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Abstract
There is extensive natural variation in human gene expression. As quantitative phenotypes,
expression levels of genes are heritable. Genetic linkage and association mapping have identified
cis- and trans-acting DNA variants that influence expression levels of human genes. New insights
into human gene regulation are emerging from genetic analyses of gene expression in cells at rest
and following exposure to stimuli. The integration of these genetic mapping results with data from
co-expression networks is leading to a better understanding of how expression levels of individual
genes are regulated and how genes interact with each other. These findings are important for basic
understanding of gene regulation and of diseases that result from disruption of normal gene
regulation.

Gene expression underlies cellular phenotypes; however, despite its importance, expression
levels of many human genes differ among individuals. To understand how gene expression
regulates key biological processes, early studies focused on identifying regulators, such as
transcription factors, and their regulatory mechanisms. These studies improved our
understanding of how gene expression is regulated in human cells and how its disruption can
lead to developmental disorders and other human diseases. Although such studies shed light
on regulatory mechanisms, they did not address normal variation in gene expression. In fact,
for experimental studies of molecular mechanisms, highly variable observations are an
unwanted complication. However, it has become clear that gene expression levels vary among
individuals and can be analysed like other quantitative phenotypes such as height and serum
glucose level1–3. The genetics of gene expression (referred to here as GOGE, pronounced ‘go-
gee’) is the study of the genetic basis of variation in gene expression. GOGE studies (also
known as expression QTL (eQTL)4 studies or genetical genomics5) take advantage of this
natural variation, enabling the study of gene expression. The results have already uncovered
interesting and unexpected aspects of gene regulation4,6–9.
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Technical developments such as microarrays10,11, which changed the scale of how gene
expression can be measured, were important advances. They allowed measurement of the
expression levels of thousands of genes in large numbers of individuals. Early microarray-
based studies of gene expression provided a detailed map of expressed genes in various tissues
and diseases, and the large volume of gene expression data revealed that the expression levels
of many genes differ among individuals. With the ability to measure thousands of transcripts
simultaneously, it was inevitable that some genetic studies began to shift from more traditional
hypothesis-driven science to data-driven science. Identifying the extent of normal variation in
human gene expression stimulated a fruitful merger of human genetics and genomics. GOGE
studies have led to the identification of regulatory regions and DNA sequence variants that
influence expression levels of genes in a range of organisms. For example, genome-wide
GOGE studies have made it possible to evaluate the relative influence of cis and trans
regulation on gene expression. In the last few years, several reviews of this field have been
published5,12–17. Here, we focus specifically on GOGE studies in human cells. Because of the
size and complexity of the human genome, and the fact that humans are not experimental
organisms, the genetic analysis of human phenotypes and diseases carries a unique set of
problems. The genetic analysis of gene expression as a human phenotype is no exception.

In this Review we discuss some of the early results from GOGE studies, the current challenges
and the future developments. We start with an overview of how GOGE studies are carried out,
and then we review the current understanding of the regulatory landscapes in cells under normal
(baseline) conditions and of the variation between populations. We end by discussing new
studies that use GOGE to understand genetic networks, and how studying cells after exposure
to perturbation can reveal different perspectives on gene regulation.

Why study gene expression phenotypes?
The main goal of GOGE studies in humans is to identify the DNA variants (polymorphisms)
that influence the expression levels of genes — that is, the gene expression phenotype. The
significance of such findings is at least threefold. First, the studies connect variation at the
DNA sequence level to that at the RNA level. There are over 3 million SNPs18,19 and other
sequence variants such as copy number polymorphism20 in the human genome. Although most
of these variants are presumably neutral, some are functional. However, identifying the
functional variants has been challenging. GOGE studies narrow the field by pointing to regions
and ultimately variants that regulate gene expression. Some of these regulatory variants have
already been shown to be susceptibility alleles for human diseases such as asthma21,22. For
further discussion on how the results of GOGE studies apply to the understanding of human
diseases, see the recent review by Cookson and colleagues23.

