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Abstract 

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium 

curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 20 

individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 

out of 410 genera were detected in more than 95% samples. A genome-wide association study 

(GWAS) of host genetic variation in relation to microbial taxa identified 31 loci affecting 

microbiome at a genome-wide significant (P<5x10-8) threshold. One locus, the lactase (LCT) 

gene locus, reached study-wide significance (GWAS signal P=1.28x10-20), and it showed an age-25 

dependent association with Bifidobacterium abundance. Other associations were suggestive 

(1.95x10-10<P<5x10-8) but enriched for taxa showing high heritability and for genes expressed in 

the intestine and brain. A phenome-wide association study and Mendelian randomization 

identified enrichment of microbiome trait loci in the metabolic, nutrition and environment 

domains and suggested the microbiome has causal effects in ulcerative colitis and rheumatoid 30 

arthritis.  
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Introduction  

The gut microbiome is an integral part of the human holobiont. In recent years, many studies 

have highlighted the link between its perturbations and immune, metabolic, neurologic and 

psychiatric traits, drug metabolism and cancer1. Environmental factors, like diet and medication, 

play a significant role in shaping the gut microbiome composition2–4, although twin, family and 5 

population-based studies have shown that the genetic component also plays a role in determining 

gut microbiota composition, and a proportion of bacterial taxa are heritable5,6. 

Several studies7–9 have investigated the effect of genetics on microbiome composition 

through genome-wide association studies (GWAS) and identified dozens of associated loci. 

However, little cross-replication across these studies has been observed so far10,11. This may be 10 

due to a number of factors. First, methodological differences in the collection, processing and 

annotation of stool microbiota are known to have significant effects on the microbiome profiles 

obtained12–14 and can generate heterogeneity and a lack of reproducibility across studies. Second, 

most association signals are rather weak, which suggests that existing studies of 1,000–2,000 

samples7–9 are underpowered. Finally, some of the GWAS signals related to microbiome 15 

compositions may be population-specific, i.e. they may represent bona fide population 

differences in genetic structure and/or environment.  

To address these challenges and obtain valuable insights into the relationship between 

host genetics and microbiota composition, we set up the international consortium MiBioGen11. In 

this study, we have coordinated 16S rRNA gene sequencing profiles and genotyping data from 20 

18,340 participants from 24 cohorts from the USA, Canada, Israel, South Korea, Germany, 

Denmark, the Netherlands, Belgium, Sweden, Finland and the UK. We performed a large-scale, 

multi-ethnic, genome-wide meta-analysis of the associations between autosomal human genetic 

variants and the gut microbiome. We explored the variation of microbiome composition across 

different populations and investigated the effects of differences in methodology on the 25 

microbiome data. Through the implementation of a standardized pipeline, we then performed 

microbiome trait loci (mbTL) mapping to identify genetic loci that affect the relative abundance 

(mbQTLs) or presence (microbiome Binary Trait loci, or mbBTLs) of microbial taxa. Finally, we 

focused on the biological interpretation of GWAS findings through Gene Set Enrichment 
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Analysis (GSEA), Phenome-wide association studies (PheWAS) and Mendelian randomization 

(MR) approaches. 

 

Results 

Landscape of microbiome composition across cohorts 5 

Our study included cohorts that were heterogeneous in terms of ethnic background, age, 

male/female ratio and microbiome analysis methodology. Twenty cohorts included samples of 

single ancestry, namely European (16 cohorts, N=13,266), Middle-Eastern (1 cohort, N=481), 

East Asian (1 cohort, N=811), American Hispanic/Latin (1 cohort N=1,097) and African 

American (1 cohort, N=114), whereas four cohorts were multi-ancestry (N=2,571) (see 10 

Supplementary Note, Supplementary Tables 1,2).  

