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The Research Domain Criteria (RDoC) address three types of
aggression: frustrative non-reward, defensive aggression and
offensive/proactive aggression. This review sought to present
the evidence for genetic underpinnings of aggression and to
determine to what degree prior studies have examined pheno-
types that fit into the RDoC framework. Although the constructs
of defensive and offensive aggression have been widely used in
the animal genetics literature, the human literature is mostly
agnostic with regard to all the RDoC constructs. We know from
twin studies that about half the variance in behavior may be
explained by genetic risk factors. This is true for both dimen-
sional, trait-like, measures of aggression and categorical defi-
nitions of psychopathology. The non-shared environment seems
to have a moderate influence with the effects of shared environ-
ment being unclear. Human molecular genetic studies of ag-
gression are in an early stage. The most promising candidates are
in the dopaminergic and serotonergic systems along with hor-
monal regulators. Genome-wide association studies have not yet
achieved genome-wide significance, but current samples are too
small to detect variants having the small effects one would expect
for a complex disorder. The strongest molecular evidence for a
genetic basis for aggression comes from animal models compar-
ing aggressive and non-aggressive strains or documenting the
effects of gene knockouts. Although we have learned much from
these prior studies, future studies should improve the measure-
ment of aggression by using a systematic method of measure-
ment such as that proposed by the RDoC initiative.
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INTRODUCTION

During the early stages of human evolution, aggression was proba-
bly an adaptive trait, as it is for many animals in the wild today. It
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seems logical that during this period of time people who had the
variants of genes that promoted aggression were more likely to
survive than other people. These variants have persisted in the
human genome and partly explain why some people exhibit
aggressive behaviors.

Although the word “irascibilem” comes from the Latin “iras-
cibilem”, meaning “to attack,” in current language aggression
means much more. In the genetics literature aggression has been
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operationalized in many ways. As a categorical disorder it has been
studied as conduct disorder (CD), oppositional defiant disorder
(ODD) and antisocial personality disorder (APD). These catego-
ries are convenient for diagnosticians because other work suggests
aggression to be a quantitative trait that is better operationalized on
dimensions of externalizing behavior, rule breaking, psychopathy
and violence.

A dimensional view of aggression is consistent with the ap-
proach taken by the NIMH Research Domain Criteria (RDoC)
Initiative [Sanislow et al., 2010]. RDoC seeks to focus researchers
on the fundamental mechanisms underlying psychopathology. In
doing so, it has been creating a dimensional taxonomy of behavior
that, hopefully, corresponds better to underlying mechanisms than
does a system of discrete diagnoses.

In the RDoC nomenclature, aggression is categorized into three
areas: frustrative non-reward, defensive aggression and offensive
(or proactive) aggression. Frustrative non-reward refers to behav-
iors that correspond to the withdrawal or prevention of reward.
This derives from human and animal studies showing that aggres-
sion occurs after repeated, failed attempts to obtain rewards even
after sustained efforts. Defensive aggression refers to behaviors
caused by the perception of an immediate threat, which have
the goal of eliminating the threat. Offensive (or proactive) aggres-
sive behaviors are instrumental behaviors aimed at achieving a
positive goal, often in the face of competition or in the context of
social hierarchies.

The long-term goal of RDoC is to map RDoC phenotypes to
underlying mechanisms. In this review, we sought to present the
evidence for genetic underpinnings of aggression and to determine
to what degree prior studies have examined phenotypes that fit
neatly, or at all, into the RDoC framework. We focus the review
on three types of genetic studies: twin studies, human association
studies of aggression and animal model studies.

This section outlines recent findings from twin studies on aggres-
sion and related psychopathology, i.e. ODD, CD and APD. Studies
using the classical twin design estimate heritability by comparing
the covariation between monozygotic (MZ; identical) and dizy-
gotic (DZ; fraternal) twins [Plomin et al., 1994; Boomsma et al.,
2002]. MZ twins are assumed to share 100% of their genetic
material while DZ twins share 50% of their genetic material,
and both types of twins share a common environment [Posthuma
et al., 2003]. Under an ACE model [Neale and Cardon, 1992],
the correlation (r) between phenotypes of MZ twin pairs encom-
passes additive genetic factors (a® or h? heritability) plus
common environmental factors (c?), that is rMZ =h?+ ¢*. For
DZ twin pairs who share 50% of their segregating genetic material,
rDZ = 0.5*h> + ¢*. This gives the following formula to calculate
the fraction of phenotypic variance accounted for by genetic
factors: h> =2(rMZ — rDZ). The influence of the common envi-
ronment ¢ can be derived as follows: rMZ — h? (or 2*tDZ — tMZ).
Genetic influences can also be non-additive (d?), but these effects
cannot be estimated simultaneously with ¢* if only using data from
twin pairs who are raised together. Accordingly, variance within
twin pairs that is not explained by genetic factors or the common
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environment, is attributed to influence of the non-shared envi-
ronment, e* = 1-rMZ, which also includes measurement error
[Holzinger, 1929; Falconer, 1960]. It is important to note here
that the non-shared (unique) environment includes all experi-
ences that contribute to differences between children in the same
family, i.e. a common event (for example parents’ divorce) can
affect siblings differently.

Twin studies have investigated aggression from different per-
spectives, e.g. as a personality trait [Miles and Carey, 1997], as
antisocial behavior [Rhee and Waldman, 2002] or as a symptom of
childhood and adolescent psychopathology. Previous reviews of
twin studies and adoption studies on aggression have estimated
heritability up to 0.50, with an additional large role for non-shared
environmental influences and a small influence of the shared
environment [Viding et al., 2008; Tuvblad and Baker, 2011].
Genetic effects seem to predominantly account for phenotypic
correlations between different forms of aggression, such as reactive
(defensive) and proactive (offensive) aggression, although few
studies have examined this [Rhee and Waldman, 2011]. To update
these prior reviews, we conducted a systematic search for studies
in the period January 2009 until February 2015. PubMed and
PsycINFO were searched for peer-reviewed papers to identify
studies of twins with characteristics of externalizing behavior
and psychopathy, regardless of age. We used the following search
strategy: aggress® OR antisocial behav* OR aggressive trait® OR
behavior problem* OR behaviour problem* OR problem behavi*
OR CD OR conduct disorder* OR conduct problem* OR crime
OR criminal* OR delinquen* OR disruptive behav* OR ODD OR
oppositional defiant disorder* OR antisocial personality OR
psychopathy OR sociopathy AND heritabilit*.

A total of 254 records were retrieved. Neither books nor
unpublished articles were retrieved from the references. Titles
and abstracts were read by at least two of the authors (MJB and
KV); article selection is summarized in Figure 1. Articles were
retained if they: 1) included constructs related to aggression, i.e.
aggressive traits, externalizing/impulsive-antisocial behavior and
violent criminality/offences/delinquency or diagnostic categories
ODD/CD/APD 2) reported univariate heritability estimates 3) had
been published in peer-reviewed journals from January 2009
onwards. Reference lists from the identified articles were manually
searched for relevant publications. Articles were excluded if they
were not written in English, were a case-report, were review articles,
reported only multivariate analyses, or were not specifically focused
on aggression, e.g. publications about substance abuse, victimiza-
tion, or sexual risk behavior.

From the literature search, which generated 254 hits, 80 articles
were identified of which 40 articles were eligible for review accord-
ing to the above guidelines. All included studies were published as
articles in scientific journals. Online publication dates ranged from
January 2009 to November 2014. The following information was
extracted from the articles: sample size, age range (or mean if
unavailable), clinical diagnostic criteria used, instruments used to
measure the construct of aggression and key findings. A portion of
the studies used interviews or reports to assess diagnoses of ODD,
CD or APD based on the Diagnostic and Statistical Manual of
Mental Disorders (DSM; APA, 2001) while other studies employed
questionnaires and rating scales to assess aggressive symptoms on a
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FIG. 1. Selection of publications for twin studies review.

continuum. All characteristics and details of the included studies
are summarized in Table I. We discuss the findings below, starting
with research on aggression as a dimensional measure followed by
research on diagnostic categories. Within these subsections, results
are ordered (where possible) on the basis of age.

Aggression in children and adolescents. Researchers have
explored the etiology of aggressive behavior in children as young
as two years of age [Gagne et al., 2011]. The authors reported that
more than half of the variance of externalizing behavior problems
could be explained by genetic factors, and around one quarter by
shared environmental influences. A genetic correlation between

(in total n =40).

Reasons: topic not aggression
(n=14), no heritability index
(n=11), topic too broad (n=3),
non-violent behaviour (n=2),
sample with co-morbidity of
depression (n=2), cross legged
twin model (n=1), dimensional
approach common factors (n=1),
no standard univariate analysis
(n=5), no separate aggression
related measure (n=1)

externalizing behavior and inhibitory control was also observed,
pointing to deficient inhibitory control as a risk factor for aggres-
sive traits. At age 4, somewhat lower heritability estimates for
externalizing behavior have been found (0.39, 95% CI = 0.25-0.54;
Tucker-Drob and Harden, 2013). The influence of the non-shared
environment was of equal size as the genetic influences. Interest-
ingly, the amount of variance accounted for by shared environ-
mental factors changed with age depending on preschool
enrollment. For 5-year-old children that attended preschool, there
was no contribution of shared environment while heritability
estimates increased. For children who did not attend preschool,
the influence of the shared environment was more than 50% and
the influence of additive genetic factors decreased. Another study in
4-year-olds from the same cohort found a gene- environment
interaction [Boutwell et al., 2012]. In the context of maternal
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(Continued)

Other findings

2
e

Measure

Twin registry Age

Study

Latent factor

0.69 0.31

APSD - cluster B

Adults

~2800

Norwegian institute of public

Torgersen et al.

health

[2012]

twin panel
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disengagement, genetic risk factors had a strong effect on exter-
nalizing behavior problems. Genetic risk did not play a role in
behavior problems when maternal disengagement was low, i.e.
when children were securely attached. Remarkably, other research-
ers showed that genetic effects explained the correlation between
negative parenting and conduct problems around age 6, but only
for low levels of negative parenting [Fujisawa et al., 2012]. For high
levels of negative parenting, there was a larger non-shared envi-
ronmental correlation between negative parenting and conduct
problems. To summarize, the reviewed twin studies in children
between age 2 and 6 have focused on externalizing and conduct
problems in a broad sense. Heritability estimates ranged from
0.39 to 0.60 with variation contingent upon the school and home
environment.

