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The Research Domain Criteria (RDoC) address three types of

aggression: frustrative non-reward, defensive aggression and

offensive/proactive aggression. This review sought to present

the evidence for genetic underpinnings of aggression and to

determine to what degree prior studies have examined pheno-

types that fit into the RDoC framework. Although the constructs

of defensive and offensive aggression have been widely used in

the animal genetics literature, the human literature is mostly

agnostic with regard to all the RDoC constructs. We know from

twin studies that about half the variance in behavior may be

explained by genetic risk factors. This is true for both dimen-

sional, trait-like, measures of aggression and categorical defi-

nitions of psychopathology. The non-shared environment seems

to have a moderate influence with the effects of shared environ-

ment being unclear. Human molecular genetic studies of ag-

gression are in an early stage. Themost promising candidates are

in the dopaminergic and serotonergic systems along with hor-

monal regulators. Genome-wide association studies have not yet

achieved genome-wide significance, but current samples are too

small to detect variants having the small effects onewould expect

for a complex disorder. The strongest molecular evidence for a

genetic basis for aggression comes from animal models compar-

ing aggressive and non-aggressive strains or documenting the

effects of gene knockouts. Although we have learned much from

these prior studies, future studies should improve the measure-

ment of aggression by using a systematic method of measure-

ment such as that proposed by the RDoC initiative.
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INTRODUCTION

During the early stages of human evolution, aggression was proba-

bly an adaptive trait, as it is for many animals in the wild today. It
2015 Wiley Periodicals, Inc.
seems logical that during this period of time people who had the

variants of genes that promoted aggression were more likely to

survive than other people. These variants have persisted in the

human genome and partly explain why some people exhibit

aggressive behaviors.

Although the word “irascibilem” comes from the Latin “iras-

cibilem”, meaning “to attack,” in current language aggression

means much more. In the genetics literature aggression has been
3
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operationalized in many ways. As a categorical disorder it has been

studied as conduct disorder (CD), oppositional defiant disorder

(ODD) and antisocial personality disorder (APD). These catego-

ries are convenient for diagnosticians because other work suggests

aggression to be a quantitative trait that is better operationalized on

dimensions of externalizing behavior, rule breaking, psychopathy

and violence.

A dimensional view of aggression is consistent with the ap-

proach taken by the NIMH Research Domain Criteria (RDoC)

Initiative [Sanislow et al., 2010]. RDoC seeks to focus researchers

on the fundamental mechanisms underlying psychopathology. In

doing so, it has been creating a dimensional taxonomy of behavior

that, hopefully, corresponds better to underlyingmechanisms than

does a system of discrete diagnoses.

In the RDoC nomenclature, aggression is categorized into three

areas: frustrative non-reward, defensive aggression and offensive

(or proactive) aggression. Frustrative non-reward refers to behav-

iors that correspond to the withdrawal or prevention of reward.

This derives from human and animal studies showing that aggres-

sion occurs after repeated, failed attempts to obtain rewards even

after sustained efforts. Defensive aggression refers to behaviors

caused by the perception of an immediate threat, which have

the goal of eliminating the threat. Offensive (or proactive) aggres-

sive behaviors are instrumental behaviors aimed at achieving a

positive goal, often in the face of competition or in the context of

social hierarchies.

The long-term goal of RDoC is to map RDoC phenotypes to

underlying mechanisms. In this review, we sought to present the

evidence for genetic underpinnings of aggression and to determine

to what degree prior studies have examined phenotypes that fit

neatly, or at all, into the RDoC framework. We focus the review

on three types of genetic studies: twin studies, human association

studies of aggression and animal model studies.
TWIN STUDIES OF AGGRESSION

This section outlines recent findings from twin studies on aggres-

sion and related psychopathology, i.e. ODD, CD and APD. Studies

using the classical twin design estimate heritability by comparing

the covariation between monozygotic (MZ; identical) and dizy-

gotic (DZ; fraternal) twins [Plomin et al., 1994; Boomsma et al.,

2002]. MZ twins are assumed to share 100% of their genetic

material while DZ twins share 50% of their genetic material,

and both types of twins share a common environment [Posthuma

et al., 2003]. Under an ACE model [Neale and Cardon, 1992],

the correlation (r) between phenotypes of MZ twin pairs encom-

passes additive genetic factors (a2 or h2; heritability) plus

common environmental factors (c2), that is rMZ¼ h2þ c2. For

DZ twin pairs who share 50% of their segregating genetic material,

rDZ¼ 0.5�h2þ c2. This gives the following formula to calculate

the fraction of phenotypic variance accounted for by genetic

factors: h2¼ 2(rMZ – rDZ). The influence of the common envi-

ronment c2 can be derived as follows: rMZ – h2 (or 2�rDZ – rMZ).

Genetic influences can also be non-additive (d2), but these effects

cannot be estimated simultaneously with c2 if only using data from

twin pairs who are raised together. Accordingly, variance within

twin pairs that is not explained by genetic factors or the common
environment, is attributed to influence of the non-shared envi-

ronment, e2¼ 1–rMZ, which also includes measurement error

[Holzinger, 1929; Falconer, 1960]. It is important to note here

that the non-shared (unique) environment includes all experi-

ences that contribute to differences between children in the same

family, i.e. a common event (for example parents’ divorce) can

affect siblings differently.

Twin studies have investigated aggression from different per-

spectives, e.g. as a personality trait [Miles and Carey, 1997], as

antisocial behavior [Rhee andWaldman, 2002] or as a symptom of

childhood and adolescent psychopathology. Previous reviews of

twin studies and adoption studies on aggression have estimated

heritability up to 0.50, with an additional large role for non-shared

environmental influences and a small influence of the shared

environment [Viding et al., 2008; Tuvblad and Baker, 2011].

Genetic effects seem to predominantly account for phenotypic

correlations between different forms of aggression, such as reactive

(defensive) and proactive (offensive) aggression, although few

studies have examined this [Rhee andWaldman, 2011]. To update

these prior reviews, we conducted a systematic search for studies

in the period January 2009 until February 2015. PubMed and

PsycINFO were searched for peer-reviewed papers to identify

studies of twins with characteristics of externalizing behavior

and psychopathy, regardless of age. We used the following search

strategy: aggress� OR antisocial behav� OR aggressive trait� OR

behavior problem� OR behaviour problem� OR problem behavi�

OR CD OR conduct disorder� OR conduct problem� OR crime

OR criminal� OR delinquen� OR disruptive behav� OR ODD OR

oppositional defiant disorder� OR antisocial personality OR

psychopathy OR sociopathy AND heritabilit�.
A total of 254 records were retrieved. Neither books nor

unpublished articles were retrieved from the references. Titles

and abstracts were read by at least two of the authors (MJB and

KV); article selection is summarized in Figure 1. Articles were

retained if they: 1) included constructs related to aggression, i.e.

aggressive traits, externalizing/impulsive-antisocial behavior and

violent criminality/offences/delinquency or diagnostic categories

ODD/CD/APD 2) reported univariate heritability estimates 3) had

been published in peer–reviewed journals from January 2009

onwards. Reference lists from the identified articles were manually

searched for relevant publications. Articles were excluded if they

were not written in English, were a case-report, were review articles,

reported onlymultivariate analyses, orwere not specifically focused

on aggression, e.g. publications about substance abuse, victimiza-

tion, or sexual risk behavior.

From the literature search, which generated 254 hits, 80 articles

were identified of which 40 articles were eligible for review accord-

ing to the above guidelines. All included studies were published as

articles in scientific journals. Online publication dates ranged from

January 2009 to November 2014. The following information was

extracted from the articles: sample size, age range (or mean if

unavailable), clinical diagnostic criteria used, instruments used to

measure the construct of aggression and key findings. A portion of

the studies used interviews or reports to assess diagnoses of ODD,

CD or APD based on the Diagnostic and Statistical Manual of

Mental Disorders (DSM; APA, 2001) while other studies employed

questionnaires and rating scales to assess aggressive symptoms on a



FIG. 1. Selection of publications for twin studies review.
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continuum. All characteristics and details of the included studies

are summarized in Table I. We discuss the findings below, starting

with research on aggression as a dimensional measure followed by

research on diagnostic categories. Within these subsections, results

are ordered (where possible) on the basis of age.

Twin Studies of Aggression as a Dimension of
Behavior

Aggression in children and adolescents. Researchers have

explored the etiology of aggressive behavior in children as young

as two years of age [Gagne et al., 2011]. The authors reported that

more than half of the variance of externalizing behavior problems

could be explained by genetic factors, and around one quarter by

shared environmental influences. A genetic correlation between
externalizing behavior and inhibitory control was also observed,

pointing to deficient inhibitory control as a risk factor for aggres-

sive traits. At age 4, somewhat lower heritability estimates for

externalizing behavior have been found (0.39, 95%CI¼ 0.25–0.54;

Tucker-Drob and Harden, 2013). The influence of the non-shared

environment was of equal size as the genetic influences. Interest-

ingly, the amount of variance accounted for by shared environ-

mental factors changed with age depending on preschool

enrollment. For 5-year-old children that attended preschool, there

was no contribution of shared environment while heritability

estimates increased. For children who did not attend preschool,

the influence of the shared environment was more than 50% and

the influence of additive genetic factors decreased. Another study in

4-year-olds from the same cohort found a gene- environment

interaction [Boutwell et al., 2012]. In the context of maternal
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disengagement, genetic risk factors had a strong effect on exter-

nalizing behavior problems. Genetic risk did not play a role in

behavior problems when maternal disengagement was low, i.e.

when children were securely attached. Remarkably, other research-

ers showed that genetic effects explained the correlation between

negative parenting and conduct problems around age 6, but only

for low levels of negative parenting [Fujisawa et al., 2012]. For high

levels of negative parenting, there was a larger non-shared envi-

ronmental correlation between negative parenting and conduct

problems. To summarize, the reviewed twin studies in children

between age 2 and 6 have focused on externalizing and conduct

problems in a broad sense. Heritability estimates ranged from

0.39 to 0.60 with variation contingent upon the school and home

environment.