Twenty-two cohorts comprised adult or adolescent individuals (N=16,632), and two 

cohorts consisted of children (N=1,708). The microbial composition was profiled by targeting 

three distinct variable regions of the 16S rRNA gene: V4 (10,413 samples, 13 cohorts), V3-V4 

(4,211 samples, 6 cohorts) and V1-V2 (3,716 samples, 5 cohorts) (Fig. 1a). To account for 15 

differences in sequencing depth, all datasets were rarefied to 10,000 reads per sample. Next, we 

performed taxonomic classification using direct taxonomic binning instead of OTU clustering 

methods (see Online Methods)11,15,16.  

In general, cohorts varied in their microbiome structure at multiple taxonomic levels (Fig. 

1b-g). This variation may largely be driven by the heterogeneity between populations and 20 

differences in technical protocols (Supplementary Tables 1-3). Combining all samples 

(N=18,340) resulted in a total richness of 385 genus-level taxonomic groups that had a relative 

abundance higher than 0.1% in at least one cohort. This observed total richness appears to be 

below the estimated saturation level (Fig. 1b), suggesting that a further increase in sample size 

and a higher sequencing depth are needed to capture the total gut microbial diversity (Fig. 1d). 25 

As expected, the core microbiota (the number of bacterial taxa present in over 95% of 

individuals) decreased with the inclusion of additional cohorts (Fig. 1c, Online Methods). The 
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core microbiota comprise nine genera, of which seven were previously identified as such3, plus 

the genera Ruminococcus and Lachnoclostridium (Fig. 1e). Of these nine genera, the most 

abundant genus was Bacteroides (18.65% (SD:8.65)), followed by Faecalibacterium (6.19% 

(SD:2.35)), Blautia (3.36% (SD:2.84)) and Alistipes (3.05% (SD:1.47)). Among the European 

cohorts that compose the largest genetically and environmentally homogeneous cluster, the core 5 

microbiota also included Ruminiclostridium, Fusicatenibacter, Butyricicoccus and Eubacterium, 

genera which typically produce short-chain fatty acids17.  

 

Figure 1. Diversity of microbiome composition across the MiBioGen cohorts. (a) Sample 
size, ethnicity, genotyping array and 16S rRNA gene profiling method. The SHIP/SHIP-TREND 10 
and GEM_v12/GEM_v24/GEM_ICHIP subcohorts are combined in SHIP and GEM, 
respectively (Online Methods; see Supplementary Note for cohort abbreviations). This merge 
resulted in the total of 21 cohorts depicted in the figure.  (b)* Total richness (number of genera 
with mean abundance over 0.1%, i.e. 10 reads out of 10,000 rarefied reads) by number of cohorts 
investigated. (c)* Number of core genera (genera present in >95% of samples from each cohort) 15 
by number of cohorts investigated. (d) Pearson correlation of cohort sample size with total 
number of genera. Confidence band represents the standard error of the regression line. (e)* 
Unweighted mean relative abundance of core genera across the entire MiBioGen dataset. (f)* 

Per-sample richness across the 21 cohorts. Asterisks indicate cohorts that differ significantly 
from all the others (pairwise Wilcoxon rank-sum test; FDR<0.05). (g) Diversity (Shannon index) 20 
across the 21 cohorts, with the DanFund and PNP cohorts presenting higher and lower diversity 
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in relation to the other cohorts (pairwise Wilcoxon rank sum test; FDR<0.05). (*) For all 
boxplots, the central line, box and whiskers represent the median, IQR and 1.5 times the IQR. 

 

The DNA extraction method was the principal contributor to heterogeneity, with a non-

redundant effect size of 29% on the microbiome variation (measured as average genus 5 

abundance per cohort; stepwise distance-based redundancy analysis R2adjDNAext=0.27, Padj=7x10-

4) (Supplementary Table 4). Richness and Shannon diversity also differed significantly across 

cohorts. The cohorts with the lowest richness (HCHS/SOL) and highest diversity (DanFund) 

used specific DNA extraction kits that were not used by other studies, possibly contributing to 

their outlying alpha diversities (Fig. 1f,g, Supplementary Table 3). Overall, the 16S rRNA 10 

domain sequenced and the DNA extraction methods used, together with cohort ethnicity, 

accounted for 32.74% of richness variance.  