From about the time when children start primary school,
aggression can be operationalized more specifically. Self-report,
parent-report or teacher ratings have been used to assess external-
izing and aggressive behavior, with different measures leading to
slightly different findings. Both the Twins Early Development
Study (TEDS) from the UK and the Netherlands Twin Register
(NTR) included twin pair ratings by the same teacher as well as by
different teachers. Same teacher ratings provided larger heritability
estimates (0.69, 95% CI = 0.57-0.76 — 0.82, 95% CI =0.79-0.85)
than different teacher ratings (0.40, 95% CI=0.20-0.52 — 0.47,
95% CI = 0.38-0.55; Barker et al., 2009; Lamb et al., 2012). Also,
heritability estimates of conduct problems based on parent-report
were higher compared to estimates from self-report [Trzaskowski
et al., 2013]. Several studies focused on callous-unemotional (CU)
traits, which are considered a genetic risk for antisocial behavior
[Viding and McCrory, 2012; Blair, 2013]. Distinct developmental
trajectories have been found in 7 to 12 year olds, with the
largest heritability for boys who have stable high CU traits
(0.78,95% CI = 0.42-0.88; Fontaine et al., 2010). Composite scores
across ages confirmed high heritability of CU traits, while herita-
bility estimates were close to zero in a Genome-Wide Complex
Trait Analysis [GCTA; Viding et al., 2013]. Contrary to Fontaine
et al. [2010], Ficks et al. [2014] observed no sex differences in
genetic and environmental influences on CU traits, although
nonshared environmental influences on impulsivity were larger
in boys. For parent ratings of conduct problems, the Child
Behavior Checklist [CBCL; Achenbach and Rescorla, 2001] is often
employed. Scores are taken from the DSM-Oriented Scale (DOS)
for conduct problems [Spatola et al., 2010; Bertoletti et al., 2014] or
the externalizing scale of the CBCL encompassing the aggression
and rule-breaking subscales [Burt and Klump, 2012; Robbers et al.,
2012; Nikolas et al., 2013]. Meta-analyses have shown a distinction
between aggression and rule-breaking, with the former primarily
influenced by genetics and the latter by the shared environment
[Burt, 2009, 2013]. In summary for children between 6 to 14 years
old, the heritability of parental reports of aggression-related
phenotypes ranged from 0.46 to 0.60. The estimates for non-shared
environmental influences were between 0.18 and 0.48.

Some twin studies collected longitudinal data to examine sta-
bility and change in the etiology of behavior over time. In the
Risk Factors for Antisocial Behavior twin study, children age 9—-10
were followed into adolescence. Separate genetic and non-shared
environmental influences were found on aggression versus rule-
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breaking during childhood, in addition to joint influences on a
latent common factor of antisocial behavior [Niv et al., 2013]. At
age 14-15, novel genetic influences on the latent factor of general
antisocial behavior were observed. In the same project, a link
between adolescent aggression and brain functioning at age 9-
10 was demonstrated [Niv et al., 2015]. The power of alpha waves,
brain oscillations of 8—13 Hz measurable by electroencephalogra-
phy (EEG), is a biomarker of low arousal. This intermediate
phenotype was explored based on theories stating that low arousal
evokes externalizing behavior to reach a higher, optimal level of
arousal. Indeed, alpha power recorded over the frontal cortex at age
9-10 predicted aggression at age 14—15. The correlation could be
explained by genetic factors and was shown in males but not
females, and for aggressive behavior but not for rule-breaking.
In Swedish twins, followed from age 8 to 20, a latent factor
representing persistent antisocial behavior was found as well as
novel shared environmental influences on aggression and delin-
quency at age 13—14 [Tuvblad et al., 2011]. Within the same twin
registry, self-reports of antisocial behavior and related traits at age
16-17 reflected shared environmental risk for criminality [Kendler
et al., 2013]. Analyzing parent-reports in addition to self-reports
revealed genetic continuity but also novel genetic influences at age
13-14 and 16-17, plus novel unique environmental influences for
early adolescents [Wichers et al., 2013]. Data from the Add Health
project suggested that for young adults (age 18 to 26), genetic
influences on criminal behavior were smaller than those on self-
reported delinquency in adolescence [Vaske et al., 2012]. An
analysis combining CBCL data from 1022 Swedish twin pairs
aged 7-9 years and 501 British twin pairs aged 8—16 years concluded
that the etiologies of aggressive and nonaggressive antisocial be-
havior differ for males and females [Eley et al., 1999].
Interestingly, a meta-analysis reported an age-related increase
in heritability estimates of externalizing behaviors [Bergen et al.,
2007]. It has been suggested that this increase may be specific to
rule-breaking and delinquency, while the magnitude of genetic and
environmental influences on aggression only is stable across ado-
lescence [Burt and Klump, 2009; Burt and Neiderhiser, 2009].
However, Tuvblad and colleagues probed reactive (impulsive;
defensive) and proactive (instrumental; offensive) aggression
and found larger heritability estimates in early adolescence than
in childhood for both subtypes of aggression [Tuvblad et al.,
2009a]. Altogether, aggression is heritable across development
(range 0.38—0.88) but the magnitude of genetic and environmental
influences varies according to age and assessment method.
Aggression in adults. A few extant twin studies focused spe-
cifically on aggressive traits in adults, some of which have used
retrospective measures. With conviction of violent crime as a
dichotomous variable, heritability estimates were comparable to
previous heritability findings of self-reported anti-social behavior
[Frisell et al., 2012]. Estimates for this outcome in the classic twin
design were similar in a sibling model but for adoptees, genetic and
shared environmental influences appeared smaller. Using the
Lifetime History of Aggression Questionnaire [LHA; Coccara
et al., 1997], two factors were distinguished [Yeh et al., 2010];
general aggression (temper tantrums, verbal and indirect aggres-
sion) plus physical aggression (fighting and physical assault).
Genetic influences were larger for general aggression while
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non-shared environmental influences were larger for physical
aggression, pointing to the importance of subtyping aggressive
behavior. Two studies in adult twins have used questionnaires to
measure the construct of psychopathy. Brook and colleagues
administered the Multidimensional Personality Questionnaire
[MPQ; Tellegen, 1982] to middle-aged males. On the impulsive-
antisocial dimension, heritability was 0.32 (95% CI = 0.18-0.45),
and a strong influence of the non-shared environment was
reported with no effect of the shared environment [Brook et al.,
2010]. Non-shared environmental factors also explained the cor-
relation between the impulsive-antisocial dimension and the
fearless-dominant dimension of psychopathy. On the Self-Report
Psychopathy scale [SRP; Hare, 1985], heritability was 0.34 (95% CI
=0.10-0.69) and genetic plus non-shared environmental factors
explained the phenotypic correlation of psychopathy with risk-
taking, among other variables [Veselka et al., 2011].

Opverall, in adult twin studies based on a dimensional approach
to aggression, as in studies with children, various definitions and
measures have been used. It is therefore difficult to compare results
and to make a link with the RDoC classification [Sanislow et al.,
2010]. In the next section, we will describe research that focused on
diagnostic categories related to DSM criteria [APA, 2000].

Oppositional defiant disorder (ODD) and conduct disorder
(CD) in children and adolescents. Several studies of twin chil-
dren and adolescents (N = 12, age range: 4-23 years) have focused
on aggression expressed in childhood and adolescent psychopa-
thology (e.g. CD or ODD). All these studies were characterized by a
wide age range, encompassing both childhood and adolescence.
For example, Singh and Waldman [2010] focused on an age range
from 4 to 17 years in a sample characterized by symptoms of ODD
and CD rated by the parent [Singh and Waldman, 2010]. Based on a
univariate standard ACDE model (95% CI’s not provided), both
disorders showed a different model of best fit, in which heritability
was roughly the same. An AE model was the best fit for ODD, in
which two thirds of variance was accounted for by genetic effects.
While an ADE model was a best fit for CD: nearly half of the
variance was explained by additive genetic factors, followed by
non-additive genetic and non-shared environment effects. In the
Tennessee Twin Study, high heritabilities were reported for CD
0.70 (95% CI = 0.44-1.00; Waldman et al., 2011) and confirmed by
Lahey et al. [2011]. In addition, for ODD symptoms heritability
was 0.69 (95% CI’s not provided; Lahey et al., 2011). However, self-
reports showed a reduction in variance explained by genetic
influences 0.39 (95% CI=0.16-0.72) and a small to moderate
role for the common 0.14 (95% CI = 0.004-0.47) and non-shared
environment 0.47 (95% CI =0.38-0.57) effects [Waldman et al.,
2011]. In contrast, Lahey et al. [2011] reported strong genetic
influences and moderate non-shared environmental influences for
both CD and ODD based on combined adult caretaker- and youth-
reports. In addition, a multivariate model based on a global factor
for internalizing and externalizing disorders showed moderate
genetic and non-shared environmental effects of the externalizing
factor in both CD and ODD. The non-shared environment effect
was moderate in ODD and small in CD.



12

As these few studies mentioned above show, there are mixed
results for CD and ODD; some studies favor an ACE/ADE model
and others an AE model. Another example of an ACE model is a
study (N =605 twin pairs) of Tuvblad et al. [2009a,b]. Both CD
and ODD symptoms were assessed with the DISC-IV structured
interview. The authors found unique genetic and environmental
influences for each set of symptoms, which suggests unique influ-
ences of the two disorders. Moreover, the relative effects of genetic,
shared, and non-shared environmental factors were similar be-
tween CD and ODD. Furthermore, it has been suggested that both
the genetic (95% Cl;=0.17-0.74, 95% CI,;, = 0.12-0.70) and non-
shared environmental (95% Cl;=0.23-0.39, 95% CI,,, = 0.22—
0.37) influences on CD are slighter higher in girls (f) than boys
(m) and slighter lower for shared environment (95% Cly= 0.00—
0.50, 95% CI;, =0.03-0.56). Furthermore, common influences
have been reported based on a latent externalizing behavior factor,
indicating high genetic and moderate non-shared environmental
influences. Anckarster et al. [2011] reported that both CD and
ODD are more influenced by genetic (95% Cly=0.13-0.36,
95% CI,, = 0.61-0.67) factors in boys (m) than in girls (f). In
contrast, the influence of shared environment was negligible
(95% Cl;=0.17-0.35, 95% CI,, = 0.00-0.02), the one exception
being conduct problems in girls.