Second, in identifying variants that influence gene expression (or closely associated variants),
GOGE studies scan the genome for regulators without the need for prior knowledge of the
regulatory mechanisms. This allows GOGE studies to identify unknown regulators of gene
expression. Third, unlike traditional molecular analyses, GOGE studies allow simultaneous
investigation of many gene expression phenotypes. Thus, regulators for many phenotypes can
be identified in parallel. The resulting regulator–target gene relationships facilitate the
characterization of the gene expression regulatory landscape in human cells. This is a major
advance from earlier gene expression profiling studies. In those earlier studies, one could
identify genes that are activated or repressed in different cellular or disease states, and study
the correlations among those genes. However, although gene correlations can imply co-
regulation or a regulatory relationship, they do not indicate which genes are regulated and
which are the regulators. GOGE mapping studies provide such information. When a gene
expression phenotype maps to a particular region, the phenotype must be the target and the
specified region must contain the regulator. Thus, by combining results from GOGE studies
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with correlation analysis, one can improve gene co-expression networks from so-called
undirected to directed graphs. This aspect of GOGE studies is described in more detail later.

How to carry out GOGE studies
Before we discuss results of GOGE studies, we describe how GOGE studies are done. We
begin with the definition of expression levels of genes as phenotypes, and then discuss the
human cells that have been used, and finally describe the genetic mapping approaches.

Phenotypic variation and heritability
It has only recently become clear that, within the same cell type and developmental stage, there
is extensive individual variability in gene expression. FIGURE 1 illustrates the expression
levels of 12 genes in 50 unrelated individuals measured in the same cell types and in the same
microarray experiments: although the expression levels of two genes — PARK7 and ATP5J2
— show little variability among these individuals, other gene expression phenotypes showed
extensive individual variation. This experiment was designed so that the non-genetic sources
of variation that contribute to inter-individual differences were the same for all the genes3,24;
the observed differences in variability among the genes are therefore best explained by
underlying differences in the contribution from genetic variation, which is equivalent to the
heritability of the phenotype. The variability among related individuals is less than that among
unrelated individuals3,24, thus indicating a genetic component to variation in human gene
expression. More formal estimates of heritability in a variety of human cells — including
lymphocytes and cells from immortalized cell lines, adipose tissue and brain tissue — have
also shown a genetic contribution to variation in gene expression24–27.

In the first years of GOGE studies in humans, it seemed that demonstrating heritability was a
prerequisite to beginning genetic analyses, such as mapping by linkage and by association.
When the degree of heritability is in doubt, it is still of interest to show that heritable variation
contributes to gene expression variation. However, as with estimating heritability for other
traits, various assumptions need to be made when calculating heritability for gene expression.
Therefore, because in many cases DNA variants that influence expression levels of some genes
have already been identified (that is, a heritable component of gene expression variation has
been established), it is more practical to proceed directly to mapping, and find additional DNA
polymorphisms that influence gene expression.

What cell types have been used for GOGE analyses?
Among the first questions in designing GOGE experiments is what type (or types) of cells to
study. One of the challenges of studying human gene expression is availability of cells.
However, as the central questions concern individual variation in gene expression, the studies
require cells from a large number of individuals. In the late 1980s, Dausset and colleagues at
the Centre for the Study of Human Polymorphisms (CEPH) in Paris, France, collected blood
samples from large multigeneration families, and immortalized the B cells (to make
lymphoblastoid cells) as a DNA source for genotyping, in order to construct genetic maps.
Several GOGE studies have used cells from these CEPH pedigrees as an RNA source for
studying gene expression6,25. As cell lines, they can be grown under uniform conditions, thus
allowing one to minimize the environmental variables. However, a recent study suggests that
other variables, such as titres of the Epstein–Barr virus used for immortalization of these cells,
should be taken into account when designing experiments28. As these samples were used for
the construction of several generations of genetic maps, many genotypes are available to verify
that these cells have normal chromosomal content and show expected Mendelian inheritance
of genetic markers. In addition to the immortalized B cells of the CEPH pedigrees, samples
from other human populations collected by the International HapMap Project18,19 and those
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collected by Cookson and colleagues for an asthma study21,22 have also been used for GOGE
studies7–9,29,30. Results from GOGE studies of immortalized B cells are highly concordant,
even though cells were grown independently in different laboratories and various platforms
were used to measure gene expression22,27,31.

The GOGE studies of immortalized B cells were followed by studies of other cell types. These
studies analysed gene expression in cells from blood and subcutaneous adipose tissues from
Icelandic populations26, cells from tissues from brain banks32, lymphocytes from a large-scale
study of heart disease27, and cells from liver samples from surgical resections and
cadavers33. Although these samples were collected for gene expression analysis, many include
health information and other biological data about the donors. The additional information will
allow more extensive analyses, such as correlations of gene expression with clinical
parameters.