Given the high heterogeneity of microbial composition across cohorts, we applied both 

per-cohort and whole study–filters for taxa inclusion in GWAS (see Online Methods).  

Heritability of microbial taxa and alpha diversity  15 

We performed estimation of heritability (H2) of gut microbiome composition based on the two 

twin cohorts included in our study (Supplementary Table 5). The TwinsUK cohort, composed of 

1,176 samples, including 169 monozygotic (MZ) and 419 dizygotic (DZ) twin pairs, was used to 

estimate H2 using the ACE (additive genetic variance (A)/shared environmental factors (C)/ non-

shared factors plus error (E)) model. The Netherlands Twin Registry (NTR) cohort (only MZ 20 

twins, N=312, 156 pairs) was used to replicate the MZ intraclass correlation coefficient (ICC). 

None of the alpha diversity metrics (Shannon, Simpson and inverse Simpson) showed evidence 

for heritability (A<0.01, P=1). Among the 159 bacterial taxa that were present in more than 10% 

of twin pairs, 19 taxa showed evidence for heritability (Pnominal<0.05) (Fig. 2a). The ICC shows 

concordance between TwinsUK and NTR for these 19 bacterial taxa (R=0.25, P=0.0018, Fig. 25 

2b).  
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Figure 2. Heritability of microbiome taxa and its concordance with mbQTL mapping. (a) 

Microbial taxa that showed significant heritability in the TwinsUK cohort (ACE model, nominal 
P<0.05, no adjustment for multiple comparison). Taxa with at least one genome-wide significant 
(GWS) mbQTL hit are marked red. Only taxa present in more than 10% of pairs (>17 MZ pairs, 5 
>41 DZ pairs) are shown. Circles and diamonds represent heritability value. Error bars represent 
95% CI. (b) Correlation of monozygotic ICC between TwinsUK and NTR cohort. Only taxa 
with significant heritability (ACE model P<0.05) that are present in both TwinsUK and NTR are 
shown. Red and blue dots indicate bacterial taxa with/without GWS mbQTLs (P<5x10-8), 
respectively. Segments represent 95% CI. (c) Correlation between heritability significance (-10 
log10PH2 TwinsUK) and the number of loci associated with microbial taxon at relaxed threshold 
(PmbQTL<1x10-5). Taxa with at least one GWS-associated locus are marked red. Error bars 
represent 95% confidence intervals. 
 

The SNP-based heritability calculated from mbQTL summary statistics using linkage 15 

disequilibrium (LD) score regression showed two bacterial taxa, genus Ruminiclostridium 9 and 

family Peptostreptococcaeae, passing the significance threshold given the number of 211 taxa 

tested (Z<3.68, Supplementary Table 5). The results of the SNP-based heritability and twin-

based heritability showed significant correlation across the tested taxa (R=0.244, P=7.2x10-4).  

Thirty one loci associated with gut microbes through GWAS 20 

First, we studied the genetic background of the alpha diversity (Simpson, inverse Simpson and 

Shannon diversity indices). We identified no significant hits in the meta-GWAS (P>5x10-8; 

Supplementary Table 6, Supplementary Fig. 1), which is in line with the observed lack of 

heritability for these indices.  
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Next, we used two separate GWAS meta-analysis approaches18–20 to explore the effect of 

host genetics on the abundance levels (mbQTL) or presence/absence (mbBTL) of bacterial taxa 

in the gut microbiota (see Online Methods).  

In total, 18,340 samples and 211 taxa were included in the mbQTL mapping analysis 

(Online Methods, Supplementary Table 3). We identified genetic variants that mapped to 20 5 

distinct genetic loci associated with the abundance of 27 taxa (Fig. 3; Supplementary Fig. 2,3; 

Supplementary Table 7, 8). MbBTL mapping covered 177 taxa, and 10 loci were found to be 

associated with presence/absence of bacterial taxa (Fig. 3, Supplementary Table 7, 9). For one 

taxon, family Peptococcaceae, two independent mbBTLs were detected (Fig. 3, Supplementary 

Table 7). Two out of 30 mbTLs showed heterogeneity in mbTL effect-sizes (Supplementary 10 

Note). 