From about the time when children start primary school,

aggression can be operationalized more specifically. Self-report,

parent-report or teacher ratings have been used to assess external-

izing and aggressive behavior, with different measures leading to

slightly different findings. Both the Twins Early Development

Study (TEDS) from the UK and the Netherlands Twin Register

(NTR) included twin pair ratings by the same teacher as well as by

different teachers. Same teacher ratings provided larger heritability

estimates (0.69, 95%CI¼ 0.57–0.76 – 0.82, 95%CI¼ 0.79–0.85)

than different teacher ratings (0.40, 95%CI¼ 0.20–0.52 – 0.47,

95%CI¼ 0.38–0.55; Barker et al., 2009; Lamb et al., 2012). Also,

heritability estimates of conduct problems based on parent-report

were higher compared to estimates from self-report [Trzaskowski

et al., 2013]. Several studies focused on callous-unemotional (CU)

traits, which are considered a genetic risk for antisocial behavior

[Viding and McCrory, 2012; Blair, 2013]. Distinct developmental

trajectories have been found in 7 to 12 year olds, with the

largest heritability for boys who have stable high CU traits

(0.78, 95%CI¼ 0.42–0.88; Fontaine et al., 2010). Composite scores

across ages confirmed high heritability of CU traits, while herita-

bility estimates were close to zero in a Genome-Wide Complex

Trait Analysis [GCTA; Viding et al., 2013]. Contrary to Fontaine

et al. [2010], Ficks et al. [2014] observed no sex differences in

genetic and environmental influences on CU traits, although

nonshared environmental influences on impulsivity were larger

in boys. For parent ratings of conduct problems, the Child

Behavior Checklist [CBCL; Achenbach and Rescorla, 2001] is often

employed. Scores are taken from the DSM-Oriented Scale (DOS)

for conduct problems [Spatola et al., 2010; Bertoletti et al., 2014] or

the externalizing scale of the CBCL encompassing the aggression

and rule-breaking subscales [Burt and Klump, 2012; Robbers et al.,

2012; Nikolas et al., 2013]. Meta-analyses have shown a distinction

between aggression and rule-breaking, with the former primarily

influenced by genetics and the latter by the shared environment

[Burt, 2009, 2013]. In summary for children between 6 to 14 years

old, the heritability of parental reports of aggression-related

phenotypes ranged from 0.46 to 0.60. The estimates for non-shared

environmental influences were between 0.18 and 0.48.

Some twin studies collected longitudinal data to examine sta-

bility and change in the etiology of behavior over time. In the

Risk Factors for Antisocial Behavior twin study, children age 9–10

were followed into adolescence. Separate genetic and non-shared

environmental influences were found on aggression versus rule-
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breaking during childhood, in addition to joint influences on a

latent common factor of antisocial behavior [Niv et al., 2013]. At

age 14–15, novel genetic influences on the latent factor of general

antisocial behavior were observed. In the same project, a link

between adolescent aggression and brain functioning at age 9–

10 was demonstrated [Niv et al., 2015]. The power of alpha waves,

brain oscillations of 8–13Hz measurable by electroencephalogra-

phy (EEG), is a biomarker of low arousal. This intermediate

phenotype was explored based on theories stating that low arousal

evokes externalizing behavior to reach a higher, optimal level of

arousal. Indeed, alpha power recorded over the frontal cortex at age

9–10 predicted aggression at age 14–15. The correlation could be

explained by genetic factors and was shown in males but not

females, and for aggressive behavior but not for rule-breaking.

In Swedish twins, followed from age 8 to 20, a latent factor

representing persistent antisocial behavior was found as well as

novel shared environmental influences on aggression and delin-

quency at age 13–14 [Tuvblad et al., 2011]. Within the same twin

registry, self-reports of antisocial behavior and related traits at age

16–17 reflected shared environmental risk for criminality [Kendler

et al., 2013]. Analyzing parent-reports in addition to self-reports

revealed genetic continuity but also novel genetic influences at age

13–14 and 16–17, plus novel unique environmental influences for

early adolescents [Wichers et al., 2013]. Data from the Add Health

project suggested that for young adults (age 18 to 26), genetic

influences on criminal behavior were smaller than those on self-

reported delinquency in adolescence [Vaske et al., 2012]. An

analysis combining CBCL data from 1022 Swedish twin pairs

aged 7–9 years and 501British twin pairs aged 8–16 years concluded

that the etiologies of aggressive and nonaggressive antisocial be-

havior differ for males and females [Eley et al., 1999].

Interestingly, a meta-analysis reported an age-related increase

in heritability estimates of externalizing behaviors [Bergen et al.,

2007]. It has been suggested that this increase may be specific to

rule-breaking and delinquency, while themagnitude of genetic and

environmental influences on aggression only is stable across ado-

lescence [Burt and Klump, 2009; Burt and Neiderhiser, 2009].

However, Tuvblad and colleagues probed reactive (impulsive;

defensive) and proactive (instrumental; offensive) aggression

and found larger heritability estimates in early adolescence than

in childhood for both subtypes of aggression [Tuvblad et al.,

2009a]. Altogether, aggression is heritable across development

(range 0.38–0.88) but the magnitude of genetic and environmental

influences varies according to age and assessment method.

Aggression in adults. A few extant twin studies focused spe-

cifically on aggressive traits in adults, some of which have used

retrospective measures. With conviction of violent crime as a

dichotomous variable, heritability estimates were comparable to

previous heritability findings of self-reported anti-social behavior

[Frisell et al., 2012]. Estimates for this outcome in the classic twin

design were similar in a sibling model but for adoptees, genetic and

shared environmental influences appeared smaller. Using the

Lifetime History of Aggression Questionnaire [LHA; Coccara

et al., 1997], two factors were distinguished [Yeh et al., 2010];

general aggression (temper tantrums, verbal and indirect aggres-

sion) plus physical aggression (fighting and physical assault).

Genetic influences were larger for general aggression while
non-shared environmental influences were larger for physical

aggression, pointing to the importance of subtyping aggressive

behavior. Two studies in adult twins have used questionnaires to

measure the construct of psychopathy. Brook and colleagues

administered the Multidimensional Personality Questionnaire

[MPQ; Tellegen, 1982] to middle-aged males. On the impulsive-

antisocial dimension, heritability was 0.32 (95%CI¼ 0.18–0.45),

and a strong influence of the non-shared environment was

reported with no effect of the shared environment [Brook et al.,

2010]. Non-shared environmental factors also explained the cor-

relation between the impulsive-antisocial dimension and the

fearless-dominant dimension of psychopathy. On the Self-Report

Psychopathy scale [SRP; Hare, 1985], heritability was 0.34 (95%CI

¼ 0.10–0.69) and genetic plus non-shared environmental factors

explained the phenotypic correlation of psychopathy with risk-

taking, among other variables [Veselka et al., 2011].

Overall, in adult twin studies based on a dimensional approach

to aggression, as in studies with children, various definitions and

measures have been used. It is therefore difficult to compare results

and to make a link with the RDoC classification [Sanislow et al.,

2010]. In the next section, we will describe research that focused on

diagnostic categories related to DSM criteria [APA, 2000].
Aggressive Psychopathology
Oppositional defiant disorder (ODD) and conduct disorder

(CD) in children and adolescents. Several studies of twin chil-

dren and adolescents (N¼ 12, age range: 4–23 years) have focused

on aggression expressed in childhood and adolescent psychopa-

thology (e.g. CD orODD). All these studies were characterized by a

wide age range, encompassing both childhood and adolescence.

For example, Singh and Waldman [2010] focused on an age range

from 4 to 17 years in a sample characterized by symptoms of ODD

andCD rated by the parent [Singh andWaldman, 2010]. Based on a

univariate standard ACDE model (95%CI’s not provided), both

disorders showed a different model of best fit, in which heritability

was roughly the same. An AE model was the best fit for ODD, in

which two thirds of variance was accounted for by genetic effects.

While an ADE model was a best fit for CD: nearly half of the

variance was explained by additive genetic factors, followed by

non-additive genetic and non-shared environment effects. In the

Tennessee Twin Study, high heritabilities were reported for CD

0.70 (95%CI¼ 0.44–1.00;Waldman et al., 2011) and confirmed by

Lahey et al. [2011]. In addition, for ODD symptoms heritability

was 0.69 (95%CI’s not provided; Lahey et al., 2011). However, self-

reports showed a reduction in variance explained by genetic

influences 0.39 (95%CI¼ 0.16–0.72) and a small to moderate

role for the common 0.14 (95%CI¼ 0.004–0.47) and non-shared

environment 0.47 (95%CI¼ 0.38–0.57) effects [Waldman et al.,

2011]. In contrast, Lahey et al. [2011] reported strong genetic

influences and moderate non-shared environmental influences for

both CD andODDbased on combined adult caretaker- and youth-

reports. In addition, a multivariate model based on a global factor

for internalizing and externalizing disorders showed moderate

genetic and non-shared environmental effects of the externalizing

factor in both CD and ODD. The non-shared environment effect

was moderate in ODD and small in CD.
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As these few studies mentioned above show, there are mixed

results for CD and ODD; some studies favor an ACE/ADE model

and others an AE model. Another example of an ACE model is a

study (N¼ 605 twin pairs) of Tuvblad et al. [2009a,b]. Both CD

and ODD symptoms were assessed with the DISC-IV structured

interview. The authors found unique genetic and environmental

influences for each set of symptoms, which suggests unique influ-

ences of the two disorders. Moreover, the relative effects of genetic,

shared, and non-shared environmental factors were similar be-

tween CD and ODD. Furthermore, it has been suggested that both

the genetic (95%CIf¼ 0.17–0.74, 95%CIm¼ 0.12–0.70) and non-

shared environmental (95%CIf¼ 0.23–0.39, 95%CIm¼ 0.22–

0.37) influences on CD are slighter higher in girls (f) than boys

(m) and slighter lower for shared environment (95%CIf¼ 0.00–

0.50, 95%CIm¼ 0.03–0.56). Furthermore, common influences

have been reported based on a latent externalizing behavior factor,

indicating high genetic and moderate non-shared environmental

influences. Anckarster et al. [2011] reported that both CD and

ODD are more influenced by genetic (95%CIf¼ 0.13–0.36,

95%CIm¼ 0.61–0.67) factors in boys (m) than in girls (f). In

contrast, the influence of shared environment was negligible

(95%CIf¼ 0.17–0.35, 95%CIm¼ 0.00–0.02), the one exception

being conduct problems in girls.

Bornovalova et al. [2010] studied a large sample of twin

pairs (aged 11 years) in which an ACE model was the best fit.