Determining what cell types to use for GOGE studies depends on sample availability and the
goals of the project. Primary cells from human subjects have the advantage that they have not
been experimentally manipulated; however, it is difficult to control for the exposures (such as
diet or medication) of the donors. These exposures (environmental factors) can have a
significant influence on gene expression, and therefore can dampen the genetic influence on
gene expression34. One of the most accessible human tissues is blood, but blood is not
homogeneous and its composition differs between individuals. For example, some subjects
have higher neutrophil counts and others have higher lymphocyte counts. If blood cells are
used for studying variation in gene expression, it is important that these differential cell counts
are taken into consideration. By contrast, cultured cells such as immortalized B cells are less
natural, but they are from the same cell type — B lymphocytes — and can be grown under
controlled conditions to minimize the environmental influence on gene expression. Although
selection of the appropriate cell type is important in experimental design, it is reassuring that
the regulatory variants found in immortalized B cells regulate the same target genes in other
cell types (discussed further in a later section).

Given the difficulty of collecting human samples, one may wonder why model organisms are
not studied instead. Studies in model organisms have provided valuable general insights into
the genetic basis of variation in gene expression, but studying human cells is necessary as some
components of gene regulation in humans are not captured by model organisms. In addition,
humans are heterozygous at many loci and it is difficult to reconstruct heterozygosity at a large
number of loci in inbred experimental organisms17. Thus, even though it is difficult to collect
human samples, future studies of gene expression will need to continue to identify ways to
analyse human tissues.

Genetic mapping to locate determinants of gene expression phenotypes
As expression phenotypes are intermediate phenotypes that are related to DNA sequence
variants, they are more amenable to genetic studies than other human quantitative phenotypes,
such as height and weight. This has been demonstrated by the successful identification of
regulatory regions that influence gene expression phenotypes in multiple human tissues in
genetic linkage analysis6,26,27 and association studies7–9,32,33 (BOX 1). However, it is
challenging to identify the precise causal sequence variants. In experimental organisms and
plants, studies have identified QTLs and, in some cases, even the causal nucleotide35,36.
Although technological and methodological advances have improved QTL mapping in
humans, mapping of quantitative human traits remains difficult37.

Cheung and Spielman Page 4

Nat Rev Genet. Author manuscript; available in PMC 2010 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Box 1

Methods in genetics of gene expression studies

Genetic linkage and association

Two loci (for example, a marker and a trait) that do not segregate independently of each
other at meiosis are linked, implying that they are located near each other on the same
chromosome. In linkage analysis, a large sample of families, ideally with large siblingships,
is genotyped for a few thousand markers (SNPs) of known location throughout the genome.
Each marker is tested for linkage with the phenotype of interest. The evidence for linkage
is provided as a LOD score (base 10 logarithm of the odds, or ‘log-odds’) or as the
corresponding p value. The results of this genome-wide linkage scan are usually presented
graphically (FIG. 3a).

The underlying principles for association testing are different. The analysis is based on a
large sample of unrelated individuals. These may be patients and unaffected individuals, as
in a case–control study, or simply unrelated individuals who vary for a quantitative trait,
such as a gene expression phenotype (for example, the expression level of copine I,
CPNE1, in FIG. 3). For variation in a gene expression phenotype, association studies
determine if the level of gene expression differs depending on SNP genotype. If it does
differ then there is association between the gene expression level and the alleles (or
genotypes) of that SNP. In a genome-wide association study this is done for a large number
of SNPs (500,000 to 1 million) with locations spread through the genome. For each SNP
location, the level of significance is estimated, and the results are presented graphically
(FIG. 3b). In a genetics of gene expression (GOGE) study, this plot specifically shows
candidate locations for determinants of variation in gene expression.

Transmission/disequilibrium test

The classical linkage test does not involve allelic association, and the association test does
not make use of segregation in families. Is it possible to capture the strengths of both in one
test? The transmission/disequilibrium test (TDT)72 does exactly that by counting the
number of transmissions of a specific marker allele from heterozygous parents to affected
offspring. The TDT was originally designed for qualitative traits, but several methods and
computer programs are available for extending the TDT to quantitative traits73–75. One of
these, the quantitative TDT (QTDT)73,74, has been used for GOGE studies.

Genome-wide analysis and the issue of multiple testing

Most classical statistical test procedures were developed to test one statistical hypothesis at
a time. However, in all the approaches described above, genome-wide analysis is the goal
and thousands of hypotheses may be tested — for instance, for many genes (for example,
for gene expression levels) or for genetic markers. The investigator then gives most attention
to the most significant test. As more tests are carried out, the chance increases of finding
one or more statistical false positives that are significant by chance. To limit this effect,
several statistical procedures have been developed. The two most often used are the
Bonferroni procedure and the false discovery rate method. As these are solutions to technical
statistical problems, we do not describe them here, but summaries can be found in a recent
review by Rao and colleagues76.