Bornovalova et al. [2010] studied a large sample of twin
pairs (aged 11 years) in which an ACE model was the best fit.
A higher heritability of 0.73 (95% CI=0.59-0.79) and non-
shared environmental influences of 0.24 (95% CI=0.21-0.26)
was found for ODD compared with CD, in which heritability
was 0.51 (95% CI =0.39-0.63) and common environment was
0.30 (95% CI=0.18-0.41). In addition, common environment
was significant for CD only. In the longitudinal study of Young
et al. [2009], twin pairs were assessed at 12 and 17 years of age
on both childhood and adolescent psychopathology and aggres-
sive traits (CBCL and TRF- externalizing behavior). They
reported smaller genetic 0.49 (95% CI=0.25-0.76) and non-
shared environmental 0.25 (95% CI =0.20-0.32) influences at
age 17 compared with age 12 (a*=10.70, 95% CI = 0.46—0.85;
e?=0.19, 95% CI=0.15-0.24). This AE model was linked to
structural stability of behavioral and response disinhibition
across adolescence, and this relationship was primarily genetic
in origin.

To conclude this section on developmental psychopathology in
childhood and adolescence, one large study in adolescents reported
an AE model with moderate genetic effects in conduct problems
[Schulz-Heik et al., 2010].

Aggressive psychopathology in older adolescents and adults.
Among the studies of CD or ODD, two also reported on Adult
Antisocial Behavior (AAB) [Hicks et al., 2009, 2013]. For AAB,
Hicks et al. [2009] reported strong genetic influences (95% CI
=0.65-0.79) and moderate non-shared environment influences
(95% CI =0.21-0.26). Across six environmental risk factors (low
academic achievement and engagement, antisocial peers, lack of
prosocial peers, mother-child relationship problems, father-child
relationship problems, stressful life events), genetic variance in
externalizing disorders increased in the context of greater environ-
mental adversity. This indicates that as environmental stress
increases genetic differences among young adults become more
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important in the etiology of externalizing disorders. Three studies
focused on adults with CD and AAB [Meier et al., 2011; Hicks et al.,
2013] and cluster B personality antisocial personality disorder
[Torgersen et al., 2012]. Hicks et al. [2013] focused on both
biological twins and non-biological siblings. They reported for
both CD and AAB moderate genetic (95% CI=0.35-0.52),
shared (95% CI=0.11-0.25) and non-shared environmental
influences (95% CI-0.34-0.42). Meier et al. [2011] reported
approximately two thirds of the variance explained by non-
shared environmental influences (95% CI = 0.63-0.74), followed
by genetic effects (95% CI=0.26-0.37) in CD regardless of
gender. No gender differences were reported for AAB for which
the non-shared environment explained two thirds of the vari-
ance followed by genetic influences. However, males showed
greater stability in antisocial behavior from childhood to adult-
hood. As for the study on cluster B personality [Torgersen et al.,
2012], one-third of the variance was explained by genetic
influences and two thirds by non- shared environment based
on interview measures of personality disorders. These findings
were method specific, since the magnitude of the genetic com-
ponent varied by type of interview compared to self-reported
questionnaires. Thus, differences in twin studies on AAB and
APD may be due to gender or to differences in measurement
methods.

Overall, the non-shared environmental effects are less strong
compared to genetic effects. Furthermore, a risk of bias arises in the
cited studies, given that the power to detect shared environmental
influences is often low in biometric analyses of twin data and these
studies assume that the environmental effects are free of influence
by genetic effects [Burt, 2013]. Therefore, results should be inter-
preted with caution.

Recent publications about twin data on aggression-related prob-
lems suggest that around 50% of the variance in aggressive
behavior may be explained by genetic influences. The non-shared
environment seems to have a moderate influence. With regard to
the shared environment, findings are mixed: About half of the
reviewed studies report no influence while other studies indicate
estimates between 0.15 and 0.35. The former is in line with a
previous review that showed the presence of only non-shared
environmental and genetic influences of 0.50 each [Tuvblad
and Baker, 2011]. Although a meta-analysis demonstrated in-
creased heritability estimates for externalizing with age [Bergen
et al., 2007], this pattern was not evident in the current review.
However, most of the included articles examined children and
adolescents, and only a few articles focused specifically on adults.
An effect of gender has occasionally been observed [Tuvblad
et al., 2009b; 2011; Meier et al., 2011; Lamb et al., 2012; Robbers
et al., 2012] but, for most studies, similar models for boys and
girls were suitable. Hence, heritability estimates may be compa-
rable between males and females despite the finding that aggres-
sion occurs more often in males, particularly direct, overt
aggression as opposed to relational aggression [Ligthart et al.,
2005]. Of note, genetic influences on aggressive behavior might
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depend on the environment, as gene-environment interaction
appears to play an important role.

The operationalization of the construct aggression differed
widely across the reviewed articles. Some researchers investigated
aggression as a trait in the general population while others focused
on DSM-based psychopathology, i.e. ODD, CD and AAB/APD.
Both the dimensional and the categorical approaches yielded
heritability estimates ranging from approximately 0.30 to 0.80.
Several studies found a latent factor of externalizing/antisocial
behavior with unique genetic or environmental influences on
specific forms of aggression [Bornovalova et al., 2010; Yeh et al.,
2010; Laheyetal., 2011; Tuvblad et al., 2011; Niv et al., 2013]. Thus,
alimitation of the current state of the field is that researchers do not
use common definitions with regard to aggression, which makes
it difficult to compare studies. Future studies may improve the
measurement of aggression by using dimensional constructs from
the RdoC framework, i.e. defensive aggression, offensive aggression
and frustrative non-reward (http://www.nimh.nih.gov/research-
priorities/rdoc/negative-valence-systems-workshop-proceedings.
shtml). These constructs are defined and will be continuously
refined based on multiple units of analysis, such as genes,
brain circuits and behavior, to better integrate clinical findings
with neuroscience [Sanislow et al., 2010; Cuthbert and Insel,
2013]. Discovering genes that are related to various aggression
dimensions is one step towards advanced understanding of
psychopathology.

Based on previous searches performed by Vassos et al. [2014] and
Gunter et al. [2010] we searched articles on PubMed using the
terms “(aggression OR aggressivity OR aggressive OR anger OR
hostility OR irritability OR violence OR convict* OR crimin* OR
offend” OR externalizing OR conduct OR antisocial OR impulsive
aggression OR psychopathy OR ODD OR oppositional defiant OR
callous unemotional) AND (genetics OR gene OR polymorphism
OR genotype OR allele OR genome OR haplotype)” to update their
searches from December 2009 until February 2015, with an output
of 7,202 articles. Subsequently, we filtered works written in English
language, performed in humans, including sample characteristics
and performing genetic association studies that had been published
as articles in scientific journals. We selected 268 potential articles
within this range of dates and some additional 263 articles from a
previous review [Gunter et al., 2010] and a meta-analysis [Vassos
et al., 2014]. From these 531 articles we selected those studies that
included traits related to aggression (aggressiveness, anger, exter-
nalizing behavior, impulsive aggression, criminality, violence or
delinquency), or diagnostic categories of ODD, CD, antisocial
behavior or ASPD, callous unemotional or psychopathy. Also,
we excluded studies assessing aggressive or antisocial traits in
drug use or dependence cohorts, or samples of other psychiatric
disorders (e.g. schizophrenia, bipolar disorder, major depression).
A total of 277 articles were finally considered for this review. Our
selection process is described in Figure 2.

Most association studies exploring the genetic susceptibility to
aggression have focused on candidate genes (candidate gene asso-
ciation studies, CGAS), especially those related to serotonergic and
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dopaminergic neurotransmission. Additionally, a few genome-
wide association studies (GWAS) have been performed and will
also be reviewed. These studies have used either trait measures of
aggression (Table II) or measures of aggression psychopathology
(Tables IIT and IV). Candidate gene association studies have often
rendered conflicting results, since in several cases associations were
identified with different alleles of the same variation or could not be
replicated in the same phenotype. In addition, many of the CGAS
were performed in small samples that often lead to false positive or
false negative findings due to lack of statistical power. Finally,
GWAS of aggression phenotypes have not identified genome-wide
significant associations so far. In consequence, results obtained
in previous association studies, either CGAS or GWAS, must be
taken with caution.

The MAOA and 5HTT genes have been studied quite extensively in
aggressive traits in children, adolescents and adults (Table II), and
also in diagnostic categories of aggression in children (Table III)
and adults (Table IV). MAOA encodes the enzyme monoamine
oxidase A, responsible for the catabolism of dopamine, serotonin
and other neurotransmitters. An upstream polymorphism con-
sisting of a variable number of tandem repeats (WWNTR) located in
the promoter region of the gene, with an effect on transcription, has
been extensively studied. In children, several studies identified the
uVNTR variants determining low gene expression levels associated
with aggression, anger, externalizing behavior and delinquency,
especially in high risk environments (maltreatment or low mater-
nal sensitivity) [Weder et al., 2009; Edwards et al., 2010; Pickles
etal., 2013]. In adolescents and young adults, low activity variants
were found associated with increased aggressive reactions, violent
delinquency and even the use of weapons, stabbing and shooting
[Guo et al., 2008; Kuepper et al., 2013; Beaver et al., 2010a,b, 2014).
In adults, many studies have associated the low activity variants
with aggression, impulsivity, hostility and violent criminal and
delinquent behaviors [Manuck et al., 2000, 2002; Eisenberger et al.,
2007; Frazzetto et al., 2007; Reif et al., 2007; Gallardo-Pujol et al.,
2013; Armstrong et al., 2014; Gorodetsky et al., 2014; Tiihonen
etal., 2014]. Only a few studies have failed to replicate these results
or have identified high activity variants as risk alleles for these
phenotypes [Huizinga et al., 2006; Yang et al., 2007; van der Vegt
et al., 2009; Perroud et al., 2010; Verhoeven et al., 2012]. Thus,
the bulk of the evidence indicates that low activity alleles of the
MAOA-uVNTR are probably associated with aggressive traits.
Interestingly, the MAOA gene has not been associated with CD
or ODD in children. Indeed, it has only been associated with
CD in the presence of an adverse childhood environment [Caspi
et al., 2002; Foley et al., 2004; Haberstick et al., 2005; Kim-Cohen
et al., 2006; Young et al., 2006; Prom-Wormley et al., 2009;
Qian et al., 2009; Wakschlag et al., 2010; Kieling et al., 2013].
Many studies assessing MAOA in adults identified associations
with antisocial behavior, conduct problems and psychopathy in the
presence of adverse childhood environment, most of them identi-
fying the shorter variant of the uVNTR as the risk allele [Lu et al.,
2003; Widom and Brzustowicz, 2006; Prichard et al., 2007; Fowler
etal., 2009; Williams et al., 2009; Beach et al., 2010; Derringer et al.,


http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml
http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml
http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml

14

AMERICAN JOURNAL OF MEDICAL GENETICS PART B

(n = 15866)

Records identified through
database searching

A

Records screened

(n=7202)

Dec 2009 - Feb 2015 >

Records excluded based
on title and abstract
(n=6934)

A 4

Articles published
before Dec 2009
added. From
references of

for eligibility
(n=531)

Full-text articles assessed

Full-text articles excluded

P

(in total n =254).