A higher heritability of 0.73 (95%CI¼ 0.59–0.79) and non-

shared environmental influences of 0.24 (95%CI¼ 0.21–0.26)

was found for ODD compared with CD, in which heritability

was 0.51 (95%CI¼ 0.39–0.63) and common environment was

0.30 (95%CI¼ 0.18–0.41). In addition, common environment

was significant for CD only. In the longitudinal study of Young

et al. [2009], twin pairs were assessed at 12 and 17 years of age

on both childhood and adolescent psychopathology and aggres-

sive traits (CBCL and TRF- externalizing behavior). They

reported smaller genetic 0.49 (95%CI¼ 0.25–0.76) and non-

shared environmental 0.25 (95%CI¼ 0.20–0.32) influences at

age 17 compared with age 12 (a2¼ 0.70, 95%CI¼ 0.46–0.85;

e2¼ 0.19, 95%CI¼ 0.15–0.24). This AE model was linked to

structural stability of behavioral and response disinhibition

across adolescence, and this relationship was primarily genetic

in origin.

To conclude this section on developmental psychopathology in

childhood and adolescence, one large study in adolescents reported

an AE model with moderate genetic effects in conduct problems

[Schulz-Heik et al., 2010].

Aggressive psychopathology in older adolescents and adults.

Among the studies of CD or ODD, two also reported on Adult

Antisocial Behavior (AAB) [Hicks et al., 2009, 2013]. For AAB,

Hicks et al. [2009] reported strong genetic influences (95%CI

¼ 0.65–0.79) and moderate non-shared environment influences

(95%CI¼ 0.21–0.26). Across six environmental risk factors (low

academic achievement and engagement, antisocial peers, lack of

prosocial peers, mother-child relationship problems, father-child

relationship problems, stressful life events), genetic variance in

externalizing disorders increased in the context of greater environ-

mental adversity. This indicates that as environmental stress

increases genetic differences among young adults become more
important in the etiology of externalizing disorders. Three studies

focused on adults with CD andAAB [Meier et al., 2011; Hicks et al.,

2013] and cluster B personality antisocial personality disorder

[Torgersen et al., 2012]. Hicks et al. [2013] focused on both

biological twins and non-biological siblings. They reported for

both CD and AAB moderate genetic (95%CI¼ 0.35–0.52),

shared (95%CI¼ 0.11–0.25) and non-shared environmental

influences (95%CI–0.34–0.42). Meier et al. [2011] reported

approximately two thirds of the variance explained by non-

shared environmental influences (95%CI¼ 0.63–0.74), followed

by genetic effects (95%CI¼ 0.26–0.37) in CD regardless of

gender. No gender differences were reported for AAB for which

the non-shared environment explained two thirds of the vari-

ance followed by genetic influences. However, males showed

greater stability in antisocial behavior from childhood to adult-

hood. As for the study on cluster B personality [Torgersen et al.,

2012], one-third of the variance was explained by genetic

influences and two thirds by non- shared environment based

on interview measures of personality disorders. These findings

were method specific, since the magnitude of the genetic com-

ponent varied by type of interview compared to self-reported

questionnaires. Thus, differences in twin studies on AAB and

APD may be due to gender or to differences in measurement

methods.

Overall, the non-shared environmental effects are less strong

compared to genetic effects. Furthermore, a risk of bias arises in the

cited studies, given that the power to detect shared environmental

influences is often low in biometric analyses of twin data and these

studies assume that the environmental effects are free of influence

by genetic effects [Burt, 2013]. Therefore, results should be inter-

preted with caution.

Summary: Twin Studies of Aggressive Behavior
and Psychopathology
Recent publications about twin data on aggression-related prob-

lems suggest that around 50% of the variance in aggressive

behavior may be explained by genetic influences. The non-shared

environment seems to have a moderate influence. With regard to

the shared environment, findings are mixed: About half of the

reviewed studies report no influence while other studies indicate

estimates between 0.15 and 0.35. The former is in line with a

previous review that showed the presence of only non-shared

environmental and genetic influences of 0.50 each [Tuvblad

and Baker, 2011]. Although a meta-analysis demonstrated in-

creased heritability estimates for externalizing with age [Bergen

et al., 2007], this pattern was not evident in the current review.

However, most of the included articles examined children and

adolescents, and only a few articles focused specifically on adults.

An effect of gender has occasionally been observed [Tuvblad

et al., 2009b; 2011; Meier et al., 2011; Lamb et al., 2012; Robbers

et al., 2012] but, for most studies, similar models for boys and

girls were suitable. Hence, heritability estimates may be compa-

rable between males and females despite the finding that aggres-

sion occurs more often in males, particularly direct, overt

aggression as opposed to relational aggression [Ligthart et al.,

2005]. Of note, genetic influences on aggressive behavior might
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depend on the environment, as gene-environment interaction

appears to play an important role.

The operationalization of the construct aggression differed

widely across the reviewed articles. Some researchers investigated

aggression as a trait in the general population while others focused

on DSM-based psychopathology, i.e. ODD, CD and AAB/APD.

Both the dimensional and the categorical approaches yielded

heritability estimates ranging from approximately 0.30 to 0.80.

Several studies found a latent factor of externalizing/antisocial

behavior with unique genetic or environmental influences on

specific forms of aggression [Bornovalova et al., 2010; Yeh et al.,

2010; Lahey et al., 2011; Tuvblad et al., 2011; Niv et al., 2013]. Thus,

a limitation of the current state of the field is that researchers do not

use common definitions with regard to aggression, which makes

it difficult to compare studies. Future studies may improve the

measurement of aggression by using dimensional constructs from

theRdoC framework, i.e. defensive aggression, offensive aggression

and frustrative non-reward (http://www.nimh.nih.gov/research-

priorities/rdoc/negative-valence-systems-workshop-proceedings.

shtml). These constructs are defined and will be continuously

refined based on multiple units of analysis, such as genes,

brain circuits and behavior, to better integrate clinical findings

with neuroscience [Sanislow et al., 2010; Cuthbert and Insel,

2013]. Discovering genes that are related to various aggression

dimensions is one step towards advanced understanding of

psychopathology.
HUMAN ASSOCIATION STUDIES OF AGGRESSION

Based on previous searches performed by Vassos et al. [2014] and

Gunter et al. [2010] we searched articles on PubMed using the

terms “(aggression OR aggressivity OR aggressive OR anger OR

hostility OR irritability OR violence OR convict� OR crimin� OR

offend� OR externalizing OR conduct OR antisocial OR impulsive

aggression OR psychopathy ORODDOR oppositional defiant OR

callous unemotional) AND (genetics OR gene OR polymorphism

OR genotype OR allele OR genomeORhaplotype)” to update their

searches from December 2009 until February 2015, with an output

of 7,202 articles. Subsequently, we filtered works written in English

language, performed in humans, including sample characteristics

and performing genetic association studies that had been published

as articles in scientific journals. We selected 268 potential articles

within this range of dates and some additional 263 articles from a

previous review [Gunter et al., 2010] and a meta-analysis [Vassos

et al., 2014]. From these 531 articles we selected those studies that

included traits related to aggression (aggressiveness, anger, exter-

nalizing behavior, impulsive aggression, criminality, violence or

delinquency), or diagnostic categories of ODD, CD, antisocial

behavior or ASPD, callous unemotional or psychopathy. Also,

we excluded studies assessing aggressive or antisocial traits in

drug use or dependence cohorts, or samples of other psychiatric

disorders (e.g. schizophrenia, bipolar disorder, major depression).

A total of 277 articles were finally considered for this review. Our

selection process is described in Figure 2.

Most association studies exploring the genetic susceptibility to

aggression have focused on candidate genes (candidate gene asso-

ciation studies, CGAS), especially those related to serotonergic and
dopaminergic neurotransmission. Additionally, a few genome-

wide association studies (GWAS) have been performed and will

also be reviewed. These studies have used either trait measures of

aggression (Table II) or measures of aggression psychopathology

(Tables III and IV). Candidate gene association studies have often

rendered conflicting results, since in several cases associations were

identifiedwith different alleles of the same variation or could not be

replicated in the same phenotype. In addition, many of the CGAS

were performed in small samples that often lead to false positive or

false negative findings due to lack of statistical power. Finally,

GWAS of aggression phenotypes have not identified genome-wide

significant associations so far. In consequence, results obtained

in previous association studies, either CGAS or GWAS, must be

taken with caution.
Candidate Genes Studied Across the Lifespan
TheMAOA and 5HTT genes have been studied quite extensively in

aggressive traits in children, adolescents and adults (Table II), and

also in diagnostic categories of aggression in children (Table III)

and adults (Table IV). MAOA encodes the enzyme monoamine

oxidase A, responsible for the catabolism of dopamine, serotonin

and other neurotransmitters. An upstream polymorphism con-

sisting of a variable number of tandem repeats (uVNTR) located in

the promoter region of the gene, with an effect on transcription, has

been extensively studied. In children, several studies identified the

uVNTR variants determining low gene expression levels associated

with aggression, anger, externalizing behavior and delinquency,

especially in high risk environments (maltreatment or low mater-

nal sensitivity) [Weder et al., 2009; Edwards et al., 2010; Pickles

et al., 2013]. In adolescents and young adults, low activity variants

were found associated with increased aggressive reactions, violent

delinquency and even the use of weapons, stabbing and shooting

[Guo et al., 2008; Kuepper et al., 2013; Beaver et al., 2010a,b, 2014).

In adults, many studies have associated the low activity variants

with aggression, impulsivity, hostility and violent criminal and

delinquent behaviors [Manuck et al., 2000, 2002; Eisenberger et al.,

2007; Frazzetto et al., 2007; Reif et al., 2007; Gallardo-Pujol et al.,

2013; Armstrong et al., 2014; Gorodetsky et al., 2014; Tiihonen

et al., 2014]. Only a few studies have failed to replicate these results

or have identified high activity variants as risk alleles for these

phenotypes [Huizinga et al., 2006; Yang et al., 2007; van der Vegt

et al., 2009; Perroud et al., 2010; Verhoeven et al., 2012]. Thus,

the bulk of the evidence indicates that low activity alleles of the

MAOA-uVNTR are probably associated with aggressive traits.

Interestingly, the MAOA gene has not been associated with CD

or ODD in children. Indeed, it has only been associated with

CD in the presence of an adverse childhood environment [Caspi

et al., 2002; Foley et al., 2004; Haberstick et al., 2005; Kim-Cohen

et al., 2006; Young et al., 2006; Prom-Wormley et al., 2009;

Qian et al., 2009; Wakschlag et al., 2010; Kieling et al., 2013].

Many studies assessing MAOA in adults identified associations

with antisocial behavior, conduct problems and psychopathy in the

presence of adverse childhood environment, most of them identi-

fying the shorter variant of the uVNTR as the risk allele [Lu et al.,

2003; Widom and Brzustowicz, 2006; Prichard et al., 2007; Fowler

et al., 2009;Williams et al., 2009; Beach et al., 2010; Derringer et al.,

http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml
http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml
http://www.nimh.nih.gov/research- priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml
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2010; Fergusson et al., 2011, 2012; Philibert et al., 2011; Reti et al.,

2011; McGrath et al., 2012; Sadeh et al., 2013; Byrd and Manuck,

2014; Ficks and Waldman, 2014; Haberstick et al., 2014].