 

Figure 3. Manhattan plot of the mbTL mapping meta-analysis results. MbQTLs are 
indicated by letters. MbBTLs are indicated by numbers. For mbQTLs, the Spearman correlation 
test (two-sided) was used to identify loci that affect the covariate-adjusted abundance of bacterial 15 
taxa, excluding samples with zero abundance. For mbQTLs, p-values (two-sided) were 
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calculated by logistic regression. Horizontal lines define nominal genome-wide significance 
(P=5x10-8, red) and suggestive genome-wide (P=1x10-5, blue) thresholds. 
 

In both the mbQTL and mbBTL mapping, only one out of 31 loci (LCT locus – 

Bifidobacterium, P=8.63x10-21) passed the strict correction for the number of taxa tested 5 

(P<1.95x10-10 for 257 taxa included in the analysis). However, the remaining loci include 

functionally relevant variants (i.e. the FUT2 gene suggested by earlier studies21) and, overall, 

showed concordance with the heritability of microbial taxa. Seven out of the nine taxa that 

showed the strongest evidence for heritability in the TwinsUK cohort (P<0.01) also have 

genome-wide significant mbTLs (Fig. 2b). For the taxa with genome-wide significant mbTLs, 10 

the number of independent loci associated with a relaxed threshold of 1x10-5 strongly correlated 

with heritability significance (R=0.62, P=1.9x10-4, Fig. 2c), suggesting that more mbTLs would 

be identified for this group of bacteria using a larger sample size. 

LCT mbQTL effect shows age and ethnic heterogeneity 

The strongest association signal was seen for variants located in a large block of about 1.5Mb at 15 

2q21.3, which includes the LCT gene and 12 other protein-coding genes. This locus has 

previously been associated with the abundance of Bifidobacterium in Dutch7, UK6 and US22 

cohorts. Previous studies have also shown a positive correlation of Bifidobacterium abundance 

with the intake of milk products, but only in individuals homozygous for the low-function LCT 

haplotype, thereby indicating that gene–diet interaction regulates Bifidobacterium abundance7. In 20 

our study, the strongest association was seen for rs182549 (P=1.28x10-20), which is a perfect 

proxy for the functional LCT variant rs4988235 (r2=0.996, D’=1 in European populations). This 

association showed evidence for heterogeneity across cohorts (I2=62.73%, Cochran’s Q 

P=1.4x10-4). A leave-one-out strategy showed that the COPSAC2010 cohort, which includes 

children 4-6 years of age range, contributed the most to the detected heterogeneity (Fig. 4a,b; 25 

Supplementary Table 2). When this study was excluded from the meta-analysis, the 

heterogeneity was reduced (I2=51.9%, Cochran’s Q P=0.004). A meta-regression analysis 

showed that linear effects of age and ethnicity accounted for 11.84% of this heterogeneity. 

Including quadratic and cubic terms of age in the model explained 39.22% of the heterogeneity, 

and the residual heterogeneity was low (Cochran’s Q P=0.01) (Fig. 4c).  30 
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Figure 4. Association of the LCT locus (rs182549) with the genus Bifidobacterium. (a) Forest 
plot of effect sizes of rs182549 and abundance of Bifidobacterium. Effect sizes and 95% CI are 
defined as circles and error bars. Effect sizes were calculated from Spearman correlation p-
values (Online Methods). (b) Meta-regression of the association of mean cohort age and mbQTL 5 
effect size. Confidence bands represent the standard error of the meta-regression line. (c) Meta-
regression analysis of the effect of linear, squared and cubic terms of age on mbQTL effect size. 
Confidence bands represent the standard error of the meta-regression line. (d) Age-dependence 

of mbQTL effect size in the GEM cohort. Blue boxes include samples in the age range 6–16 

years old. Red boxes include samples with age ≥17 years. The C/C (rs182549) genotype is a 10 

proxy of the NC_000002.11:g.136608646= (rs4988235) allele, which is associated to functional 
recessive hypolactasia. The central line, box and whiskers represent the median, IQR and 1.5 
times the IQR, respectively. See Supplementary Note for cohort abbreviations. 
 