Reasons: Alzheimer (n=19),

Gunter et al (2010)
and Vassos et al
(2014)
(n=263)

A 4

Parkinson Disease (n=5),
Intellectual disabilities (n=4),
drug use or dependence (n=122),
other psychiatric disorders
(n=104)

Studies included
(n=277)

FIG. 2. Selection of publications for association studies review.

2010; Fergusson et al., 2011, 2012; Philibert et al., 2011; Reti et al.,
2011; McGrath et al., 2012; Sadeh et al., 2013; Byrd and Manuck,
2014; Ficks and Waldman, 2014; Haberstick et al., 2014].

Studies of the MAOA-uVNTR and aggression have usually been
restricted to males; since this is an X-linked gene. Because infor-
mation on the inactivation of the locus is not available, association
results are difficult to interpret in females. Other MAOA variants,
such as the single nucleotide polymorphisms (SNPs) rs5906957,
rs909525, rs6323, and rs2064070, have been associated with physi-
cal aggression in boys or anger in male adults [Antypa et al., 2013;
Pingault et al., 2013]. Also, another VNTR (10 bp) in this gene was
found associated with ASPD [Philibert et al., 2011].

The SLC6A4 or 5HTT gene, which encodes the serotonin
transporter, has been associated with several aggressive pheno-
types. A functional polymorphism in the promoter, called
SHTTLPR for 5HTT-Linked Polymorphic Region, has been asso-
ciated in children and adolescents with aggression, violence, de-
linquency and externalizing behavior, although with contradictory
results regarding the identity of the risk variant and the associated
genotypes [Zalsman et al., 2001; Cadoret et al., 2003; Gerra et al.,
2005; Beitchman et al., 2006; Haberstick et al., 2006; Hohmann
et al.,, 2009; Zimmermann et al., 2009; Aslund et al., 2013]. In

contrast, many studies of adults have found the short variant (S) of
S5HTTLPR to drive lower transcription levels of the gene and to be
associated with aggression, anger, hostility, neuroticism, violence
and criminality [Greenberg et al., 2000; Liao et al., 2004; Retz et al.,
2004; Verona et al., 2006; Reif et al., 2007; Gonda et al., 2009;
Sysoeva et al., 2009; Conway et al., 2012; Gyurak et al., 2013; Lopez-
Castroman et al., 2014].

The shorter variant of SHTTLPR has been associated with
conduct problems and CD [Sakai et al., 2006, 2007, 2010; Brody
etal, 2011]. The SHTTLPR has been associated with psychopathy
and antisocial behavior, although with conflicting results [Fowler
et al.,, 2009; Garcia et al., 2010; Sadeh et al., 2013; Ficks and
Waldman, 2014].

SNP 1525531 modifies the transcription of SHTTLPR: The
long SHTTLPR allele with a G (Lg) at rs25531 drives low
transcription levels, similar to the short allele (S), whereas the
La allele at rs25531determines higher transcription levels. This
could explain contradictory association results. Beitchman et al.,
[2006] considered this SNP when analyzing SHTTLPR geno-
types, identifying association between lower transcription geno-
types (S/S, S/Lg and Lg/Lg) and childhood aggression [Beitchman
et al., 2006].
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Gene symbol Gene name
Children and
adolescents
AVP Arginine vasopressin
AVPR1A Arginine vasopressin receptor
1A
AVPR1B Arginine vasopressin receptor
1A
BDNF Brain-derived neurotrophic
factor
CHRM2 Cholinergic receptor,
muscarinic 2
CYP19 Cytochrome P450, family 19
DRD?2 Dopamine receptor D4
DRD4 Dopamine receptor D4
MAOQA Monoamine oxidase A
ESR1 Estrogen receptor 1
LRRC? Leucine rich repeat
containing 7
OXTR Oxytocin receptor
SLC6A4 Solute carrier family 6
(SHTT) (neurotransmitter
transporter], member 4
(serotonin transporter)
SLCBA3 Solute carrier family 6
(DAT1) (neurotransmitter
transporter), member 3
(dopamine transporter)
SLIT2 Slit homolog 2 (Drosophila)
STIP1 Stress-induced
phosphoprotein 1
Adults
AR Androgen receptor
ABCG1 ATP-binding cassette, sub-
family G (WHITE), member
1
AKAPS A kinase (PRKA) anchor
protein 5
ANK3 Ankyrin 3, node of Ranvier
(ankyrin G)
CDH13 Cadherin 13
CHRM2 Cholinergic receptor,

muscarinic 2
coMT Catechol-0-
methyltransferase

CRHR1 Corticotropin releasing
hormone receptor 1
CYP2D6 Cytochrome P450, family 2,

subfamily D, polypeptide 6

Phenotype

Aggression
Aggression

Aggression
Aggressive behavior
Externalizing behavior

Externalizing behavior

Aggressive behavior and violent
delinquency

Aggression, externalizing
behavior and delinquency

Aggression, anger, externalizing
behavior, delinquency and
use of weapons

Anger
Aggressive behavior

Aggression

Aggression, violence,
delinquency and
externalizing behavior

Externalizing behavior,
pathological violence,
serious delinquency and
criminal conduct

Anger

Aggressive behavior

Violent criminal behavior,
aggression, impusivity and
neuroticism

Aggression and anger

Anger

Externalizing behavior

Violent behavior
Externalizing behavior

Aggression, externalizing and
anger

Aggressive behavior

Aggression

Study
CGAS
CGAS
CGAS
CGAS
CGAS

CGAS
CGAS

CGAS

CGAS

CGAS
GWAS

CGAS
CGAS

CGAS

CGAS
GWAS

CGAS

CGAS

CGAS
CGAS

CGAS
CGAS

CGAS
CGAS

CGAS

15

References

Malik et al. [2014]
Malik et al. [2014]

Zai et al. [2012b]; Luppino et al. [2014]
Kretschmer et al. [2014]; Musci et al. [2014]
Dick et al. [2011]; Latendresse et al. [2011]

Miodovnik et al. [2012]
Guo et al., [2007]; Zai et al., [2012a]

Nobile et al. [2007]; Hohmann et al. [2009];
Dmitrieva et al. [2011]; Buchmann et al.
[2014]; Farbiash et al. [2014];

Schlomer et al. [2015]

Beaver et al. [2014]; Edwards et al. [2010];
Guo et al. [2008]; Pickles et al. [2013];
Pingault et al. [2013]; van der Vegt et al.
[2009]; Weder et al. [2009]

Vermeersch et al. [2013]

Mick et al. [2011]

Malik et al. [2012, 2014]

Aslund et al. [2013]; Beitchman et al. [2006];
Cadoret et al. [2003]; Gerra et al. [2005];
Haberstick et al. [2006]; Hohmann et al.
[2009]; Zalsman et al. [2001];
Zimmermann et al. [2009]

Beaver et al. [2008]; Chen et al. [2005];

Guo et al. [2007]; Young et al. [2002]

Sokolowski et al. [2010]
Mick et al. [2011]

Aluja et al. [2011]; Cheng et al. [2006];
Jonsson et al. [2001]; Rajender et al. [2008];
Westberg et al. [2009]

Gietl et al. [2007]

Richter et al. [2011]

Logue et al. [2013]

Tiihonen et al. [2014]
Dick et al. [2008]

Kulikova et al. [2008]; Perroud et al. [2010];
Shehzad et al. [2012]

Chen et al. [2014]

Gonzalez et al. [2008]

(Continued)



16

AMERICAN JOURNAL OF MEDICAL GENETICS PART B

(Continued)
Gene symbol Gene name Phenotype Study References

DARPP32 Protein phosphatase 1, Anger CGAS Reuter et al. [2009]
regulatory (inhibitor)
subunit 1B

DBH Dopamine beta-hydroxylase Aggressive hostility, impulsivity CGAS Hess et al. [2009]
(dopamine beta- and neuroticism
monooxygenase)

FYN FYN proto-oncogene, Src Anger GWAS Mick et al. [2014]
family tyrosine kinase

HTR1B 5-hydroxytryptamine Aggressive behavior, anger and CGAS Conner et al. [2010]; Hakulinen et al. [2013];
(serotonin] receptor 1B, G hostility Zouk et al. [2007]
protein-coupled

HTR2A 5-hydroxytryptamine Aggression, anger, hostility and CGAS Banlaki et al. [2015]; Berggard et al. [2003];
(serotonin] receptor 2A, G criminality Dijkstra et al. [2013]; Giegling et al. [2006];
protein-coupled Keltikangas-Jarvinen et al. [2008]

MADA Monoamine oxidase A Aggression, impulsivity, CGAS Antypa et al. [2013]; Armstrong et al. [2014];
hostility, use of weapons Beaver et al. [2010a,b]; Eisenberger et al.
and violent criminal and [2007]; Frazzetto et al. [2007]; Gallardo-Pujol
delinquent behaviors et al. [2013]; Gorodetsky et al. [2014]; Kuepper

et al. [2013]; Manuck et al. [2000]; Manuck
et al. [2002]; Reif et al. [2007]; Tiihonen et al.
[2014]; Verhoeven et al. [2012]
NOS1 Nitric oxide synthase 1 Impulsive aggressivity and CGAS Reif et al. [2009]; Retz et al. [2010]; Rujescu et al.
(neuronal) aggression [2008]
NOS3 Nitric oxide synthase 3 Aggressive behavior CGAS Rujescu et al. [2008]
(endothelial cell)
SLC6A4 Solute carrier family 6 Aggression, anger, hostility, CGAS Conway et al. [2012]; Gonda et al. [2009];
(SHTT) (neurotransmitter neuroticism, violence and Greenberg et al. [2000]; Gyurak et al. [2013];
transporter), member 4 criminality Liao et al. [2004]; Lopez-Castroman et al.
(serotonin transporter) [2014]; Reif et al. [2007]; Retz et al. [2004];
Sysoeva et al. [2009]; Verona et al. [2006]

TBX19 T-box 19 Angry hostility CGAS Wasserman et al. [2007]

TH Tyrosine hydroxylase Angry hostility and neuroticism CGAS Persson et al. [2000]

TPH1 Tryptophan hydroxylase 1 Aggression, aggressive CGAS Evans et al. [2000]; Hennig et al. [2005];
behavior, anger and violence Manuck et al. [1999]; Reuter and Hennig

[2005]; Rotondo et al. [1999]; Rujescu et al.
[2002]; Yang et al. [2010]
TPH2 Tryptophan hydroxylase 2 Anger CGAS Ke et al. [2006]; Mann et al. [2008];

CGAS, Candidate gene association study; GWAS, Genome-wide association study.