Studies of theMAOA-uVNTR and aggression have usually been

restricted to males; since this is an X-linked gene. Because infor-

mation on the inactivation of the locus is not available, association

results are difficult to interpret in females. Other MAOA variants,

such as the single nucleotide polymorphisms (SNPs) rs5906957,

rs909525, rs6323, and rs2064070, have been associated with physi-

cal aggression in boys or anger in male adults [Antypa et al., 2013;

Pingault et al., 2013]. Also, another VNTR (10 bp) in this gene was

found associated with ASPD [Philibert et al., 2011].

The SLC6A4 or 5HTT gene, which encodes the serotonin

transporter, has been associated with several aggressive pheno-

types. A functional polymorphism in the promoter, called

5HTTLPR for 5HTT-Linked Polymorphic Region, has been asso-

ciated in children and adolescents with aggression, violence, de-

linquency and externalizing behavior, although with contradictory

results regarding the identity of the risk variant and the associated

genotypes [Zalsman et al., 2001; Cadoret et al., 2003; Gerra et al.,

2005; Beitchman et al., 2006; Haberstick et al., 2006; Hohmann

et al., 2009; Zimmermann et al., 2009; Aslund et al., 2013]. In
contrast, many studies of adults have found the short variant (S) of

5HTTLPR to drive lower transcription levels of the gene and to be

associated with aggression, anger, hostility, neuroticism, violence

and criminality [Greenberg et al., 2000; Liao et al., 2004; Retz et al.,

2004; Verona et al., 2006; Reif et al., 2007; Gonda et al., 2009;

Sysoeva et al., 2009; Conway et al., 2012; Gyurak et al., 2013; Lopez-

Castroman et al., 2014].

The shorter variant of 5HTTLPR has been associated with

conduct problems and CD [Sakai et al., 2006, 2007, 2010; Brody

et al., 2011]. The 5HTTLPR has been associated with psychopathy

and antisocial behavior, although with conflicting results [Fowler

et al., 2009; Garcia et al., 2010; Sadeh et al., 2013; Ficks and

Waldman, 2014].

SNP rs25531 modifies the transcription of 5HTTLPR: The

long 5HTTLPR allele with a G (Lg) at rs25531 drives low

transcription levels, similar to the short allele (S), whereas the

La allele at rs25531determines higher transcription levels. This

could explain contradictory association results. Beitchman et al.,

[2006] considered this SNP when analyzing 5HTTLPR geno-

types, identifying association between lower transcription geno-

types (S/S, S/Lg and Lg/Lg) and childhood aggression [Beitchman

et al., 2006].



TABLE II. Genes Associated With Aggression Trait Measures

Gene symbol Gene name Phenotype Study References

Children and

adolescents

AVP Arginine vasopressin Aggression CGAS Malik et al. [2014]

AVPR1A Arginine vasopressin receptor

1A

Aggression CGAS Malik et al. [2014]

AVPR1B Arginine vasopressin receptor

1A

Aggression CGAS Zai et al. [2012b]; Luppino et al. [2014]

BDNF Brain-derived neurotrophic

factor

Aggressive behavior CGAS Kretschmer et al. [2014]; Musci et al. [2014]

CHRM2 Cholinergic receptor,

muscarinic 2

Externalizing behavior CGAS Dick et al. [2011]; Latendresse et al. [2011]

CYP19 Cytochrome P450, family 19 Externalizing behavior CGAS Miodovnik et al. [2012]

DRD2 Dopamine receptor D4 Aggressive behavior and violent

delinquency

CGAS Guo et al., [2007]; Zai et al., [2012a]

DRD4 Dopamine receptor D4 Aggression, externalizing

behavior and delinquency

CGAS Nobile et al. [2007]; Hohmann et al. [2009];

Dmitrieva et al. [2011]; Buchmann et al.

[2014]; Farbiash et al. [2014];

Schlomer et al. [2015]

MAOA Monoamine oxidase A Aggression, anger, externalizing

behavior, delinquency and

use of weapons

CGAS Beaver et al. [2014]; Edwards et al. [2010];

Guo et al. [2008]; Pickles et al. [2013];

Pingault et al. [2013]; van der Vegt et al.

[2009]; Weder et al. [2009]

ESR1 Estrogen receptor 1 Anger CGAS Vermeersch et al. [2013]

LRRC7 Leucine rich repeat

containing 7

Aggressive behavior GWAS Mick et al. [2011]

OXTR Oxytocin receptor Aggression CGAS Malik et al. [2012, 2014]

SLC6A4

(5HTT)

Solute carrier family 6

(neurotransmitter

transporter), member 4

(serotonin transporter)

Aggression, violence,

delinquency and

externalizing behavior

CGAS Aslund et al. [2013]; Beitchman et al. [2006];

Cadoret et al. [2003]; Gerra et al. [2005];

Haberstick et al. [2006]; Hohmann et al.

[2009]; Zalsman et al. [2001];

Zimmermann et al. [2009]

SLC6A3

(DAT1)

Solute carrier family 6

(neurotransmitter

transporter), member 3

(dopamine transporter)

Externalizing behavior,

pathological violence,

serious delinquency and

criminal conduct

CGAS Beaver et al. [2008]; Chen et al. [2005];

Guo et al. [2007]; Young et al. [2002]

SLIT2 Slit homolog 2 (Drosophila) Anger CGAS Sokolowski et al. [2010]

STIP1 Stress-induced

phosphoprotein 1

Aggressive behavior GWAS Mick et al. [2011]

Adults

AR Androgen receptor Violent criminal behavior,

aggression, impusivity and

neuroticism

CGAS Aluja et al. [2011]; Cheng et al. [2006];

Jonsson et al. [2001]; Rajender et al. [2008];

Westberg et al. [2009]

ABCG1 ATP-binding cassette, sub-

family G (WHITE), member

1

Aggression and anger CGAS Gietl et al. [2007]

AKAP5 A kinase (PRKA) anchor

protein 5

Anger CGAS Richter et al. [2011]

ANK3 Ankyrin 3, node of Ranvier

(ankyrin G)

Externalizing behavior CGAS Logue et al. [2013]

CDH13 Cadherin 13 Violent behavior CGAS Tiihonen et al. [2014]

CHRM2 Cholinergic receptor,

muscarinic 2

Externalizing behavior CGAS Dick et al. [2008]

COMT Catechol-O-

methyltransferase

Aggression, externalizing and

anger

CGAS Kulikova et al. [2008]; Perroud et al. [2010];

Shehzad et al. [2012]

CRHR1 Corticotropin releasing

hormone receptor 1

Aggressive behavior CGAS Chen et al. [2014]

CYP2D6 Cytochrome P450, family 2,

subfamily D, polypeptide 6

Aggression CGAS Gonzalez et al. [2008]

(Continued)
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TABLE II. (Continued)

Gene symbol Gene name Phenotype Study References
DARPP32 Protein phosphatase 1,

regulatory (inhibitor)

subunit 1B

Anger CGAS Reuter et al. [2009]

DBH Dopamine beta-hydroxylase

(dopamine beta-

monooxygenase)

Aggressive hostility, impulsivity

and neuroticism

CGAS Hess et al. [2009]

FYN FYN proto-oncogene, Src

family tyrosine kinase

Anger GWAS Mick et al. [2014]

HTR1B 5-hydroxytryptamine

(serotonin) receptor 1B, G

protein-coupled

Aggressive behavior, anger and

hostility

CGAS Conner et al. [2010]; Hakulinen et al. [2013];

Zouk et al. [2007]

HTR2A 5-hydroxytryptamine

(serotonin) receptor 2A, G

protein-coupled

Aggression, anger, hostility and

criminality

CGAS Banlaki et al. [2015]; Berggard et al. [2003];

Dijkstra et al. [2013]; Giegling et al. [2006];

Keltikangas-Jarvinen et al. [2008]

MAOA Monoamine oxidase A Aggression, impulsivity,

hostility, use of weapons

and violent criminal and

delinquent behaviors

CGAS Antypa et al. [2013]; Armstrong et al. [2014];

Beaver et al. [2010a,b]; Eisenberger et al.

[2007]; Frazzetto et al. [2007]; Gallardo-Pujol

et al. [2013]; Gorodetsky et al. [2014]; Kuepper

et al. [2013]; Manuck et al. [2000]; Manuck

et al. [2002]; Reif et al. [2007]; Tiihonen et al.

[2014]; Verhoeven et al. [2012]

NOS1 Nitric oxide synthase 1

(neuronal)

Impulsive aggressivity and

aggression

CGAS Reif et al. [2009]; Retz et al. [2010]; Rujescu et al.

[2008]

NOS3 Nitric oxide synthase 3

(endothelial cell)

Aggressive behavior CGAS Rujescu et al. [2008]

SLC6A4

(5HTT)

Solute carrier family 6

(neurotransmitter

transporter), member 4

(serotonin transporter)

Aggression, anger, hostility,

neuroticism, violence and

criminality

CGAS Conway et al. [2012]; Gonda et al. [2009];

Greenberg et al. [2000]; Gyurak et al. [2013];

Liao et al. [2004]; Lopez-Castroman et al.

[2014]; Reif et al. [2007]; Retz et al. [2004];

Sysoeva et al. [2009]; Verona et al. [2006]

TBX19 T-box 19 Angry hostility CGAS Wasserman et al. [2007]

TH Tyrosine hydroxylase Angry hostility and neuroticism CGAS Persson et al. [2000]

TPH1 Tryptophan hydroxylase 1 Aggression, aggressive

behavior, anger and violence

CGAS Evans et al. [2000]; Hennig et al. [2005];

Manuck et al. [1999]; Reuter and Hennig

[2005]; Rotondo et al. [1999]; Rujescu et al.

[2002]; Yang et al. [2010]

TPH2 Tryptophan hydroxylase 2 Anger CGAS Ke et al. [2006]; Mann et al. [2008];

Yang et al. [2010]; Yoon et al. [2012]

CGAS, Candidate gene association study; GWAS, Genome-wide association study.
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Several meta-analyses have evaluated the contribution of the

MAOA-uVNTR and 5HTTLPR to aggressive behavior. Vassos

et al. [2014] assessed these two variants, among others, in a total

of 31 genes, and did not observe any significant contribution to

the phenotype for any of the variants assessed. Heterogeneity

(I2) for the uVNTR and LPR was higher than 50% (P< 0.01).