Following these observations, we decided to investigate the effect of age and ethnicity in 15 

the multi-ethnic GEM cohort, comprising 1,243 individuals with an age range between 6 and 35 

years, of which nearly half of the participants are 16 years or younger. Our analysis showed a 

significant SNP–age interaction on the level of Bifidobacterium abundance (P<0.05, see Online 
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Methods). Individuals homozygous for the NC_000002.11:g.136616754CC (rs182549) genotype 

showed a higher abundance of the genus Bifidobacterium in the adult group, but not in the 

younger group (Fig. 4d). The age–genotype interaction was significant in the GEM_v12 and 

GEM_ICHIP subcohorts, both comprising mostly European individuals, while the GEM_v24 

cohort, mainly composed of individuals of different Israeli subethnicities (see Online Methods) 5 

who live in Israel, showed neither an mbQTL effect (Beta = -0.002 [95%CI: -0.21, 0.21]) nor an 

interaction with age (P>0.1). The lack of an LCT mbQTL effect in adults was also observed in 

another Israel cohort in the study (Personalized Nutrition Project (PNP), 481 adults, Beta = -0.20 

[95%CI: -0.61, 0.20]). Altogether, the cohorts that reported the lowest LCT effect sizes were the 

two cohorts of Israeli ethnicity volunteered in Israel (GEM_v24, PNP) and a child cohort 10 

(Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Beta = -0.18 [95%CI: -

0.36, -0.01]). 

mbTLs are enriched for genes related to metabolism 

Several loci detected at genome-wide significance level were enriched for genes related to 

metabolism. 15 

In the mbQTL analysis, the FUT2-FUT1 locus was associated to the abundance of the 

Ruminococcus torques genus group, a genus from the Lachnospiraceae family. The leading SNP 

(rs35866622 for R. torques group, P=2.21x10-8) is a proxy for the functional variant rs601338 

(r2=0.8; D’=0.9 in European populations) that introduces a stop-codon in FUT223. Another proxy 

of the functional FUT2 SNP, rs281377, showed association to the Ruminococcus gnavus genus 20 

group in the binary analysis, however this signal was just above the genome-wide significance 

threshold (P=5.79x10-8) (Supplementary Table 9). FUT2 encodes the enzyme alpha-1,2-

fucosyltransferase, which is responsible for the secretion of fucosylated mucus glycans in the 

gastrointestinal mucosa24. Individuals homozygous for the stop-codon (rs601338*A/A, non-

secretors) do not express ABO antigens on the intestinal mucosa. We observed that the tagging 25 

NC_000019.9:g.49218060C>T (rs35866622 non-secretor) allele was associated with a reduced 

abundance of the R. torques group and a decreased presence of the R. gnavus group. 

Ruminococcus sp. are specialized in the degradation of complex carbohydrates25, thereby 

supporting a link between genetic variation in the FUT2 gene, levels of mucus glycans and the 
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abundance of this taxa. When assessing the link between this variant and phenotypes in the 

LifeLines-DEEP (LLD; N=875) and Flemish Gut Flora Project (FGFP, N=2,259) cohorts 

(Online Methods), the strongest correlation for the R. torques group was seen with fruit intake 

(LLD: RSp=-0.19, Padj=3.1x10-5; FGFP: RSp=-0.10, Padj=1.4x10-4, Supplementary Table 10, 11), 

in line with the association of FUT2 with food preferences, as discussed in the results of the 5 

PheWAS (see below).  