Several meta-analyses have evaluated the contribution of the

Yang et al. [2010]; Yoon et al. [2012]

MAOA-uVNTR and 5HTTLPR to aggressive behavior. Vassos
etal. [2014] assessed these two variants, among others, in a total
of 31 genes, and did not observe any significant contribution to
the phenotype for any of the variants assessed. Heterogeneity
(I?) for the uVNTR and LPR was higher than 50% (P < 0.01).
In contrast, the meta-analysis of Ficks and Waldman [2014]
identified an association between aggressive behaviors and
the low activity alleles of the MAOA-uVNTR (OR=1.14;
P=1.37e-06) and the short allele of the 5SHTTLPR (OR =1.52;
P=7.59¢-11). Also, Byrd and Manuck [2014] found the low
activity alleles of the MAOA-uVNTR to be associated with
aggressive behaviors in the presence of childhood maltreatment
(P=8e-07).

Association studies assessing aggressive traits in children and
adolescents have also considered other candidate genes
(Table II). Thus, a 48-bp VNTR polymorphism in intron 3 of
DRD4, encoding the dopamine receptor D4, has been studied.
Carriers of the 7-repeat (7R) allele showed higher levels of
aggression, externalizing behavior and delinquency [Nobile
et al, 2007; Hohmann et al., 2009; Dmitrieva et al., 2011;
Buchmann et al., 2014; Farbiash et al., 2014; Schlomer et al.,
2015]. Interestingly, an epistatic effect of this allele and the S
allele of SHTTLPR has been reported for aggressive and delin-
quent behavior [Hohmann et al, 2009]. Also, polymorphic
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Gene symbol
RBFOX1 (A2BP1)

ADH1C

BONF

MYRFL (C120rf28)

COMT

DRD4

KIAA2012
(FLJ39061)

HTR1B

HTR2A

KIRREL

RPS24P4

(LOC729257)
MAOA

MFHAS1
OXTR
PAWR
PKD1L2

PKD1L3
RGL1

RIT1
ROBO2
SLCBAL (GAT1)

SLCBA4 (SHTT)

SLCGA3 (DAT1)

Gene name

RNA binding protein, fox-1 homolog

(C. elegans] 1
Alcohol dehydrogenase 1C

(class 1), gamma polypeptide
Brain-derived neurotrophic factor
Myelin regulatory factor-like
Catechol-0-methyltransferase

Dopamine receptor D4
KIAA2012

5-hydroxytryptamine (serotonin)
receptor 1B, G protein-coupled

5-hydroxytryptamine (serotonin)
receptor 2A, G protein-coupled

Kin of IRRE like (Drosophila)

Ribosomal protein S24 pseudogene 4

Monoamine oxidase A

Malignant fibrous histiocytoma
amplified sequence 1
Oxytocin receptor

PRKC, apoptosis, WT1, regulator

Polycystic kidney disease 1-like 2
(gene/pseudogene)

Polycystic kidney disease 1-like 3

Ral guanine nucleotide dissociation
stimulator-like 1

Ras-like without CAAX 1

Roundabout, axon guidance receptor,
homolog 2 (Drosophila)

Solute carrier family 6
(neurotransmitter transporter),
member 1 (GABA transporter)

Solute carrier family 6
(neurotransmitter transporter),
member 4 (serotonin transporter)

Solute carrier family 6
(neurotransmitter transporter),
member 3 (dopamine transporter)

Phenotype
Conduct problems and CD

CD

0DD and CU
Conduct problems
CD

CD, ODD and CU
Conduct problems
CD and CU

Cu

Conduct problems
Conduct problems

CD and ODD with adverse
childhood environment

cD

CD and CU
Conduct problems
Conduct problems

Conduct problems
Conduct problems

CD
Cu
CD

CD and conduct problems

0DD and conduct problems

Study
GWAS

GWAS
CGAS
GWAS
CGAS
CGAS
GWAS
CGAS
GWAS
CGAS

GWAS
GWAS

CGAS

GWAS
CGAS
GWAS
GWAS

GWAS
GWAS

GWAS
GWAS
GWAS

CGAS

CGAS
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variants within the dopamine transporter gene (SLC6A3 or DAT)
and the dopamine receptor 2 gene (DRD2) have also been
associated with aggressive behavior, externalizing behavior, vio-
lence, criminal conduct and violent delinquency in children and
adolescents [Young et al., 2002; Chen et al., 2005; Guo et al.,

2007; Beaver et al., 2008; Zai et al., 2012a].

The genes for vasopressin and for the oxytocin and vasopressin
receptors (AVP, OXTR, AVPRIA and AVPRIB) have been associ-
ated with aggression in children [Malik et al., 2012, 2014; Zai et al.,
2012b; Luppino et al.,, 2014]. Oxytocin and vasopressin encode
neurohypophysial hormones with primary roles in sexual repro-

duction and in water retention, respectively, but they have also
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Gene symbol Gene name Phenotype Study References
AR Androgen receptor Antisocial behavior CGAS Prichard et al. [2007]
BDNF Brain-derived neurotrophic factor psychopathy CGAS Kourmouli et al. [2013]
DYRK1A Dual-specificity tyrosine-(Y)- Antisocial behavior GWAS Tielbeek et al. [2012]
phosphorylation regulated kinase 1A
ESR1 Estrogen receptor 1 Antisocial behavior, neuroticism CGAS Prichard et al. [2007]; Westberg et al. [2003]
and psychoticism
HTR2A 5-hydroxytryptamine (serotonin) Antisocial behavior CGAS Burt and Mikolajewski [2008]
receptor 2A, G protein-coupled
MAOA Monoamine oxidase A Antisocial behavior, conduct CGAS Beach et al. [2010]; Byrd and Manuck [2014];
problems and psychopathy Derringer et al. [2010]; Fergusson et al.
[2012]; Fergusson et al. [2011]; Fowler
et al. [2009]; McGrath et al. [2012];
Philibert et al. [2011]; Reti et al. [2011];
Sadeh et al. [2013]; Williams et al. [2009]
NR4A2 Nuclear receptor subfamily 4, group A, Antisocial behavior CGAS Prichard et al. [2007]
member 2
SLCBA4 (SHTT) Solute carrier family 6 Psychopathy and antisocial CGAS Ficks and Waldman [2014]; Fowler et al.
(neurotransmitter transporter), behavior [2009]; Garcia et al. [2010]; Sadeh et al.
member 4 (serotonin transporter) [2013]
SNAP25 Synaptosomal-associated protein, Antisocial personality disorder CGAS Basoglu et al. [2011]
25kDa
TFAP2B Transcription factor AP-2 beta Antisocial behavior CGAS Prichard et al. [2007]

(activating enhancer binding protein
2 beta)

CGAS, candidate gene association study; GWAS, genome-wide association study.

been related with different behavioral traits. Associations with
other less studied genes were identified in children and adolescent
samples, such as BDNF with aggressive behavior [Kretschmer et al.,
2014; Musci et al., 2014], CHRM?2 and CYP19 with externalizing
behavior [Dick et al., 2011; Latendresse et al., 2011; Miodovnik
etal., 2012] or SLIT2 and ESRI with anger [Sokolowski et al., 2010;
Vermeersch et al., 2013].

Candidate gene association studies evaluating CD and ODD in
children and adolescents have also considered other genes related
to serotonergic and dopaminergic neurotransmission (Table III).
The COMT Val/Val genotype of the p.Vall58Met polymorphism
was found associated with CD [Caspi et al., 2008; Qian et al., 2009;
DeYoung et al.,, 2010]. COMT encodes the enzyme cathecol-o-
methyltransferase, involved in the degradation of dopamine, epi-
nephrine and norepinephrine. Also, the DRD4-7R allele was found
associated with ODD, CD and callous unemotional (CU) traits
[Kirley et al., 2004; Nikitopoulos et al., 2014; Zohsel et al., 2014].
DAT has been associated with ODD and conduct problems [Lee
et al,, 2007; Burt and Mikolajewski, 2008]. The genes for the
serotonergic receptors HTRIB and HTR2A have been associated
with CD and CU [Jensen et al., 2009; Moul et al., 2013]. Several
variants within the OXTR gene have been associated with CD and
CU [Beitchman et al., 2012; Malik et al., 2012; Sakai et al., 2012;
Dadds et al., 2014; Smearman et al., 2015]. Also, associations have
been described for BDNF with ODD and CU [Willoughby et al.,
2013].

Association studies with aggression traits in adults are summarized
in Table II. The Val/Val genotype of the p.Val158Met (rs4680G>A)
polymorphism in the COMT gene has been associated with ag-
gression, externalizing behavior and anger. It has also been found to
moderate the influence of childhood sexual abuse in these traits
[Kulikova et al., 2008; Perroud et al., 2010; Shehzad et al., 2012].
However, other studies did not replicate these results [Flory et al.,
2007; Kang et al., 2008; Albaugh et al., 2010]. Several associations
have been reported for the serotonin receptor genes HTRIB and
HTR2A in adult samples. [Berggard et al., 2003; Giegling et al.,
2006; Zouk et al., 2007; Keltikangas-Jarvinen et al., 2008; Conner
et al., 2010; Dijkstra et al., 2013; Hakulinen et al., 2013; Banlaki
et al., 2015], but no significant associations were identified for
HTRIA or HTR2C [Serretti et al., 2007; Keltikangas-Jarvinen et al.,
2008; Perroud et al., 2010]. No consistent results were obtained for
TPHI and TPH2 genes in the susceptibility to aggressive behaviors
[Manuck et al., 1999; Rotondo et al., 1999; Evans et al., 2000;
Rujescu et al., 2002; Hennig et al., 2005; Reuter and Hennig, 2005;
Mann et al., 2008; Yang et al., 2010; Yoon et al., 2012]. Associations
with the nitric oxide synthase genes NOSI and NOS3 have been
reported for aggressive behaviors [Rujescu et al., 2008; Reif et al.,
2009; Retz et al., 2010]. An androgen receptor (AR) haplotype has
been associated with aggression, impulsivity, violent criminal
behavior and neuroticism, mostly in adult males [Jonsson et al.,
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2001; Cheng et al., 2006; Rajender et al., 2008; Westberg et al., 2009;
Aluja et al., 2011]. Other less studied genes in adult samples are:
ABCGI1, AKAP5, ANK3, CDHI13, CHRM?2, CRHRI, CYP2De,
DARPP32, DBH, TBX19, and TH. These have been associated
with aggressive behaviors in one or a few studies [Persson et al.,
2000; Gietl et al., 2007; Wasserman et al., 2007; Dick et al., 2008;
Gonzalez et al., 2008; Hess et al., 2009; Reuter et al., 2009; Richter
et al,, 2011; Logue et al., 2013; Chen et al., 2014; Tiihonen et al.,
2014].

