we computed
correlation coefficient R for continuous traits or ROC-AUC metric for binary traits for risk scores
quantified from both genotype and covariates and covariates only, and quantified the difference
of those two as the increment of predictive performance.

We applied the same evaluation procedure for the four non-White-British populations in the UK
Biobank: self-identified non-British White, East Asian, South Asian, and African. We evaluated
the transferability of our polygenic risk score within and across ethnic cohorts by comparing the
increments of predictive performance between self-identified-White-British and the other four
populations.

Individual Extreme PRS-PheWAS

We started by enumerating all our high-confidence traits which were replicated between ICD
codes and self reporting (n = 366), cancer outcomes (n = 46), family history traits (n = 10), and
manually curated traits (n = 49)%. For each of the 38 biomarkers, we used R’s fisher.test
implementation of the Fisher’s Exact test between the 40-60 percentile and the top and bottom
0.1% and 0.1-1%. We then corrected for multiple hypotheses using a Bonferroni-adjusted
g-value less than 5% within each biomarker and report the enrichment as the odds ratio
estimate from the Fisher’s exact test.
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680
Models for multi-PRS prediction of disease outcomes

We began by calculating polygenic scores from the snpnet predictions across all individuals in
the dataset. For each outcome trait independently, we ran a covariate-only logistic regression
with age, sex, 40 principal components of the genotyping matrix, genotyping array, age?, an age
* sex interaction, and townsend deprivation index (and, for liver fat percentage, current alcohol
685 consumption status at the second time-point and interactions of this with age and sex).
Covariate-only models were augmented with the polygenic score for the corresponding trait
(“Trait only”), for the polygenic score for the 38 biomarkers (“Biomarkers only”), or with both (“All
PRSs”). We used R’s gim implementation and the McFadden’s adjusted PseudoR2 from
DescTools (binary outcomes) or R’s Im implementation and reported adjusted r? (continuous
690 outcomes), along with relevant F tests with the anova command, to evaluate prediction.

In order to perform out-of-sample validation, we trained L1-regularized logistic or linear
regression models with gimnet using just the 38 biomarker PRSs and the PRS for the trait of
interest in the validation subset from the trait of interest. Results were evaluated in the test
subset of the trait of interest and in all unrelated, self-identified non-British White individuals for

695  which the corresponding phenotype was available (as used in the cross-population testing; see
above).

We predicted the trait of interest in these test sets, calculated the quantiles of predicted trait,
and averaged the phenotype within each non-overlapping quantile.

Evaluation of multi-PRS prediction in an external cohort

700 The FinnGen Data Freeze 3 comprised 135,300 Finnish participants, with phenotypes derived
from International Classification of Diseases (8", 9", and 10" revision) diagnosis codes from
national Finnish hospital discharge and cause-of-death registries as a part of the FinnGen
project (Supplementary Table 22).

FinnGen samples were genotyped with lllumina and Affymetrix arrays (Thermo Fisher Scientific,

705 Santa Clara, CA, USA). Genotype imputation was carried out by using the population-specific
SISu v3 imputation reference panel with Beagle 4.1 (version 08Jun17.d8b,
https://faculty.washington.edu/browning/beagle/b4_1.html) as described in the following
protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. Post-imputation quality control involved
excluding variants with INFO score < 0.7.

710  We estimated a full weighting matrix for each SNP from the corresponding coefficients of the
regression model, then applied the per-SNP weighted model to individuals in FinnGen. To
assess the risk for incident first disease events, hazard ratios and 95% confidence intervals per
SD increment and by PRS bins (<1%, 1-5%, 40-60%, 95-99%, and >99%) were estimated with
Cox proportional hazards models after evaluation of the proportionality assumption. With age as
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715 the time scale, the survival models were stratified by sex and adjusted for batch, and the first
ten principal components of ancestry calculated within Finns.
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Data availability:

Data is displayed in the Global Biobank Engine (https://biobankengine.stanford.edu). Analysis
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A Polygenic models incorporating biomarkers and trait PRSs improve performance B Polygenic risk scores for biomarkers improve prediction of renal failure in UKBB
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