Regulation of baseline gene expression
It is well established that gene expression levels are controlled by a combination of cis- and
trans-acting regulators: for example, the binding of trans-acting factors such as transcription
factors to cis-acting regulatory target sequences. GOGE studies do not identify all the cis- and
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trans-acting regulators but aim to find polymorphic variants that contribute to individual
variation in human gene expression (FIG. 2). If the variants reside on a chromosome different
to that of the target gene, the regulation has to be in trans. Variants that are close to the target
genes (within a few kilobases of the target gene, for example) are usually considered to be
cis determinants. Defining these determinants as cis only refers to the fact that they are close
to the target genes; there can be polymorphism either in cis-regulatory sites or in trans-acting
regulators that are close to the target genes. Unless the functional variants are identified, the
cis or trans designation only implies the distance of the genetic signal relative to the target
gene, it has no functional significance. For this reason, Kruglyak and colleagues have cautioned
against using terms that imply functions, such as cis and trans; instead they suggest using
‘local’ and ‘distant’.13

An illustration of how mapping results can identify a regulatory polymorphism is shown in
FIG. 3. In this case, both linkage and association analyses identified a region close to the target
gene, CPNE1 (copine I), as the candidate regulatory region. SNPs in the gene showed
differential allelic expression; individuals with the TT genotype for SNP rs3787165 have
higher expression levels of CPNE1 than those with the CC genotype.

Contribution of cis-acting variants
One expects to learn something about the relative contribution of cis- and trans-determinants
of variation in human gene expression from GOGE studies. Unfortunately, interpretation of
the data is not straightforward, partly because cis- and trans-acting determinants influence gene
expression in different ways. To date, some GOGE studies26,27,33 have found more
determinants that map in cis than in trans, whereas others6,32 found more trans-acting
determinants. The differences in findings are probably due to differences in sample sizes and
thresholds for statistical significance. When there is a polymorphic cis-acting variant, its effect
on the expression level of the target gene is often large; therefore, they are easier to detect than
transacting variants. As it is difficult to obtain human tissues for gene expression studies, most
studies have relatively small sample sizes and, therefore, have identified mostly cis
determinants of gene expression.

Another approach to assess the proportion of cis-acting determinants that influence gene
expression is to measure the relative expression of allelic forms of genes by differential allelic
expression (DAE) studies38–42. In these analyses, one measures the relative expression levels
of each allele at a heterozygous site in a transcribed (usually exonic) region of a gene38–42. As
the two alleles are expected to be exposed to the same trans-acting factors, DAE studies allow
a relatively direct assessment of the contributions of cis-acting determinants. Results of these
DAE studies for expression phenotypes show that ~30–50% of the genes show differential
allelic expression.

Price et al.43 have estimated the proportions of cis- and trans-acting determinants by a different
method that uses expression data from the admixed African American population. The key
feature of the analysis is that the effect of allelic variation is estimated directly from the
relationship between gene expression levels and marker allele frequencies in the admixed
population, not from separate tests of each expressed gene. The resulting estimates for the
contribution to variation in gene expression from cis- and trans-acting regulation are 0.05 and
0.38, respectively. The fraction that is due to cis effects is therefore calculated as 0.12
(0.05/0.43; with a standard error of 0.3%). Unlike almost all previous estimates, this method
does not depend on choice of a threshold for p values.

Based on data from these various approaches, we estimate that ~20% of expression phenotypes
at baseline (that is, in cells under normal, unstimulated growth conditions) are regulated by
cis variants. Studies with larger sample sizes and other technologies such as RNA-Seq44 that
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provide alternative methods for measuring gene expression will allow more accurate estimates
of the contribution of cis-acting determinants (see concluding remarks).

Mechanisms of polymorphic cis regulation
Cis variants can influence the expression levels of target genes in different ways, such as by
affecting the transcription level or stability of the message. Generally, the mechanisms by
which polymorphic cis variants influence gene expression are still being examined. A key
challenge is that, although genetic mapping can be carried out on many phenotypes in parallel,
methods to identify the molecular mechanisms of regulation are not amenable to such high-
throughput analyses. So far, the mechanisms of how polymorphic variants affect gene
expression have been worked out for only a small number of genes.