Only a few association studies have been performed for antiso-
cial behavior and psychopathy (Table IV). Studies in which anti-
social behavior was assessed in alcoholic individuals or as an
outcome of drug use are not considered here. Other less studied
genes showed association with antisocial behavior, conduct prob-
lems or psychopathy in adults are the ones encoding the androgen
receptor (AR) and the estrogen receptor 1 (ESRI), and also BDNF,
HTR2A, NR4A2, SNAP25 and TFAP2B [Westberg et al., 2003;
Prichard et al., 2007; Burt and Mikolajewski, 2008; Basoglu et al.,
2011; Kourmouli et al., 2013].

GWAS studies of aggression have highlighted genes involved in
synaptic plasticity, which had previously not been assessed by any
candidate gene association study (Tables II-IV). None of the
association signals reached genome-wide significance, but sugges-
tive associations at P < 1e-05 will be discussed. Two GWAS have
been performed on aggressive traits (Table IT). Mick et al. identified
several genes that were nominally associated with aggressive be-
havior scores in children, such as LRRC7 and STIPI. These genes
are involved in neuronal excitability and astrocyte differentiation,
respectively [Mick et al., 2011]. Another GWAS was performed in
adults and identified 11 nominal association signals with anger
(P< 1e-05). The most significant association was found with the
FYN gene, involved in calcium influx and release in the post-
synaptic density and also in long-term potentiation [Mick et al.,
2014]. The long-term potentiation pathway could play a role in
aggressive behaviors both in children and in adults, since FYN,
LRRC7 and STIPI, as well as other nominally associated genes in
the children GWAS, such as BDNF, NTRK2, and CAMK2A, are
mediators in this pathway [Mick et al., 2011, 2014]. Another study
assessed hostility in adolescents and in adult males and identified
several SNPs that showed nominal associations with anger, some of
them in the PURG and SHISA6 genes. However, little is known
about the function of these genes [Merjonen et al., 2011].
GWAS studies in children have been performed for CD and CU
traits (Table III). Anney et al. performed a family-based genome-
wide study and identified nine genes that were associated
with conduct problems: A2BPI1, cI20rf28, FLJ39061, KIRREL3,
LOC729257, PAWR, PKD1L2, PKDI1L3, and RGLI [Anney et al.,
2008]. A2BP1 and KIRREL3 encode proteins involved in neuron
development and synaptic plasticity, respectively, and PAWR
participates in the regulation of dopamine receptor D2 signaling.
However, little is known about the function of the other genes
in the brain. Another GWAS studied the interaction between
genes and environmental risk factors (GxE). It found nominal
associations between CD and mother’s warmth interacting with
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several variants in five genes: RIT1, ADHIC, SLC6A1, A2BP1, and
MFHAS]I [Sonuga-Barke et al., 2008]. SLC6A1 codes for a GABA
transporter, and the proteins encoded by RITI and A2BPI are
involved in neuronal development and regeneration. Interestingly,
the latter also shows suggestive associations with CD the GWAS
discussed above [Anney et al., 2008]. Hamshere et al. performed a
meta-analysis of ADHD GWAS data and observed that polygenic
risk for ADHD was higher in ADHD with CD, and that was mainly
associated with aggression [Hamshere et al., 2013].

Regarding CU, Viding et al. performed a two-stage GWAS,
identifying several suggestive associations. Some SNPs that were
associated with psychopathic traits in the discovery sample (all of
them showing 0le-05 < P < 0.05) and that were nominally repli-
cated were located in neurodevelopmental genes, such as ROBO2
[Viding et al., 2010]. One of the genes within the top-30 list is
close to the serotonin receptor HTRIB, which had previously
been found associated with CU traits, CD, childhood aggressive
behavior, impulsive aggression, anger and hostility [Zouk et al.,
2007; Jensen et al., 2009; Conner et al., 2010; Hakulinen et al., 2013;
Moul et al., 2013].

Finally, a GWAS that assessed antisocial behavior in adults
(Table IV) identified association with DYRKIA, which encodes
a kinase with a role in synaptic plasticity and brain development
[Tielbeek et al., 2012].

Both CGAS and GWAS approaches have identified potential
susceptibility genes for aggressive behaviors. Candidate gene stud-
ies have focused mainly in dopaminergic and serotonergic genes
and have identified several associations in these (MAOA, 5HTT,
HTRIB, HTR2A, DAT, DRD2, DRD4, etc.) and other systems (e.g.,
hormone-related genes like ESR1, AR, AVP or OXTR). However,
most of these associations showed contradictory results or were
identified in underpowered samples. Thus these results should be
interpreted with caution. On the other hand, genome-wide studies,
although not reaching genome-wide significance, have highlighted
genes involved in neurodevelopmental processes and synaptic
plasticity, not previously considered in candidate gene studies.
This may indicate that aggressive behavior does not only involve
neurotransmitters or hormonal functions, but also molecules
involved in establishing neuronal circuits, neuron-to-neuron con-
nectivity and brain plasticity.

The lack of genome-wide significant findings in the GWAS and
the variable results obtained from many of the GCAS is likely due to
the small sample sizes of these studies and also to clinical and
etiological heterogeneity of the patient groups studied. When
assessing aggression-related phenotypes it may be relevant to
separate the different phenotypes into more homogeneous groups
(e.g., reactive versus proactive aggression) rather than considering
them as a whole, since variability in the causes of each type of
aggressive behavior may dilute genetic susceptibility effects. In this
review we have considered only those data obtained from studies in
which aggressive behaviors could not be attributed to other psy-
chiatric conditions, such as drug dependence, bipolar disorder or
schizophrenia. For instance, a recent meta-analysis of violent or
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aggressive behaviors considered 277 associations in 31 genes and
did not find any significant result, although GxE interactions
were not considered. However, this meta-analysis included data
from studies with very different phenotypic traits, psychiatric and
neurological disorders, and probably that may have prevented
from identifying significant associations [Vassos et al., 2014].
On the other hand, other meta-analyses identified associated
the MAOA-uVNTR and 5HTTLPR polymorphisms [Byrd and
Manuck, 2014; Ficks and Waldman, 2014].

Aggression is an evolutionarily conserved behavior that has been
studied in many non-human species. This section of the review
focuses on four species of animal models that have helped tremen-
dously to shape the basis of our current understanding of neuro-
biological and molecular mechanisms underlying aggression: avian
models, zebrafish, rodents and drosophila models. We particularly
emphasize the utilities and potential of these animal model organ-
isms for future genetic studies of aggression.

As one of the earliest species used to study the biological basis of
aggression, songbirds, demonstrate rich social behaviors such as
territoriality, flock hierarchies and male dominance, as well as
breeding and parenting behaviors. Most studies focused on offen-
sive behavior associated with territoriality. Defensive behaviors
have been studied using intruders or subordinate birds. Study of
songbirds behavior and their hormonal and neuronal correlates
have shaped our basic understanding of aggressive behavior
including, for example, the roles of plasma testosterones and
hypothalamo-pituitary-gonadal (HPG) axis (see reviews [Adkins-
Regan, 2005; Maney and Goodson, 2011]), and the serotonin and
dopamine systems. In contrast to the large amount of behavioral,
neurochemical and endocrine studies of songbirds over the last
several decades, dissecting the genetic underpinnings of aggression
has been scarce.

A naturally occurred segregation of high vs. low aggression with
a plumage polymorphism in white-throated sparrow offers a
unique opportunity for identifying causal genetic factors respon-
sible for aggressive songbird phenotypes [Thorneycroft, 1966;
Ficken et al., 1978]. Half of white-throated sparrows are heterozy-
gous carriers of a rearranged chromosome 2 (ZAL2™); they have a
white stripe in the crown and show high aggressive and poor
parenting behaviors. Another half are homozygous for wild-type
chromosomes (ZAL2); they are less aggressive, show normal
parenting and have a tan stripe in the crown. Heterozygotes almost
always mate with wild-type birds, which maintains the population
structure. Horton et al reported a behavioral characterization of a
homozygote female, demonstrating extremely aggressive and dom-
inating behavior and supporting the causal role of rearranged
chromosome 2 in increased aggression [Horton et al., 2013].
However, it has taken nearly 30 years after the discovery of this
phenotype to describe causal genes and variants in the affected
regions [Davis et al., 2011; Huynh et al., 2011]. Among them a
prime candidate gene is estrogen receptor 1(ESR1), in which
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promoter polymorphisms linked with the rearranged chromosome
were shown to regulate brain region-specific expression of ESR1
which was correlated with aggressive behavior [Horton et al.,
2014].

Rodents, including mouse, rat, hamster and prairie vole, are well-
studied models for aggressive behavior due to controlled breeding,
and their rich repertoire of species-specific social behaviors.
Similar to many birds, rodents are also territorial. Adult male
mice or rats will establish a territory when given sufficient living
space and attack unfamiliar males intruding in their home cage.
The intruders will show defensive behaviors in response to the
offensive attacks by the resident. In this classic resident-intruder
test setting, both offensive aggression (resident) and defensive
behavior (intruder) can be studied [Mineur and Crusio, 2002].
Usually, the latency to initiate the first attack from the resident
from the first sniff of the opponent is indicative of the aggres-
siveness of the resident.