In contrast, the meta-analysis of Ficks and Waldman [2014]

identified an association between aggressive behaviors and

the low activity alleles of the MAOA-uVNTR (OR¼ 1.14;

P¼ 1.37e-06) and the short allele of the 5HTTLPR (OR¼ 1.52;

P¼ 7.59e-11). Also, Byrd and Manuck [2014] found the low

activity alleles of the MAOA-uVNTR to be associated with

aggressive behaviors in the presence of childhood maltreatment

(P¼ 8e-07).
Candidate Genes Studied in Children and
Adolescents

Association studies assessing aggressive traits in children and

adolescents have also considered other candidate genes

(Table II). Thus, a 48-bp VNTR polymorphism in intron 3 of

DRD4, encoding the dopamine receptor D4, has been studied.

Carriers of the 7-repeat (7R) allele showed higher levels of

aggression, externalizing behavior and delinquency [Nobile

et al., 2007; Hohmann et al., 2009; Dmitrieva et al., 2011;

Buchmann et al., 2014; Farbiash et al., 2014; Schlomer et al.,

2015]. Interestingly, an epistatic effect of this allele and the S

allele of 5HTTLPR has been reported for aggressive and delin-

quent behavior [Hohmann et al., 2009]. Also, polymorphic



TABLE III. Genes Associated With Aggression Psychopathology Measures in Children and Adolescents

Gene symbol Gene name Phenotype Study References
RBFOX1 (A2BP1) RNA binding protein, fox-1 homolog

(C. elegans) 1

Conduct problems and CD GWAS Anney et al. [2008]; Sonuga-Barke et al. [2008]

ADH1C Alcohol dehydrogenase 1C

(class I), gamma polypeptide

CD GWAS Sonuga-Barke et al. [2008]

BDNF Brain-derived neurotrophic factor ODD and CU CGAS Willoughby et al. [2013]

MYRFL (C12orf28) Myelin regulatory factor-like Conduct problems GWAS Anney et al. [2008]

COMT Catechol-O-methyltransferase CD CGAS Caspi et al. [2008]; DeYoung et al. [2010];

Qian et al. [2009]

DRD4 Dopamine receptor D4 CD, ODD and CU CGAS Kirley et al. [2004]; Nikitopoulos et al. [2014];

Zohsel et al. [2014]

KIAA2012

(FLJ39061)

KIAA2012 Conduct problems GWAS Anney et al. [2008]

HTR1B 5-hydroxytryptamine (serotonin)

receptor 1B, G protein-coupled

CD and CU CGAS

GWAS

Moul et al. [2013]; Viding et al. [2010]

HTR2A 5-hydroxytryptamine (serotonin)

receptor 2A, G protein-coupled

CU CGAS Moul et al. [2013]

KIRREL Kin of IRRE like (Drosophila) Conduct problems GWAS Anney et al. [2008]

RPS24P4

(LOC729257)

Ribosomal protein S24 pseudogene 4 Conduct problems GWAS Anney et al. [2008]

MAOA Monoamine oxidase A CD and ODD with adverse

childhood environment

CGAS Caspi et al. [2002]; Foley et al. [2004]; Haberstick

et al. [2005]; Kieling et al. [2013]; Kim-Cohen

et al. [2006]; Prom-Wormley et al. [2009]; Qian

et al. [2009];

Wakschlag et al. [2010]; Young et al. [2006]

MFHAS1 Malignant fibrous histiocytoma

amplified sequence 1

CD GWAS Sonuga-Barke et al. [2008]

OXTR Oxytocin receptor CD and CU CGAS Beitchman et al. [2012]; Dadds et al. [2014];

Malik et al. [2012]; Sakai et al. [2012];

Smearman et al. [2015]

PAWR PRKC, apoptosis, WT1, regulator Conduct problems GWAS Anney et al. [2008]

PKD1L2 Polycystic kidney disease 1-like 2

(gene/pseudogene)

Conduct problems GWAS Anney et al. [2008]

PKD1L3 Polycystic kidney disease 1-like 3 Conduct problems GWAS Anney et al. [2008]

RGL1 Ral guanine nucleotide dissociation

stimulator-like 1

Conduct problems GWAS Anney et al. [2008]

RIT1 Ras-like without CAAX 1 CD GWAS Sonuga-Barke et al. [2008]

ROBO2 Roundabout, axon guidance receptor,

homolog 2 (Drosophila)

CU GWAS Viding et al. [2010]

SLC6A1 (GAT1) Solute carrier family 6

(neurotransmitter transporter),

member 1 (GABA transporter)

CD GWAS Sonuga-Barke et al. [2008]

SLC6A4 (5HTT) Solute carrier family 6

(neurotransmitter transporter),

member 4 (serotonin transporter)

CD and conduct problems CGAS Brody et al. [2011]; Sakai et al. [2006, 2007,

2010]

SLC6A3 (DAT1) Solute carrier family 6

(neurotransmitter transporter),

member 3 (dopamine transporter)

ODD and conduct problems CGAS Burt and Mikolajewski [2008]; Lee et al. [2007]

CGAS, Candidate gene association study; GWAS, Genome-wide association study; CD, Conduct disorder; ODD, Oppositional defiant disorder; CU, Callous-unemotional
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variants within the dopamine transporter gene (SLC6A3 or DAT)

and the dopamine receptor 2 gene (DRD2) have also been

associated with aggressive behavior, externalizing behavior, vio-

lence, criminal conduct and violent delinquency in children and

adolescents [Young et al., 2002; Chen et al., 2005; Guo et al.,

2007; Beaver et al., 2008; Zai et al., 2012a].
The genes for vasopressin and for the oxytocin and vasopressin

receptors (AVP, OXTR, AVPR1A and AVPR1B) have been associ-

ated with aggression in children [Malik et al., 2012, 2014; Zai et al.,

2012b; Luppino et al., 2014]. Oxytocin and vasopressin encode

neurohypophysial hormones with primary roles in sexual repro-

duction and in water retention, respectively, but they have also



TABLE IV. Genes Associated With Aggression Psychopathology Measures in Adults

Gene symbol Gene name Phenotype Study References
AR Androgen receptor Antisocial behavior CGAS Prichard et al. [2007]

BDNF Brain-derived neurotrophic factor psychopathy CGAS Kourmouli et al. [2013]

DYRK1A Dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase 1A

Antisocial behavior GWAS Tielbeek et al. [2012]

ESR1 Estrogen receptor 1 Antisocial behavior, neuroticism

and psychoticism

CGAS Prichard et al. [2007]; Westberg et al. [2003]

HTR2A 5-hydroxytryptamine (serotonin)

receptor 2A, G protein-coupled

Antisocial behavior CGAS Burt and Mikolajewski [2008]

MAOA Monoamine oxidase A Antisocial behavior, conduct

problems and psychopathy

CGAS Beach et al. [2010]; Byrd and Manuck [2014];

Derringer et al. [2010]; Fergusson et al.

[2012]; Fergusson et al. [2011]; Fowler

et al. [2009]; McGrath et al. [2012];

Philibert et al. [2011]; Reti et al. [2011];

Sadeh et al. [2013]; Williams et al. [2009]

NR4A2 Nuclear receptor subfamily 4, group A,

member 2

Antisocial behavior CGAS Prichard et al. [2007]

SLC6A4 (5HTT) Solute carrier family 6

(neurotransmitter transporter),

member 4 (serotonin transporter)

Psychopathy and antisocial

behavior

CGAS Ficks and Waldman [2014]; Fowler et al.

[2009]; Garcia et al. [2010]; Sadeh et al.

[2013]

SNAP25 Synaptosomal-associated protein,

25kDa

Antisocial personality disorder CGAS Basoglu et al. [2011]

TFAP2B Transcription factor AP-2 beta

(activating enhancer binding protein

2 beta)

Antisocial behavior CGAS Prichard et al. [2007]

CGAS, candidate gene association study; GWAS, genome-wide association study.
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been related with different behavioral traits. Associations with

other less studied genes were identified in children and adolescent

samples, such as BDNFwith aggressive behavior [Kretschmer et al.,

2014; Musci et al., 2014], CHRM2 and CYP19 with externalizing

behavior [Dick et al., 2011; Latendresse et al., 2011; Miodovnik

et al., 2012] or SLIT2 and ESR1with anger [Sokolowski et al., 2010;

Vermeersch et al., 2013].

Candidate gene association studies evaluating CD and ODD in

children and adolescents have also considered other genes related

to serotonergic and dopaminergic neurotransmission (Table III).

The COMT Val/Val genotype of the p.Val158Met polymorphism

was found associated with CD [Caspi et al., 2008; Qian et al., 2009;

DeYoung et al., 2010]. COMT encodes the enzyme cathecol-o-

methyltransferase, involved in the degradation of dopamine, epi-

nephrine and norepinephrine. Also, theDRD4-7R allele was found

associated with ODD, CD and callous unemotional (CU) traits

[Kirley et al., 2004; Nikitopoulos et al., 2014; Zohsel et al., 2014].

DAT has been associated with ODD and conduct problems [Lee

et al., 2007; Burt and Mikolajewski, 2008]. The genes for the

serotonergic receptors HTR1B and HTR2A have been associated

with CD and CU [Jensen et al., 2009; Moul et al., 2013]. Several

variants within the OXTR gene have been associated with CD and

CU [Beitchman et al., 2012; Malik et al., 2012; Sakai et al., 2012;

Dadds et al., 2014; Smearman et al., 2015]. Also, associations have

been described for BDNF with ODD and CU [Willoughby et al.,

2013].
Candidate Genes Studied in Adults

Association studies with aggression traits in adults are summarized

in Table II. TheVal/Val genotype of the p.Val158Met (rs4680G>A)

polymorphism in the COMT gene has been associated with ag-

gression, externalizing behavior and anger. It has also been found to

moderate the influence of childhood sexual abuse in these traits

[Kulikova et al., 2008; Perroud et al., 2010; Shehzad et al., 2012].