Some insights are offered by fine association mapping (BOX 1), which can identify more
precisely where the regulatory variants are relative to the target genes. For example, in our
analysis of 133 gene expression phenotypes, association mapping results showed that the
regulatory sites are found in approximately the same proportion at the 5′ (27%) and 3′ (34%)
ends of the genes, and within the target genes (25%)7. For 14% of the phenotypes, linkage
disequilibrium was so strong that we were not able to narrow the region of cis association. The
variants in the 5′ ends of genes may affect RNA polymerase II and transcription factor
binding7,45,46, those in the 3′ ends may affect stability of the transcripts47,48, and variants in
genes can also affect binding of transcription factors27.

Trans-acting variants
Trans-acting variants are more difficult to identify because, unlike cis variants, they can be
anywhere in the genome relative to the target gene, and genetic mapping results suggest that
their effects on gene expression are smaller than the effects of cis-acting variants. This is
probably because genes are usually influenced by several trans-acting regulators and, therefore,
the effect of each trans-acting regulator on expression of its target gene is small, whereas there
is usually one or only a few cis-acting regulators. However, to understand gene regulation, it
is crucial to identify trans-acting regulators.

Although trans-acting regulatory regions have been identified through linkage analysis6,26,
27 and association studies32, only a few trans-acting determinants of baseline gene expression
have been identified. In linkage analysis, the candidate regulatory regions are often megabases
in size and include several candidate regulators. FIGURE 4 illustrates how trans-acting
regulatory regions can be found by linkage analysis: for the expression level of PDCD10
(programmed cell death 10, located on chromosome 3), two significant linkage peaks were
found — one on chromosome 4 and another on chromosome 19. The peaks on both
chromosomes are several megabases in size. These regions contain the polymorphic trans-
acting regulators that influence expression of PDCD10; fine mapping of the regions is needed
to identify the regulatory variants. Despite the challenge of identifying trans-acting regulators,
some examples of polymorphic trans-acting regulators of gene expression are beginning to
emerge. Examples of genes in which regulatory variants exert a trans-acting effect include the
epoxide hydrolase 1 gene (EPHX1), which regulates expression of ORMDL3 (REF. 31), and
BCL11A (encoding a zinc finger protein), which influences γ-globin gene expression49.
EPHX1 was identified in a genome-wide association analysis of gene expression, and
regulatory variants in BCL11A were identified in a search for regulators that influence
individual variation in fetal haemoglobin level.

Even though only a few trans-acting regulators of gene expression have been identified, and
many trans-acting regulatory regions are large, analyses of these regions in the human genome
are leading to a better understanding of gene regulation. These analyses suggest that trans-
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acting regulators are not enriched for known regulators of gene expression such as transcription
factors or signalling molecules; instead, the polymorphic trans-acting regulators belong to
diverse groups of genes, from cell surface receptor genes to structural genes. Similar findings
were reported by Kruglyak and colleagues in their analysis of gene expression variation in
yeast50. Despite the relative lack of progress in identifying trans-acting regulators of baseline
gene expression, we discuss in a later section how polymorphic trans-acting regulators have
been identified in studies of cells exposed to external stimuli.

Regulatory landscapes among different cell types
Unlike studies in model organisms such as yeast and Caenorhabditis elegans, studies of human
gene expression cannot be carried out on whole organisms; instead, they are mostly restricted
to specific cell types. As mentioned above, GOGE studies in humans have been carried out in
various cell types, including lymphocytes, immortalized B cells, brain cells and liver cells.
Even though some gene expression patterns are cell type specific, a large fraction of GOGE
findings seem to be shared across different types of cells. For example, a comparison of results
from a study of immortalized B cells with those from primary lymphocytes showed that seven
of eight cis-linked phenotypes were shared among the cells27. Of course, B cells are a subset
of lymphocytes so the shared regulation is not surprising. However, even between different
cell types, such as adipose tissue and blood, ~30–50% of the cis-regulated phenotypes are
shared26,33. Too few trans-acting regulatory variants have been identified to date for similar
comparisons.

Population differences in gene expression
Several studies have shown that the average expression levels of many genes differ among
populations29–31,51. The studies were carried out using samples from the International
HapMap Project52. In our study of 60 CEU individuals (northern and western European
ancestry) and 82 Asians (42 Han Chinese of Beijing, CHB, and 42 Japanese of Tokyo, JPT),
1,097 of 3,197 genes differ significantly (p < 10−5) between the two groups51. With the same
threshold, only 27 genes differ significantly between the CHB and JPT samples. Similar
findings were reported by Dolan and colleagues29.