Variations of the resident-intruder test are often used to evaluate
the factors influencing aggressive behavior. For example, social
isolation (individual housing from days to weeks) can increase
offensive aggression of male mice towards group-housed strangers
[DaVanzo et al., 1986]. However isolation can also induce timidity
in a small but considerable percentage of mice, which show alert
and defensive postures, and behaviors such as running away, non-
agonistic social interactions rather than delivering attack bites
[Krsiak, 1975; DaVanzo et al., 1986]. The difference in social
isolation induced abnormal aggressive behavior in mice provides
amodel to study underlying genetic, hormonal and environmental
factors. For example, cannabinoid CB1 receptor (CB1r) knockout
mice showed lack of isolation-induced aggression, which was
associated with higher expression of 5HTI1Br, COMT and
MAO-A in amygdala [Rodriguez-Arias et al, 2013]. Social
isolation also disrupts immune function and enhances agonistic
behavior in prairie voles [Scotti et al., 2015]. Social-isolated rats
show hyper- aroused behavior during aggressive contacts, respond
inappropriately to species-typical social cues and attack more
aggressively by aiming at vulnerable body parts such as head,
throat and belly. The enhanced abnormal aggressive behavior
was associated with significantly increased activation of brain
regions that are known to regulate inter-male aggression in rats
[Toth et al., 2012].

For female mice or rats, a well-studied aggressive behavior is
maternal aggression. Female mice show enhanced aggression dur-
ing the first two weeks of the post-partum period. The lactating
female will attack male and female intruders to protect her litter.
The attack bites of dominant females are usually directed towards
the head and snout of opponents [Miczek et al., 2001]. These
offensive attacks are usually fast and rarely preceded by anogenital
investigation or threats; although sniffing the intruder’s genital
area after an attack is also considered offensive aggressive behavior.
Sometimes, highly aggressive females will attack this vulnerable
part. Maternal aggressive behavior can also be defensive, for
example piloerection and an upright posture in front of the
intruder, boxing and holding down the intruder with her front
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legs, etc [Bosch and Meddle, 2005]. Neural manipulation studies
showed that disrupting offensive attacks may not affect defensive
expressions and vice versa, suggesting that the two categories of
maternal aggressive behavior are neurobiologically dissociable
domains. However, some argued that all maternal aggression
can be collectively categorized as defensive because the ultimate
goal of such behavior was to defend and protect the litter [Lonstein
and Gammie, 2002]. Lonstein et al. thoroughly reviewed the neural
circuitry underlying the maternal aggression and the sensory,
hormonal and neurochemical control of the behavior [Lonstein
and Gammie, 2002]. A large number of studies have evaluated the
roles of neuropeptides such as oxytocin, vasopressin and opioid,
neurotransmitter systems such as dopamine, serotonin, GABA, as
well as corticotrophin releasing hormone and nitric oxide in
contributing to the presentation of maternal aggression in rodents
(reviewed [Lonstein and Gammie, 2002].

Noxious and painful stimuli (for example electric shock) have
been used to induce aggressive bites in rodents, even in non-
aggressive strains. However, the validity of such approaches is
questioned in regard to human aggression. The tube dominance
test is another standardized laboratory test that is commonly used
to measure aggression and social dominance in rodents [Lindzey
et al., 1961]. The test employs a transparent tube that allows two
animals (mice or rats) to enter from opposite ends face to face and
to interact in the center. Dominant animals will force the opponent
to completely retreat from the tube. The numbers of winning vs.
losing interactions are indicative of the dominance status. Defen-
sive burying refers to a stereotypical response in rodents to a
noxious stimuli (such as an electric shock-probe), demonstrated
by shoving bedding material to bury the threats. Behaviors ob-
served in a standardized shock-probe/defensive bury test such as
burying, freezing, rearing, grooming and exploration are often used
to measure anxiety levels and different coping strategies that are
correlated with aggression phenotypes.

Strain differences in rodents (particularly mice) have clearly
shown that aggressive phenotypes are inherited. Several genetic
tools have been developed for rodent models to study the molecular
and biological mechanisms underlying aggressive behavior. The
earliest one was artificial breeding. Using standardized behavioral
testing paradigms, artificial selective breeding was carried out to
produce contrasting inbred strains with high vs. low aggression
scores. These inbred strains include the Finland Turku aggressive
(TA) and non-aggressive (TNS) strains [Sandnabba, 1996], the
North Carolina NC900 and NC100 strains [Caramaschi et al.,
2007], and the Netherlands short attack latency (SAL) and long
attack latency (LAL) mice [van Oortmerssen and Bakker, 1981].
Cross-fostering and the post-natal environment do not alter the
development of aggression in these mouse lines, further supporting
the genomic etiology of their aggression. The TA and TNS lines
demonstrated Mendelian segregation and autosomal inheritance
[Sandnabba, 1996]. The Y chromosome was found to play a role in
the difference of attack latencies between the SAL and LAL lines
[Sluyter et al., 1995; Sluyter et al., 1997]. Several naturally devel-
oped inbred lines with different levels of aggression were also
recognized as useful models for studying the genetics of aggression.
For example, the FVB/NtacfBR male shows more aggression
toward females when compared with C57BL/6] males [Canastar
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and Maxson, 2003]; the NZB/BIN]J strain shows extremely high
inter-male aggression, whereas A/J mice rarely show any aggressive
behavior [Roubertoux and Guillot, 2005]. A useful summary of
commonly used inbred mouse lines was provided by Crawley et al.
who compared a wide variety of behavioral traits including aggres-
sion, anxiety and parental behaviors based on an extensive litera-
ture review [Crawley et al., 1997].

Like the studies of songbirds, studies of these inbred strains in
the past three decades have helped our understanding of neural
circuitry, hormonal and neurochemical correlates for different
domains of aggressive behavior. See reviews [Miczek et al.,
2001]. However, identification of causal genetic determinants
has not been fruitful. A few attempts have been made to identify
quantitative trait loci (QTLs) underlying differences in aggressive
phenotypes between inbred lines. QTL analysis showed that ag-
gressive attacks measured in different testing conditions, for ex-
ample the inter-male aggression and isolation induced aggression,
have overlapping, yet different genetic contributions [Roubertoux
and Guillot, 2005]. This observation supports the distinction of
different domain/categories of aggressive behavior and highlights
the complexity of underlying genetic causality. However, we
are still far away from pinpointing the causal genes within
these QTL regions which often contain hundreds of genes. New
analytic methodologies have recently been used to uncover such
complex genetic causes of aggression. Malki et al. [2014] used a
weighted gene co-expression network analysis (WGCNA) method
to examine transcriptome-wide differences between the three
inbred mouse lines with high vs. low aggression levels. They
uncovered two important pathways involving NF-kB and
MAPKs. The study also yielded 14 differentially expressed genes
from the two significant pathways as plausible candidates and
some of them, such as Adrbk2, had previously been implicated
in aggressive behavior. Since gene expression is an unbiased
approach, identifying previously implicated candidate genes con-
firms the biological relevance of those co-expression networks
in mouse aggressive phenotypes. Although we still have not pin-
pointed the genetic determinants underlying the differences in
aggression between those inbred models, we are one step closer
towards understanding the complex genetic networks that are
underlying the phenotypes.

Another useful genetic approach is single gene manipulation,
i.e., transgenic and gene knockout or mutations, particularly in
mice. A detailed review of earlier genetic knockout studies
has been provided elsewhere [Takahashi and Miczek, 2014].
We performed an updated PubMed search using keywords of
“Knockout AND (Mice OR Mouse) AND ((aggressive behavior)
OR aggression)” and retrieved 265 articles on non-human animals.
After filtering through title, abstract and full texts, we summarized
85 genes that altered one or more subtypes of aggressive behavior in
knockout mice (or were silenced by siRNA, see Table V). Many
of these genes regulate sensory, hormonal and neurochemical/
neurotransmitter systems and neurodevelopmental processes. KO
mice phenotype information can also easily searched through
databases such as Mouse Phenome Database at The Jackson
Laboratory and currently ~50 strains of mutant mice with abnor-
mal aggressive behavior are available from the Jackson Laboratory
inventory.
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In this section, we give some classical examples and highlight
the advantages and limitations of the single gene approach. For
example, gene knockouts of 5-HT neuron-specific transcription
factor Pet-1 or tryptophan hydroxylases 2 (TPH2) lead to enhanced
offensive aggression in resident-intruder tests accompanied by
reduced 5-HT content or 5-HT neural activities [Hendricks
et al., 2003; Alenina and Kikic, 2009; Angoa-Perez et al., 2012;
Mosienko et al., 2012]. Knockout of alpha-calcium-calmodulin—
dependent kinase II (a-CaMKII) induced a decreased fear response
and an increase in defensive aggression accompanied by reduced
serotonin release in dorsal raphe neurons [Chen et al., 1994]. In
contrast, knockout of the monoamine oxidase A (MAOA) gene
increased brain 5-HT content. In humans, deficiency of MAOA
causes Brunner syndrome characterized by impulsive aggres-
siveness [Brunner and Nelen, 1993]. MAOA knockout mice also
display enhanced aggression toward intruder mice [Scott et al.,
2008], but reduced defensive behavior in the presence of predator-
related cues [Godar et al., 2011]. These examples show the com-
plexity of the genetic mechanisms underlying different aggression
domains and also highlight the limitations of the single gene
approach.

Manipulation of a single gene produces a cascade of expression
and biochemical changes during development, which interact with
environmental factors and other genetic factors. For example
MAOA knockout mice showed enhanced expression of NMDA
receptor subunit 2A and 2B expression in the prefrontal cortex and
their abnormal aggressive behavior can be selectively countered by
administration of NMDAR antagonists [Bortolato and Godar,
2012]. This showed a critical role of NMDA receptor in the
pathogenesis of escalated aggression among MAOA knockout
mice. Consistent with this, an NR1 subunit deficient mouse line
shows reduced social investigation and lack of species-typical
aggressive behavior in a resident-intruder paradigm [Mohn
et al,, 1999; Duncan et al., 2004]. Therefore, interpretation of
single gene knockout studies needs to be cautious and take into
consideration downstream and compensatory changes in the con-
text of the whole organism.