However, other studies did not replicate these results [Flory et al.,

2007; Kang et al., 2008; Albaugh et al., 2010]. Several associations

have been reported for the serotonin receptor genes HTR1B and

HTR2A in adult samples. [Berggard et al., 2003; Giegling et al.,

2006; Zouk et al., 2007; Keltikangas-Jarvinen et al., 2008; Conner

et al., 2010; Dijkstra et al., 2013; Hakulinen et al., 2013; Banlaki

et al., 2015], but no significant associations were identified for

HTR1A orHTR2C [Serretti et al., 2007; Keltikangas-Jarvinen et al.,

2008; Perroud et al., 2010]. No consistent results were obtained for

TPH1 and TPH2 genes in the susceptibility to aggressive behaviors

[Manuck et al., 1999; Rotondo et al., 1999; Evans et al., 2000;

Rujescu et al., 2002; Hennig et al., 2005; Reuter and Hennig, 2005;

Mann et al., 2008; Yang et al., 2010; Yoon et al., 2012]. Associations

with the nitric oxide synthase genes NOS1 and NOS3 have been

reported for aggressive behaviors [Rujescu et al., 2008; Reif et al.,

2009; Retz et al., 2010]. An androgen receptor (AR) haplotype has

been associated with aggression, impulsivity, violent criminal

behavior and neuroticism, mostly in adult males [Jonsson et al.,
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2001; Cheng et al., 2006; Rajender et al., 2008;Westberg et al., 2009;

Aluja et al., 2011]. Other less studied genes in adult samples are:

ABCG1, AKAP5, ANK3, CDH13, CHRM2, CRHR1, CYP2D6,

DARPP32, DBH, TBX19, and TH. These have been associated

with aggressive behaviors in one or a few studies [Persson et al.,

2000; Gietl et al., 2007; Wasserman et al., 2007; Dick et al., 2008;

Gonzalez et al., 2008; Hess et al., 2009; Reuter et al., 2009; Richter

et al., 2011; Logue et al., 2013; Chen et al., 2014; Tiihonen et al.,

2014].

Only a few association studies have been performed for antiso-

cial behavior and psychopathy (Table IV). Studies in which anti-

social behavior was assessed in alcoholic individuals or as an

outcome of drug use are not considered here. Other less studied

genes showed association with antisocial behavior, conduct prob-

lems or psychopathy in adults are the ones encoding the androgen

receptor (AR) and the estrogen receptor 1 (ESR1), and also BDNF,

HTR2A, NR4A2, SNAP25 and TFAP2B [Westberg et al., 2003;

Prichard et al., 2007; Burt and Mikolajewski, 2008; Basoglu et al.,

2011; Kourmouli et al., 2013].
Genome-Wide Association Studies (GWAS)
GWAS studies of aggression have highlighted genes involved in

synaptic plasticity, which had previously not been assessed by any

candidate gene association study (Tables II–IV). None of the

association signals reached genome-wide significance, but sugges-

tive associations at P� 1e-05 will be discussed. Two GWAS have

been performed on aggressive traits (Table II).Mick et al. identified

several genes that were nominally associated with aggressive be-

havior scores in children, such as LRRC7 and STIP1. These genes

are involved in neuronal excitability and astrocyte differentiation,

respectively [Mick et al., 2011]. Another GWAS was performed in

adults and identified 11 nominal association signals with anger

(P� 1e-05). The most significant association was found with the

FYN gene, involved in calcium influx and release in the post-

synaptic density and also in long-term potentiation [Mick et al.,

2014]. The long-term potentiation pathway could play a role in

aggressive behaviors both in children and in adults, since FYN,

LRRC7 and STIP1, as well as other nominally associated genes in

the children GWAS, such as BDNF, NTRK2, and CAMK2A, are

mediators in this pathway [Mick et al., 2011, 2014]. Another study

assessed hostility in adolescents and in adult males and identified

several SNPs that showed nominal associations with anger, some of

them in the PURG and SHISA6 genes. However, little is known

about the function of these genes [Merjonen et al., 2011].

GWAS studies in children have been performed for CD and CU

traits (Table III). Anney et al. performed a family-based genome-

wide study and identified nine genes that were associated

with conduct problems: A2BP1, c12orf28, FLJ39061, KIRREL3,

LOC729257, PAWR, PKD1L2, PKD1L3, and RGL1 [Anney et al.,

2008]. A2BP1 and KIRREL3 encode proteins involved in neuron

development and synaptic plasticity, respectively, and PAWR

participates in the regulation of dopamine receptor D2 signaling.

However, little is known about the function of the other genes

in the brain. Another GWAS studied the interaction between

genes and environmental risk factors (GxE). It found nominal

associations between CD and mother’s warmth interacting with
several variants in five genes: RIT1, ADH1C, SLC6A1, A2BP1, and

MFHAS1 [Sonuga-Barke et al., 2008]. SLC6A1 codes for a GABA

transporter, and the proteins encoded by RIT1 and A2BP1 are

involved in neuronal development and regeneration. Interestingly,

the latter also shows suggestive associations with CD the GWAS

discussed above [Anney et al., 2008]. Hamshere et al. performed a

meta-analysis of ADHD GWAS data and observed that polygenic

risk for ADHDwas higher in ADHDwith CD, and that was mainly

associated with aggression [Hamshere et al., 2013].

Regarding CU, Viding et al. performed a two-stage GWAS,

identifying several suggestive associations. Some SNPs that were

associated with psychopathic traits in the discovery sample (all of

them showing 01e-05< P< 0.05) and that were nominally repli-

cated were located in neurodevelopmental genes, such as ROBO2

[Viding et al., 2010]. One of the genes within the top-30 list is

close to the serotonin receptor HTR1B, which had previously

been found associated with CU traits, CD, childhood aggressive

behavior, impulsive aggression, anger and hostility [Zouk et al.,

2007; Jensen et al., 2009; Conner et al., 2010; Hakulinen et al., 2013;

Moul et al., 2013].

Finally, a GWAS that assessed antisocial behavior in adults

(Table IV) identified association with DYRK1A, which encodes

a kinase with a role in synaptic plasticity and brain development

[Tielbeek et al., 2012].

Summary: Genetic Association Studies of
Aggression
Both CGAS and GWAS approaches have identified potential

susceptibility genes for aggressive behaviors. Candidate gene stud-

ies have focused mainly in dopaminergic and serotonergic genes

and have identified several associations in these (MAOA, 5HTT,

HTR1B, HTR2A, DAT, DRD2, DRD4, etc.) and other systems (e.g.,

hormone-related genes like ESR1, AR, AVP or OXTR). However,

most of these associations showed contradictory results or were

identified in underpowered samples. Thus these results should be

interpretedwith caution. On the other hand, genome-wide studies,

although not reaching genome-wide significance, have highlighted

genes involved in neurodevelopmental processes and synaptic

plasticity, not previously considered in candidate gene studies.

This may indicate that aggressive behavior does not only involve

neurotransmitters or hormonal functions, but also molecules

involved in establishing neuronal circuits, neuron-to-neuron con-

nectivity and brain plasticity.

The lack of genome-wide significant findings in the GWAS and

the variable results obtained frommany of theGCAS is likely due to

the small sample sizes of these studies and also to clinical and

etiological heterogeneity of the patient groups studied. When

assessing aggression-related phenotypes it may be relevant to

separate the different phenotypes into more homogeneous groups

(e.g., reactive versus proactive aggression) rather than considering

them as a whole, since variability in the causes of each type of

aggressive behavior may dilute genetic susceptibility effects. In this

reviewwe have considered only those data obtained from studies in

which aggressive behaviors could not be attributed to other psy-

chiatric conditions, such as drug dependence, bipolar disorder or

schizophrenia. For instance, a recent meta-analysis of violent or
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aggressive behaviors considered 277 associations in 31 genes and

did not find any significant result, although GxE interactions

were not considered. However, this meta-analysis included data

from studies with very different phenotypic traits, psychiatric and

neurological disorders, and probably that may have prevented

from identifying significant associations [Vassos et al., 2014].

On the other hand, other meta-analyses identified associated

the MAOA-uVNTR and 5HTTLPR polymorphisms [Byrd and

Manuck, 2014; Ficks and Waldman, 2014].
ANIMAL MODEL STUDIES OF AGGRESSION

Aggression is an evolutionarily conserved behavior that has been

studied in many non-human species. This section of the review

focuses on four species of animal models that have helped tremen-

dously to shape the basis of our current understanding of neuro-

biological andmolecularmechanisms underlying aggression: avian

models, zebrafish, rodents and drosophila models. We particularly

emphasize the utilities and potential of these animal model organ-

isms for future genetic studies of aggression.
Avian Models of Aggression
As one of the earliest species used to study the biological basis of

aggression, songbirds, demonstrate rich social behaviors such as

territoriality, flock hierarchies and male dominance, as well as

breeding and parenting behaviors. Most studies focused on offen-

sive behavior associated with territoriality. Defensive behaviors

have been studied using intruders or subordinate birds. Study of

songbirds behavior and their hormonal and neuronal correlates

have shaped our basic understanding of aggressive behavior

including, for example, the roles of plasma testosterones and

hypothalamo-pituitary-gonadal (HPG) axis (see reviews [Adkins-

Regan, 2005; Maney and Goodson, 2011]), and the serotonin and

dopamine systems. In contrast to the large amount of behavioral,

neurochemical and endocrine studies of songbirds over the last

several decades, dissecting the genetic underpinnings of aggression

has been scarce.

A naturally occurred segregation of high vs. low aggression with

a plumage polymorphism in white-throated sparrow offers a

unique opportunity for identifying causal genetic factors respon-

sible for aggressive songbird phenotypes [Thorneycroft, 1966;

Ficken et al., 1978]. Half of white-throated sparrows are heterozy-

gous carriers of a rearranged chromosome 2 (ZAL2m); they have a

white stripe in the crown and show high aggressive and poor

parenting behaviors. Another half are homozygous for wild-type

chromosomes (ZAL2); they are less aggressive, show normal

parenting and have a tan stripe in the crown. Heterozygotes almost

always mate with wild-type birds, which maintains the population

structure. Horton et al reported a behavioral characterization of a

homozygote female, demonstrating extremely aggressive and dom-

inating behavior and supporting the causal role of rearranged

chromosome 2 in increased aggression [Horton et al., 2013].

However, it has taken nearly 30 years after the discovery of this

phenotype to describe causal genes and variants in the affected

regions [Davis et al., 2011; Huynh et al., 2011]. Among them a

prime candidate gene is estrogen receptor 1(ESR1), in which
promoter polymorphisms linkedwith the rearranged chromosome

were shown to regulate brain region-specific expression of ESR1

which was correlated with aggressive behavior [Horton et al.,

2014].
Rodent Models of Aggression
Rodents, including mouse, rat, hamster and prairie vole, are well-

studied models for aggressive behavior due to controlled breeding,

and their rich repertoire of species-specific social behaviors.