We51 and others29,31 have investigated whether differences in these average expression
phenotype levels are related to specific allele frequency differences. For ~12 of the phenotypes
so far studied in detail, the population differences in gene expression are mostly accounted for
by differences in allele frequencies of regulators that are cis linked to the gene51. This situation
is revealed by SNPs that show strong linkage disequilibrium (association) with the expression
level. Thus, the population differences in these cases are not due to regulatory mechanisms
that are fundamentally different between the populations, but to different genotype frequencies
for the same regulatory alleles. Further studies are needed to determine what proportion of
population differences in expression level will be accounted for by allele and genotype
frequency differences of this kind.

These studies of population differences in gene expression have recently been extended to
examine the genetic basis of population differences in response to therapeutics. Dolan and
colleagues studied the response of cells from CEU and Yoruba in Ibadan, Nigeria (YRI)
individuals to cytarabine arabinoside (a chemotherapeutic agent) in order to understand the
population differences in outcomes and toxicities among patients with acute myeloid leukemia.
They found that different SNPs account for variability in sensitivity to cytarabine arabinoside
in the two populations. Some of the differences can be also accounted for by differences in
allele frequencies of the associated SNPs in the two populations53.

Cheung and Spielman Page 8

Nat Rev Genet. Author manuscript; available in PMC 2010 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



More complex gene interactions and regulation
We have so far focused on the identification of genetic variants that influence expression of
individual genes. Of course in cells the regulation is much more complex. Most trans-acting
regulators influence multiple target genes, and genes interact with each other to carry out
various functions. The same normal variation in gene expression that allows GOGE studies to
be performed lends itself to the study of gene interactions.

Hot spots
Hot spots in GOGE studies are regions that contain DNA variants that influence the expression
of multiple genes. They have also been termed master regulatory regions. As Rockman and
Kruglyak point out13, these variants can influence gene expression indirectly by affecting
cellular function (in the extreme, cell death). Thus, it is more appropriate to call them hot spots
rather than master regulatory regions.

Studies in yeast and other organisms have identified hot spots that contain genetic variants that
influence multiple expression phenotypes1,50,54–56. Human studies have yielded mixed
results; some studies report hot spots6,33 and others do not25,27. As the genetic variants in hot
spots act in trans, it is likely that the differences among studies are partly because of differences
in power to detect trans-acting variants. Based on results from studies that did identify hot
spots in the human genome, we can make some general remarks on how hot spots might
influence human gene expression. The target genes with phenotypes that map to the same hot
spots often share similar functions or reside close to each other6. As genes that share functions
are often co-regulated, their polymorphic regulators would appear in GOGE studies as hot
spots. The expression levels of co-regulated genes frequently show significant correlations.
Although this correlation is often biologically important, it can also lead to an overestimation
of the number of phenotypes mapping to a hot spot57. Besides shared function, some target
genes of a hot spot are close to each other on a chromosome. This is perhaps not unexpected
as it is not unusual to find members of a gene family that cluster in a chromosomal region, and
these members are often co-regulated. In addition, nearby genes can share common enhancers;
therefore, variants in those enhancers or in polymorphic transcription factors that bind to those
enhancers can affect expression of several genes. Chromatin modulators can also affect
expression of nearby genes by influencing the chromatin structure of a region.

Variation in gene expression and gene networks
Variation in gene expression not only allows genetic dissection of gene expression phenotypes
but also facilitates studies of how genes interact with each other in networks58. Correlation
analysis of gene expression underlies many co-expression network studies59–61: based on these
correlations in gene expression, connections (so-called edges) can be drawn among genes. The
resulting diagram of connectivity allows one to examine whole groups of correlated genes
rather than focusing on only pairwise relationships. It also provides information on how each
gene is connected to others in the network, and identifies genes that are more connected than
others.

As gene expression underlies cellular phenotypes, studies of gene networks can facilitate the
understanding of complex phenotypes. Recent studies that take advantage of natural variation
in gene expression in Drosophila melanogaster found co-expressed modules that are associated
with complex organismal phenotypes, such as duration of sleep62,63. These results suggest that
the DNA variants that influence gene expression can also affect more complex phenotypes.

Gene correlation alone can only provide suggestions on biological relatedness. However, when
information from GOGE studies is superimposed on these networks, it identifies the regulators
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and targets in the network and therefore provides information on causal rather than just
correlative relationships64–66. The integration of network and GOGE studies has been used to
identify genes that affect complex phenotypes. Earlier studies identified genes in metabolic
pathways that contribute to obesity26,65. Those results were recently validated by knockout
studies in mice67. In addition, by combining results from network analysis and genetic mapping
in mice, Balmain and colleagues68 recently identified DNA variants in the G protein-coupled
receptor gene Lgr5 as determinants of the expression levels of 62 highly correlated genes in
hair follicle cells. In addition, they found that DNA polymorphisms in the vitamin D receptor
gene (VDR) influence expression levels of a network of genes that play a part in the
inflammatory response.