Two species of voles distinct in their social behaviors exist as a
perfect model to study genes and aggression. Prairie and pine voles
are highly social and monogamous, whereas meadow and montane
voles are asocial and promiscuous [Insel and Shapiro, 1992; Young
and Wang, 2004]. Prairie voles develop pair bonds between mates.
Males display intense aggression toward female or male conspecific
strangers in the resident-intruder paradigm but they maintain a
high level of social affiliation with their familiar female partners
[Aragona and Liu, 2006; Gobrogge et al., 2007]. Although similar in
nonsocial behaviors, nonmonogamous vole species do not show
partner preference or increased aggression towards stranger con-
specifics [Insel et al., 1995]. Species comparisons show that poly-
morphisms in the arginine vasopressin (AVP) receptor gene, V1aR,
were associated with distinct patterns of gene expression in the
brain associated with differences in pair bonding and selective
aggression of voles [Lim et al., 2004; Hammock et al., 2005; Ophir
et al., 2008]. Genetic variations of V1aR and plasma levels of AVP
were also associated with human social behaviors including ag-
gression and partner relationships [Walum et al., 2008; Gouin et al.,
2012; Luppino et al., 2014].
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Aggressive behavior in the fruit fly, Drosophila melanogaster, has
been observed since 1915 when first reported by Sturtevant [Stur-
tevant, 1915]. Males spread their wings and engage in antagonistic
encounters when competing for mating females. Both offensive
and defensive behaviors have been observed. Drosophila’s nervous
system is simple but recapitulates a range of cellular and network
properties relevant to humans. With modern genetic tools for
drosophila, this model system has made significant contributions
to our genetic understanding of aggressive behavior. Similar
approaches that we described for rodent models, such as artificial
selection, QTL mapping and single gene manipulation, have been
used in drosophila research. A detailed summary of these studies
and the genetic, pheromonal regulation, neurobiological and
genetic regulation of aggressive behavior has been reviewed else-
where [Dahanukar and Ray, 2011; Zwarts et al., 2012; Fernandez
and Kravitz, 2013]. In this section we highlight several recent
significant contributions.

Edwards et al. compared the transcriptomes of high vs. low
aggression drosophila lines. They identified 1593 probe sets that
were differentially regulated in these lines [Edwards et al., 2006].
Remarkably, out of 19 genes selected for behavioral validation
using genomic manipulation in an isogenic background, 15
showed significant effects in altering aggressive behaviors after
Bonferonni corrections. These genes are involved in diverse bio-
logical processes, including electron transport, catabolism, nervous
system development and G-protein coupled receptor signaling.
Seven were computationally predicted genes and none had been
previously implicated in aggressive behavior. Dierick and Green-
span also examined the gene expression between the high aggres-
sion and neutral lines [Dierick and Greenspan, 2006]. Among the
significantly, differentially expressed genes, a cytochrome gene,
Cyp6a20 that might be involved in pheromone degradation, was
confirmed to directly regulate aggressive behavior by using a
mutant line and an odor- binding protein. Obp56a, showed the
most robust reduction in expression in the aggressive line [Dierick
and Greenspan, 2006].

High-throughput and automated behavioral assays were devel-
oped to measure drosophila social behavior including aggression,
enabling larger scale genetic correlations with the behavior [Hoyer
etal., 2008; Dankert et al., 2009]. Forty inbred lines were quantified
for aggressive behavior and genome-wide association screens for
quantitative trait transcripts were performed on these lines
[Edwards et al., 2006]. Two hundred sixty-six novel candidate
genes associated with aggressive behavior were identified. Nine
genes were confirmed to show altered aggression from behavioral
evaluation of 12 selected candidate genes [Edwards et al., 2006].
Furthermore, a network based co-expression analysis revealed
functional modules of correlated transcripts that were associated
with variations of aggressive behavior. Table VI, lists the candidate
genes for aggression implicated by drosophila studies. We also
included the genes that were identified through the above describe
expression analysis and were confirmed by behavior changes on the
mutant lines. Of note, none of these genes have been implicated in
human aggression.More recently, collective efforts were made to
generate 192 genome-sequenced inbred lines derived from a single
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VEROUDE ET AL.

(Continued)

Human
homolog

Studied for aggression in humans

No human studies

[Kaidanovich-Beilin et al.,

Aggression phenotype/domain

GSK3A Mutant mice showed reduced aggression

Glycogen synthase kinase-3 alpha

Gene names

2009]
Combined deletion of two receptors resulted in a lack of aggressive

(Gsk3a)
TNF receptor type 1 and type 2

No human studies

TNFRSF1A

behavior [Patel et al., 2010]

and
TNFRSF1B

(Tnfrsfla and Tnfrsfib)

No human studies

HSF1 deficiency increased aggression [Uchida et al., 2011]

HSF1

Heat shock factor 1 (Hsf1)

No human studies

KO animal showed higher maternal aggression [Champagne et al.,,

PEG3

Maternally imprinted/paternally

2009]
Prnp knockout showed enhanced offensive aggression [Budefeld

expressed gene, Peg3

Prion protein (Prnp)

3'UTR polymorphism was associated with increased risk

PRNP

for delusions, anxiety, agitation/aggression [Flirski

et al, 2012]

et al,, 2014]

2?7

Raleigh population. The drosophila melanogaster Genetic Refer-
ence Panel (DGRP) was constructed to share these inbred lines and
their genetic data [Mackay et al., 2012]. DGRP provides powerful
resources for mapping genetype- phenotype relationships. Taking
the advantage of the DGRP resources and standardized quantita-
tive behavioral assays, a GWAS study for aggressive behavior was
conducted. 74 common variants in 39 genes were reported as
significant association candidates and one SNP in the intron of
CG14869 (AdamTS-A) met the genome-wide significance thresh-
old (2.61 x 10—8) [Shorter et al., 2015]. Only one significant
candidate gene association, 5-HT1A, had been previously impli-
cated in aggression. Additionally, 22 genes harboring rare variants
were significantly associated with aggressive behaviors and 10
passed Bonferroni corrections. None of these genes had been
implicated in aggression previously [Shorter et al., 2015]. The
same paper also described an extreme QTL GWA study of the
advanced intercross populations (AIPs) derived from the most and
least aggressive DGRP lines. This approach identified 746 SNPs in
or near 355 genes with significant association, of which 22 passed
Bonferroni corrections. The top genes included some in the
serotonin, dopamine and glutamate pathways, consistent with
the well-known roles of these genes in aggression. Due to the large
number of genes with significant associations, these are not in-
cluded in Table V1. See the original reference for the complete list of
genes and variants [Shorter et al., 2015]. Surprisingly, this list of
genes has almost no overlap with the GWA results from the original
DGRP lines. Despite this non-overlap in genes and variants, two
results were mapped and enriched onto a genetic interaction
network inferred from an analysis of pairwise epistasis in the
DGRP lines [Shorter et al., 2015]. This observation supports the
multifactorial nature of the genetic underpinnings for aggression
and suggests that different aggression genes may converge on the
same interconnected networks or pathways.

Frustrative non-reward aggression has been less well studied in
animal models. Discontinuation or omission of scheduled rein-
forcement can effectively induce escalated levels of aggressive
behavior in fish [Vindas et al.,, 2012, 2014], birds [Azrin and
Hutchinson, 1966; Cherek and Pickens, 1970], rodents [Stanford
and Salmon, 1989; Miczek et al., 2001], pigs [Melotti et al., 2013],
monkeys and humans [Barzman and Eliassen, 2014]. An operant
procedure has been implemented in mice using sucrose as a
reinforcer to examine extinction induced aggressive confrontation
to intruder mice [Miczek et al., 2001]. Similar paradigms have been
used to induce aggressive responses in other species. Studies have
examined the roles of the nonadrenergic system [Stanford and
Salmon, 1989], the 5-HT1B receptor [de Almeida and Miczek,
2002], neurosteroids and GABAA receptors [Miczek et al., 2003] in
frustrative non-reward induced reactions in rodents and fish.
Barzman et al found that the expression of TNF-related inflam-
matory cytokine genes was positively correlated with frustrative
non-reward and aggressive behaviors in pediatric patients with
bipolar disorder [Barzman and Eliassen, 2014]. However, no
studies have examined the genes underlying frustrative nonreward
aggression in animals.
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VEROUDE ET AL.

The face, construct and predictive validities for aggression models
of various species have been extensively evaluated. Although
evolutionarily conserved, many aggressive measurements in ani-
mal models are species-specific and should be cautiously translated
to human behavior. Nevertheless, animal models have facilitated
our understanding of the neurobiological and molecular under-
pinning of normal and pathological aggressive behaviors. Although
many classical pathways such as hormonal and neurotransmitter
pathways have been largely replicated and confirmed in various
animal and human studies, recent advances in genetic tools and
network based analysis have suggested novel genetic mechanisms.
This is not surprising, since previous candidate gene centered
studies had already suggested a multifactorial genetic contribution
with small and pleiotropic effects and complex epistatic relation-
ships. Future directions are 1) to focus on developing network
based analytic approaches to identify of causal genes and net-
works and to clarify the relationship of genes and networks with
aggressive behavior; and 2) to further delineate the species-
specific and non-specific domains of aggressive behavior as
well as escalated/abnormal aggression, and to clarify the over-
lapping yet distinct causal genes and networks underlying these
separable domains, particularly overlooked domains such as
frustrative non-reward.

In planning this review, we had set out to learn about the genetic
underpinnings of the RDoC constructs associated with aggression:
frustrative non- reward, defensive aggression and offensive (or
proactive) aggression. Although the constructs of defensive and
offensive aggression have been widely used in the animal genetics
literature, the human literature is mostly agnostic with regard to all
the RDoC constructs. That said, many aggression phenotypes have
been studied in human genetic paradigms and the insights from
these studies are likely relevant to the RDoC constructs.

We know from twin studies that about half the variance in
behavior may be explained by genetic risk factors. This is true
for both dimensional, trait- like, measures of aggression and
categorical definitions of psychopathology. The non-shared envi-
ronment seems to have a moderate influence with the effects of
shared environment being unclear. Gene-environment interaction
appears to play an important role but the details need to be worked
out.

Human molecular genetic studies of aggression are in an
early stage. The most promising candidates are in the dopami-
nergic and serotonergic systems along with hormonal regulators.
Genome-wide association studies have not yet achieved genome-
wide significance, but current samples are too small to detect
variants having the small effects one would expect for a complex
disorder. These studies have implicated genes involved in neuro-
developmental processes and synaptic plasticity, not previously
considered in candidate gene studies. This may indicate that
aggressive behavior does not only involve neurotransmitters or
hormonal functions, but also molecules involved in establishing
neuronal circuits, neuron-to-neuron connectivity and brain
plasticity.
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Future studies should improve the measurement of aggression
by using a systematic method of measurement such as that
proposed by the RDoC initiative, which differentiates defensive
aggression, offensive aggression and frustrative non-reward
[Sanislow et al., 2010]. Although the RDoC matrix provides
some guidance about the measurement of frustrative non-reward
in humans, it does not provide guidance for the measurement of
offensive and defensive aggression, although relevant measures are
well-developed in the animal literature. These measurement gaps
suggest a role for the creation of reliable and valid measures of
RDoC constructs for use in human aggression studies. Replication
has been difficult for the field of psychiatric and behavioral genet-
ics. Such problems will only be magnified for aggression if the field
cannot come to a consensus about how aggression phenotypes
should be measured.
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