Similar to many birds, rodents are also territorial. Adult male

mice or rats will establish a territory when given sufficient living

space and attack unfamiliar males intruding in their home cage.

The intruders will show defensive behaviors in response to the

offensive attacks by the resident. In this classic resident-intruder

test setting, both offensive aggression (resident) and defensive

behavior (intruder) can be studied [Mineur and Crusio, 2002].

Usually, the latency to initiate the first attack from the resident

from the first sniff of the opponent is indicative of the aggres-

siveness of the resident.

Variations of the resident-intruder test are often used to evaluate

the factors influencing aggressive behavior. For example, social

isolation (individual housing from days to weeks) can increase

offensive aggression of male mice towards group-housed strangers

[DaVanzo et al., 1986]. However isolation can also induce timidity

in a small but considerable percentage of mice, which show alert

and defensive postures, and behaviors such as running away, non-

agonistic social interactions rather than delivering attack bites

[Krsiak, 1975; DaVanzo et al., 1986]. The difference in social

isolation induced abnormal aggressive behavior in mice provides

a model to study underlying genetic, hormonal and environmental

factors. For example, cannabinoid CB1 receptor (CB1r) knockout

mice showed lack of isolation-induced aggression, which was

associated with higher expression of 5HT1Br, COMT and

MAO-A in amygdala [Rodriguez-Arias et al., 2013]. Social

isolation also disrupts immune function and enhances agonistic

behavior in prairie voles [Scotti et al., 2015]. Social-isolated rats

show hyper- aroused behavior during aggressive contacts, respond

inappropriately to species-typical social cues and attack more

aggressively by aiming at vulnerable body parts such as head,

throat and belly. The enhanced abnormal aggressive behavior

was associated with significantly increased activation of brain

regions that are known to regulate inter-male aggression in rats

[Toth et al., 2012].

For female mice or rats, a well-studied aggressive behavior is

maternal aggression. Female mice show enhanced aggression dur-

ing the first two weeks of the post-partum period. The lactating

female will attack male and female intruders to protect her litter.

The attack bites of dominant females are usually directed towards

the head and snout of opponents [Miczek et al., 2001]. These

offensive attacks are usually fast and rarely preceded by anogenital

investigation or threats; although sniffing the intruder’s genital

area after an attack is also considered offensive aggressive behavior.

Sometimes, highly aggressive females will attack this vulnerable

part. Maternal aggressive behavior can also be defensive, for

example piloerection and an upright posture in front of the

intruder, boxing and holding down the intruder with her front
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legs, etc [Bosch and Meddle, 2005]. Neural manipulation studies

showed that disrupting offensive attacks may not affect defensive

expressions and vice versa, suggesting that the two categories of

maternal aggressive behavior are neurobiologically dissociable

domains. However, some argued that all maternal aggression

can be collectively categorized as defensive because the ultimate

goal of such behavior was to defend and protect the litter [Lonstein

and Gammie, 2002]. Lonstein et al. thoroughly reviewed the neural

circuitry underlying the maternal aggression and the sensory,

hormonal and neurochemical control of the behavior [Lonstein

and Gammie, 2002]. A large number of studies have evaluated the

roles of neuropeptides such as oxytocin, vasopressin and opioid,

neurotransmitter systems such as dopamine, serotonin, GABA, as

well as corticotrophin releasing hormone and nitric oxide in

contributing to the presentation of maternal aggression in rodents

(reviewed [Lonstein and Gammie, 2002].

Noxious and painful stimuli (for example electric shock) have

been used to induce aggressive bites in rodents, even in non-

aggressive strains. However, the validity of such approaches is

questioned in regard to human aggression. The tube dominance

test is another standardized laboratory test that is commonly used

to measure aggression and social dominance in rodents [Lindzey

et al., 1961]. The test employs a transparent tube that allows two

animals (mice or rats) to enter from opposite ends face to face and

to interact in the center. Dominant animals will force the opponent

to completely retreat from the tube. The numbers of winning vs.

losing interactions are indicative of the dominance status. Defen-

sive burying refers to a stereotypical response in rodents to a

noxious stimuli (such as an electric shock-probe), demonstrated

by shoving bedding material to bury the threats. Behaviors ob-

served in a standardized shock-probe/defensive bury test such as

burying, freezing, rearing, grooming and exploration are often used

to measure anxiety levels and different coping strategies that are

correlated with aggression phenotypes.

Strain differences in rodents (particularly mice) have clearly

shown that aggressive phenotypes are inherited. Several genetic

tools have been developed for rodentmodels to study themolecular

and biological mechanisms underlying aggressive behavior. The

earliest one was artificial breeding. Using standardized behavioral

testing paradigms, artificial selective breeding was carried out to

produce contrasting inbred strains with high vs. low aggression

scores. These inbred strains include the Finland Turku aggressive

(TA) and non-aggressive (TNS) strains [Sandnabba, 1996], the

North Carolina NC900 and NC100 strains [Caramaschi et al.,

2007], and the Netherlands short attack latency (SAL) and long

attack latency (LAL) mice [van Oortmerssen and Bakker, 1981].

Cross-fostering and the post-natal environment do not alter the

development of aggression in thesemouse lines, further supporting

the genomic etiology of their aggression. The TA and TNS lines

demonstrated Mendelian segregation and autosomal inheritance

[Sandnabba, 1996]. The Y chromosome was found to play a role in

the difference of attack latencies between the SAL and LAL lines

[Sluyter et al., 1995; Sluyter et al., 1997]. Several naturally devel-

oped inbred lines with different levels of aggression were also

recognized as useful models for studying the genetics of aggression.

For example, the FVB/NtacfBR male shows more aggression

toward females when compared with C57BL/6J males [Canastar
and Maxson, 2003]; the NZB/B1NJ strain shows extremely high

inter-male aggression, whereas A/J mice rarely show any aggressive

behavior [Roubertoux and Guillot, 2005]. A useful summary of

commonly used inbred mouse lines was provided by Crawley et al.

who compared a wide variety of behavioral traits including aggres-

sion, anxiety and parental behaviors based on an extensive litera-

ture review [Crawley et al., 1997].

Like the studies of songbirds, studies of these inbred strains in

the past three decades have helped our understanding of neural

circuitry, hormonal and neurochemical correlates for different

domains of aggressive behavior. See reviews [Miczek et al.,

2001]. However, identification of causal genetic determinants

has not been fruitful. A few attempts have been made to identify

quantitative trait loci (QTLs) underlying differences in aggressive

phenotypes between inbred lines. QTL analysis showed that ag-

gressive attacks measured in different testing conditions, for ex-

ample the inter-male aggression and isolation induced aggression,

have overlapping, yet different genetic contributions [Roubertoux

and Guillot, 2005]. This observation supports the distinction of

different domain/categories of aggressive behavior and highlights

the complexity of underlying genetic causality. However, we

are still far away from pinpointing the causal genes within

these QTL regions which often contain hundreds of genes. New

analytic methodologies have recently been used to uncover such

complex genetic causes of aggression. Malki et al. [2014] used a

weighted gene co-expression network analysis (WGCNA) method

to examine transcriptome-wide differences between the three

inbred mouse lines with high vs. low aggression levels. They

uncovered two important pathways involving NF-kB and

MAPKs. The study also yielded 14 differentially expressed genes

from the two significant pathways as plausible candidates and

some of them, such as Adrbk2, had previously been implicated

in aggressive behavior. Since gene expression is an unbiased

approach, identifying previously implicated candidate genes con-

firms the biological relevance of those co-expression networks

in mouse aggressive phenotypes. Although we still have not pin-

pointed the genetic determinants underlying the differences in

aggression between those inbred models, we are one step closer

towards understanding the complex genetic networks that are

underlying the phenotypes.

Another useful genetic approach is single gene manipulation,

i.e., transgenic and gene knockout or mutations, particularly in

mice. A detailed review of earlier genetic knockout studies

has been provided elsewhere [Takahashi and Miczek, 2014].

We performed an updated PubMed search using keywords of

“Knockout AND (Mice OR Mouse) AND ((aggressive behavior)

OR aggression)” and retrieved 265 articles on non-human animals.

After filtering through title, abstract and full texts, we summarized

85 genes that altered one ormore subtypes of aggressive behavior in

knockout mice (or were silenced by siRNA, see Table V). Many

of these genes regulate sensory, hormonal and neurochemical/

neurotransmitter systems and neurodevelopmental processes. KO

mice phenotype information can also easily searched through

databases such as Mouse Phenome Database at The Jackson

Laboratory and currently �50 strains of mutant mice with abnor-

mal aggressive behavior are available from the Jackson Laboratory

inventory.
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In this section, we give some classical examples and highlight

the advantages and limitations of the single gene approach. For

example, gene knockouts of 5-HT neuron-specific transcription

factor Pet-1 or tryptophan hydroxylases 2 (TPH2) lead to enhanced

offensive aggression in resident-intruder tests accompanied by

reduced 5-HT content or 5-HT neural activities [Hendricks

et al., 2003; Alenina and Kikic, 2009; Angoa-Perez et al., 2012;

Mosienko et al., 2012]. Knockout of alpha-calcium-calmodulin–

dependent kinase II (a-CaMKII) induced a decreased fear response

and an increase in defensive aggression accompanied by reduced

serotonin release in dorsal raphe neurons [Chen et al., 1994]. In

contrast, knockout of the monoamine oxidase A (MAOA) gene

increased brain 5-HT content. In humans, deficiency of MAOA

causes Brunner syndrome characterized by impulsive aggres-

siveness [Brunner and Nelen, 1993]. MAOA knockout mice also

display enhanced aggression toward intruder mice [Scott et al.,

2008], but reduced defensive behavior in the presence of predator-

related cues [Godar et al., 2011]. These examples show the com-

plexity of the genetic mechanisms underlying different aggression

domains and also highlight the limitations of the single gene

approach.

Manipulation of a single gene produces a cascade of expression

and biochemical changes during development, which interact with

environmental factors and other genetic factors. For example

MAOA knockout mice showed enhanced expression of NMDA

receptor subunit 2A and 2B expression in the prefrontal cortex and

their abnormal aggressive behavior can be selectively countered by

administration of NMDAR antagonists [Bortolato and Godar,

2012]. This showed a critical role of NMDA receptor in the

pathogenesis of escalated aggression among MAOA knockout

mice. Consistent with this, an NR1 subunit deficient mouse line

shows reduced social investigation and lack of species-typical

aggressive behavior in a resident-intruder paradigm [Mohn

et al., 1999; Duncan et al., 2004]. Therefore, interpretation of

single gene knockout studies needs to be cautious and take into

consideration downstream and compensatory changes in the con-

text of the whole organism.