GOGE in cells after perturbation
GOGE studies are not limited to the study of cells at baseline; they also allow study of
‘stimulated’ cells that have been exposed to various perturbations. Early examples of these
studies include human cells that have been exposed to drugs53, endoplasmic reticulum stress
and toxins such as ionizing radiation69. These studies provide a platform for studying individual
variation in response to various stresses. For example, individuals differ in response to many
toxins and yet the genetics of sensitivity to toxins is poorly understood. As we cannot expose
humans to stress or toxins for experimental purposes, there is a lack of well-defined sensitivity
phenotypes from related individuals for genetic studies. GOGE studies of stimulated human
cells provide some solutions. Cells from many individuals, including related individuals, can
be exposed to stresses in a controlled environment and their responses (both gene expression
and cellular phenotype) analysed. This allows genetic analysis of individual variation in
response to the perturbation. Studies of stimulated cells can, in addition to improving our
understanding of the response to specific stimuli, expand our knowledge of the general
mechanisms by which expression levels of genes are regulated. By perturbing cells, we expect
to uncover regulatory pathways that are difficult to examine in unstimulated, baseline cells.
This type of analysis might provide insight into disease susceptibility pathways.

We will use results from our recent study of irradiated cells69 to illustrate some early lessons
from perturbation studies. We exposed cells from individuals in large families to ionizing
radiation and measured gene expression and cellular phenotypes, such as cell death, in the
irradiated cells. We then carried out genetic studies to map the DNA variants that influence
responses to radiation exposure. We found significant linkage for expression levels of over
1,200 radiation-responsive genes. These results revealed a regulatory landscape that differs
from that of cells at baseline. Using similar numbers of families for genetic mapping we found
that, although 20% or more of genes at baseline are regulated in cis6, following radiation
exposure less than 1% of genes are cis regulated. In irradiated cells, >99% of the polymorphic
regulators act in trans to the target genes. In C. elegans70 and yeast71, trans-acting regulators
are also found to play a key part in regulating the gene expression response to stress. Unlike
cis regulation, trans-acting regulators can affect the expression of many genes, thus allowing
a coordinated gene expression response. In addition, most genes probably have several trans-
acting regulators. This provides cells with different ways to regulate gene expression in order
to deal with various stimuli.

In addition to revealing a different regulatory landscape, results from analyses of irradiated
cells also allowed us to uncover genes that were not known to have a role in the response to
radiation exposure. The polymorphic trans-acting regulators that we identified include
transcription factors such as retinoblastoma 1 (RB1) and VDR, which were already known to
play a part in regulating gene expression. However, we also identified genes such as leukotriene
A4 hydrolase (LTA4H) that were not known to regulate gene expression. These results will
facilitate the identification of unknown pathways involved in radiation response. As the
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functions of many human genes remain unknown it seems likely that GOGE studies might help
to identify those that regulate gene expression.

A third finding from studying responses of irradiated cells is the identification of DNA variants
that influence individual variation in the gene expression and cellular responses to radiation.
From the baseline studies, we expected that we would find DNA polymorphisms that influence
expression levels of genes. Surprisingly, with our sample size of only 15 families, we found
significant linkage for more than 1,200 (30%) of the radiation-induced expression phenotypes.
For a subset of these candidate regions, we were able to identify polymorphic regulators by
association mapping. As most individuals are not exposed to a significant amount of ionizing
radiation, those regulators that influence radiation response are not under selective pressure
and their frequencies remain high, unlike disease susceptibility variants. This may account for
why it is relatively easy for us to identify these polymorphic regulators.

These are results from early studies of stimulated cells, but it is promising to see that gene
expression responses to perturbation are easily mapped and that the polymorphisms that
influence these gene expression responses also affect cellular phenotypes. We expect that
additional studies will allow the development of genetic predictors of cellular response to
toxins. A better understanding of how human cells deal with toxin exposure or other cellular
stresses will facilitate the development of drugs that influence the sensitivity of cells to toxins.