Two species of voles distinct in their social behaviors exist as a

perfect model to study genes and aggression. Prairie and pine voles

are highly social andmonogamous, whereasmeadow andmontane

voles are asocial and promiscuous [Insel and Shapiro, 1992; Young

andWang, 2004]. Prairie voles develop pair bonds between mates.

Males display intense aggression toward female ormale conspecific

strangers in the resident-intruder paradigm but they maintain a

high level of social affiliation with their familiar female partners

[Aragona and Liu, 2006; Gobrogge et al., 2007]. Although similar in

nonsocial behaviors, nonmonogamous vole species do not show

partner preference or increased aggression towards stranger con-

specifics [Insel et al., 1995]. Species comparisons show that poly-

morphisms in the arginine vasopressin (AVP) receptor gene, V1aR,

were associated with distinct patterns of gene expression in the

brain associated with differences in pair bonding and selective

aggression of voles [Lim et al., 2004; Hammock et al., 2005; Ophir

et al., 2008]. Genetic variations of V1aR and plasma levels of AVP

were also associated with human social behaviors including ag-

gression and partner relationships [Walum et al., 2008;Gouin et al.,

2012; Luppino et al., 2014].
Drosophila Models of Aggression

Aggressive behavior in the fruit fly, Drosophila melanogaster, has

been observed since 1915 when first reported by Sturtevant [Stur-

tevant, 1915]. Males spread their wings and engage in antagonistic

encounters when competing for mating females. Both offensive

and defensive behaviors have been observed. Drosophila’s nervous

system is simple but recapitulates a range of cellular and network

properties relevant to humans. With modern genetic tools for

drosophila, this model system has made significant contributions

to our genetic understanding of aggressive behavior. Similar

approaches that we described for rodent models, such as artificial

selection, QTL mapping and single gene manipulation, have been

used in drosophila research. A detailed summary of these studies

and the genetic, pheromonal regulation, neurobiological and

genetic regulation of aggressive behavior has been reviewed else-

where [Dahanukar and Ray, 2011; Zwarts et al., 2012; Fernandez

and Kravitz, 2013]. In this section we highlight several recent

significant contributions.

Edwards et al. compared the transcriptomes of high vs. low

aggression drosophila lines. They identified 1593 probe sets that

were differentially regulated in these lines [Edwards et al., 2006].

Remarkably, out of 19 genes selected for behavioral validation

using genomic manipulation in an isogenic background, 15

showed significant effects in altering aggressive behaviors after

Bonferonni corrections. These genes are involved in diverse bio-

logical processes, including electron transport, catabolism, nervous

system development and G-protein coupled receptor signaling.

Seven were computationally predicted genes and none had been

previously implicated in aggressive behavior. Dierick and Green-

span also examined the gene expression between the high aggres-

sion and neutral lines [Dierick and Greenspan, 2006]. Among the

significantly, differentially expressed genes, a cytochrome gene,

Cyp6a20 that might be involved in pheromone degradation, was

confirmed to directly regulate aggressive behavior by using a

mutant line and an odor- binding protein. Obp56a, showed the

most robust reduction in expression in the aggressive line [Dierick

and Greenspan, 2006].

High-throughput and automated behavioral assays were devel-

oped to measure drosophila social behavior including aggression,

enabling larger scale genetic correlations with the behavior [Hoyer

et al., 2008; Dankert et al., 2009]. Forty inbred lines were quantified

for aggressive behavior and genome-wide association screens for

quantitative trait transcripts were performed on these lines

[Edwards et al., 2006]. Two hundred sixty-six novel candidate

genes associated with aggressive behavior were identified. Nine

genes were confirmed to show altered aggression from behavioral

evaluation of 12 selected candidate genes [Edwards et al., 2006].

Furthermore, a network based co-expression analysis revealed

functional modules of correlated transcripts that were associated

with variations of aggressive behavior. Table VI, lists the candidate

genes for aggression implicated by drosophila studies. We also

included the genes that were identified through the above describe

expression analysis andwere confirmed by behavior changes on the

mutant lines. Of note, none of these genes have been implicated in

human aggression.More recently, collective efforts were made to

generate 192 genome-sequenced inbred lines derived from a single
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Raleigh population. The drosophila melanogaster Genetic Refer-

ence Panel (DGRP) was constructed to share these inbred lines and

their genetic data [Mackay et al., 2012]. DGRP provides powerful

resources for mapping genetype- phenotype relationships. Taking

the advantage of the DGRP resources and standardized quantita-

tive behavioral assays, a GWAS study for aggressive behavior was

conducted. 74 common variants in 39 genes were reported as

significant association candidates and one SNP in the intron of

CG14869 (AdamTS-A) met the genome-wide significance thresh-

old (2.61� 10�8) [Shorter et al., 2015]. Only one significant

candidate gene association, 5-HT1A, had been previously impli-

cated in aggression. Additionally, 22 genes harboring rare variants

were significantly associated with aggressive behaviors and 10

passed Bonferroni corrections. None of these genes had been

implicated in aggression previously [Shorter et al., 2015]. The

same paper also described an extreme QTL GWA study of the

advanced intercross populations (AIPs) derived from themost and

least aggressive DGRP lines. This approach identified 746 SNPs in

or near 355 genes with significant association, of which 22 passed

Bonferroni corrections. The top genes included some in the

serotonin, dopamine and glutamate pathways, consistent with

the well-known roles of these genes in aggression. Due to the large

number of genes with significant associations, these are not in-

cluded in Table VI. See the original reference for the complete list of

genes and variants [Shorter et al., 2015]. Surprisingly, this list of

genes has almost no overlap with theGWA results from the original

DGRP lines. Despite this non-overlap in genes and variants, two

results were mapped and enriched onto a genetic interaction

network inferred from an analysis of pairwise epistasis in the

DGRP lines [Shorter et al., 2015]. This observation supports the

multifactorial nature of the genetic underpinnings for aggression

and suggests that different aggression genes may converge on the

same interconnected networks or pathways.
Frustrative Non-Reward Reactions
Frustrative non-reward aggression has been less well studied in

animal models. Discontinuation or omission of scheduled rein-

forcement can effectively induce escalated levels of aggressive

behavior in fish [Vindas et al., 2012, 2014], birds [Azrin and

Hutchinson, 1966; Cherek and Pickens, 1970], rodents [Stanford

and Salmon, 1989; Miczek et al., 2001], pigs [Melotti et al., 2013],

monkeys and humans [Barzman and Eliassen, 2014]. An operant

procedure has been implemented in mice using sucrose as a

reinforcer to examine extinction induced aggressive confrontation

to intrudermice [Miczek et al., 2001]. Similar paradigms have been

used to induce aggressive responses in other species. Studies have

examined the roles of the nonadrenergic system [Stanford and

Salmon, 1989], the 5-HT1B receptor [de Almeida and Miczek,

2002], neurosteroids and GABAA receptors [Miczek et al., 2003] in

frustrative non-reward induced reactions in rodents and fish.

Barzman et al found that the expression of TNF-related inflam-

matory cytokine genes was positively correlated with frustrative

non-reward and aggressive behaviors in pediatric patients with

bipolar disorder [Barzman and Eliassen, 2014]. However, no

studies have examined the genes underlying frustrative nonreward

aggression in animals.
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Summary of Animal Models of Aggression
The face, construct and predictive validities for aggression models

of various species have been extensively evaluated. Although

evolutionarily conserved, many aggressive measurements in ani-

mal models are species-specific and should be cautiously translated

to human behavior. Nevertheless, animal models have facilitated

our understanding of the neurobiological and molecular under-

pinning of normal and pathological aggressive behaviors. Although

many classical pathways such as hormonal and neurotransmitter

pathways have been largely replicated and confirmed in various

animal and human studies, recent advances in genetic tools and

network based analysis have suggested novel genetic mechanisms.

This is not surprising, since previous candidate gene centered

studies had already suggested a multifactorial genetic contribution

with small and pleiotropic effects and complex epistatic relation-

ships. Future directions are 1) to focus on developing network

based analytic approaches to identify of causal genes and net-

works and to clarify the relationship of genes and networks with

aggressive behavior; and 2) to further delineate the species-

specific and non-specific domains of aggressive behavior as

well as escalated/abnormal aggression, and to clarify the over-

lapping yet distinct causal genes and networks underlying these

separable domains, particularly overlooked domains such as

frustrative non-reward.

SUMMARY AND CONCLUSIONS

In planning this review, we had set out to learn about the genetic

underpinnings of the RDoC constructs associated with aggression:

frustrative non- reward, defensive aggression and offensive (or

proactive) aggression. Although the constructs of defensive and

offensive aggression have been widely used in the animal genetics

literature, the human literature is mostly agnostic with regard to all

the RDoC constructs. That said, many aggression phenotypes have

been studied in human genetic paradigms and the insights from

these studies are likely relevant to the RDoC constructs.

We know from twin studies that about half the variance in

behavior may be explained by genetic risk factors. This is true

for both dimensional, trait- like, measures of aggression and

categorical definitions of psychopathology. The non-shared envi-

ronment seems to have a moderate influence with the effects of

shared environment being unclear. Gene-environment interaction

appears to play an important role but the details need to be worked

out.

Human molecular genetic studies of aggression are in an

early stage. The most promising candidates are in the dopami-

nergic and serotonergic systems along with hormonal regulators.

Genome-wide association studies have not yet achieved genome-

wide significance, but current samples are too small to detect

variants having the small effects one would expect for a complex

disorder. These studies have implicated genes involved in neuro-

developmental processes and synaptic plasticity, not previously

considered in candidate gene studies. This may indicate that

aggressive behavior does not only involve neurotransmitters or

hormonal functions, but also molecules involved in establishing

neuronal circuits, neuron-to-neuron connectivity and brain

plasticity.
Future studies should improve the measurement of aggression

by using a systematic method of measurement such as that

proposed by the RDoC initiative, which differentiates defensive

aggression, offensive aggression and frustrative non-reward

[Sanislow et al., 2010]. Although the RDoC matrix provides

some guidance about the measurement of frustrative non-reward

in humans, it does not provide guidance for the measurement of

offensive and defensive aggression, although relevant measures are

well-developed in the animal literature. These measurement gaps

suggest a role for the creation of reliable and valid measures of

RDoC constructs for use in human aggression studies. Replication

has been difficult for the field of psychiatric and behavioral genet-

ics. Such problems will only be magnified for aggression if the field

cannot come to a consensus about how aggression phenotypes

should be measured.
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