Concluding remarks
As with many human phenotypes, expression levels of genes are highly variable and are
genetically regulated. Genetic studies of gene expression as a phenotype have identified
regulators that influence the expression levels of individual genes. Most of the regulatory
variants that have been identified are close to the target (regulated) gene. Next, we need to
identify the variants that act in trans to influence gene expression, and to understand the
molecular mechanisms of how cis- and trans-acting regulatory variants influence the
expression levels of genes. The mapping of trans-acting regulatory variants can be achieved
by increasing the sample sizes used in GOGE studies, by obtaining more accurate phenotypes
and by identifying regulators in candidate regions. Initial GOGE studies were carried out as
proof-of-principle studies; therefore, the sample sizes were modest. Future studies with larger
sample sizes and different human cell types will result in a more detailed map of the regulatory
variants that influence human gene expression. The availability of high-throughput sequencing
will enable more accurate determination of gene expression through RNA-Seq studies44 and
will also identify genes that reside in candidate regulatory regions. To date, most GOGE studies
used gene expression from quantitative reverse transcription PCR or microarrays, these
hybridization-based methods are invariably affected by noise from the nonspecific binding of
RNA to the probes. The digital nature of RNA-Seq should provide more accurate gene
expression phenotypes and allele-specific gene expression. However, better ways to map the
short-read sequences need to be developed in order to achieve the most accurate measurement
of gene expression. In addition, the cost of RNA-Seq also needs to be reduced in order to enable
studies with large sample sizes and the accurate measurement of transcripts that are expressed
at low levels. The ability to identify genes expressed at low levels is important for GOGE
studies as most known regulators such as transcription factors are expressed at low levels.
Therefore, a detailed catalogue of expressed genes that can potentially act as gene expression
regulators will facilitate GOGE studies.

In addition to identifying regulators of individual genes, we need to expand the scope of these
studies to understand the broader regulatory network. The strength of GOGE studies is their
ability to survey the genome for regulatory variants. The identification of trans-acting variants
is likely to uncover novel regulatory mechanisms and will allow us to assign new roles to
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known genes. By expanding the study to understand regulatory relationships as networks we
will learn how genes interact with each other, and why changes in expression of some genes
have little biological consequence but changes in other genes cause major disruptions of
cellular processes.
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Glossary

Gene expression
phenotype

The expression level of a gene in an individual as determined by his
or her genotype and the cellular environments in which the gene is
expressed

Co-expression
network

Groups of interconnected genes that are linked by the correlations
in their expression levels

Heritability The proportion of total phenotypic variation that is due to genetic
variation

Regulatory
polymorphism

DNA sequence variants that regulate cellular processes such as gene
expression

Differential allelic
expression

Polymorphic forms (different sequences) of a gene have different
expression levels

Admixed An admixed population contains offspring of individuals
originating from genetically divergent parental populations

RNA-Seq Sequence analysis of RNA (for example, after conversion into
cDNA):the results can be used for various analyses, including study
of gene expression, identification of coding SNPs and determination
of allele-specific gene expression
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Figure 1. Inter-individual variation in gene expression levels
Shown are the expression levels of 12 genes in unrelated individuals. Each circle represents
the expression level in one individual. The expression levels of two genes, PARK7 and
ATP5J2, are less variable than the other 10 genes, even though the 12 genes were measured
using the same cells and methods.
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Figure 2. Effect of cis- and trans-acting DNA variants on expression levels of genes
Polymorphic forms of regulators that act in cis (a) or in trans (b) to the target genes (also called
local and distal regulators, respectively) result in variation in expression levels of the target
genes. Cis-acting variants are found close to the target genes and trans-acting variants are
located far from the target genes, often on another chromosome. Different allelic forms of the
cis- and trans-acting variants have different influence on gene expression. In this example,
individuals with the G variant of the cis regulator have a higher expression level of the target
gene than individuals with the C variant of the regulator. Similarly, individuals with the A
variant of the trans regulator have a higher expression level of the target gene than those with
the T variant of the regulator.
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Figure 3. The expression level of copine I (CPNE1) is cis regulated
Results from linkage (a) and association (b) studies show that the polymorphic regulator of
expression level of CPNE1 is found on chromosome 20, close to the target gene (CPNE1 is
located on chromosome 20). A linear regression analysis of the expression level of CPNE1 on
the genotypes of the SNP rs3787165 in CPNE1 (c) uncovered marked association between the
SNP genotypes and expression levels of CPNE1; TT is associated with higher expression.

Cheung and Spielman Page 18

Nat Rev Genet. Author manuscript; available in PMC 2010 November 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. The expression level of programmed cell death 10 (PDCD10) is trans regulated
PDCD10 is located on chromosome 3. Linkage results show that regulators of this gene are
located on chromosomes 4 and 19.
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