Several other suggestive mbQTLs can be linked to genes potentially involved in host–

microbiome crosstalk. One of them includes three SNPs in 9q21 (top-SNP rs602075, P=3.57x10-

8) associated with abundance of Allisonella. The 9q21 locus includes the genes PCSK5, RFK and 

GCNT1, of which RFK encodes the enzyme that catalyzes the phosphorylation of riboflavin 10 

(vitamin B2) and GCNT1 encodes a glycosyltransferase involved in biosynthesis of mucin. 

These products play major roles in the host–microbiota interactions within the intestine, where 

they are used by bacteria for their metabolism and involved in the regulation of the host immune 

defense26. Another association signal 10p13 (rs61841503, P=9.8x10-9), which affects the 

abundance of the heritable family Peptostreptococcaceae, is located in the CUBN gene, the 15 

receptor for the complexes of cobalamin (vitamin B12) with gastric intrinsic factor (the complex 

required for absorption of cobalamin). CUBN is expressed in the kidneys and the intestinal 

epithelium and is associated with B12-deficient anemia and albuminuria27. Cobalamin is required 

for host–microbial interactions28, and supplementation with cobalamin induced a substantial shift 

in the microbiota composition of an in vitro colon model29. These associations suggest that some 20 

members of the gut microbiome community might be affected by genetic variants that regulate 

the absorption and metabolism of vitamins B2 and B12.  

Among mbBTLs, the strongest evidence for association was seen for a block of 10 SNPs 

(rs7574352, P=1.42x10-9) associated with the family Peptococcaceae, a taxon negatively 

associated with stool levels of the gut inflammation markers chromogranin A (LLD: RSp=-0.31, 25 

Padj=4.4x10-18, Table S10) and calprotectin (LLD: RSp=-0.11, Padj=0.058) and with ulcerative 

colitis (FGFP: RSp=-0.06, Padj=0.09, Table S11). The association block is located in the 

intergenic region in the proximity (220kb apart) of IRF1, which is involved in insulin resistance 

and susceptibility to type 2 diabetes30. 

Other highlights of identified mbTLs are given in the Supplementary Note. 30 
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GSEA, FUMA and PheWAS analysis 

To explore the potential functions of the identified mbTLs, we performed FUMA (Functional 

Mapping and Annotation of GWAS, see Online Methods)31, GSEA and PheWAS, followed by 

Bayesian colocalization analysis and genetic correlation of Bifidobacterium abundance to its 

PheWAS-related traits. FUMA of 20 mbQTL loci returned 139 positional and eQTL genes. 5 

GSEA on these genes suggested an enrichment for genes expressed in the small intestine 

(terminal ileum) and brain (substania nigra and putamen basal ganglia) (Supplementary Fig. 4). 

The positional candidates for mbBTLs did not show any enrichment in GSEA analysis.  

To systematically assess the biological outcomes of the mbTLs, we looked up the 31 

mbTLs in the summary statistics for 4,155 complex traits and diseases using the GWAS 10 

ATLAS32. Five out of 31 leading SNPs were associated with one or more phenotypes at P<5x10-

8 (Supplementary Table 12): rs182549 (LCT) and rs35866622 (FUT1/ FUT2), followed by 

rs4428215 (FNDC3B), rs11647069 (PM FBP1) and rs9474033 (PKHD1).  

The variant showing highest pleiotropy, rs182549 (LCT, Bifidobacterium), was 

associated with multiple dietary and metabolic phenotypes, and the causal involvement of the 15 

SNP across pairs of traits was confirmed by colocalization test (PP.H4.abf > 0.9) for 49 out of 51 

tested phenotypes. The NC_000002.11:g.136616754= (rs182549) allele, which predisposes 

individuals to lactose intolerance, was negatively associated with obesity33 and positively 

associated with Type 2 diabetes mellitus (T2DM) diagnosis (OR=1.057 [95%CI:1.031, 1.085], 

P=1.74x10-5), family history of T2DM (paternal: OR=1.054 [95%CI:1.035, 1.073], P=1.41x10-8; 20 

maternal: OR=1.035 [95%CI:1.016, 1.053], P=0.0002, siblings: OR=1.03 [95%CI:1.009, 

1.052]), and several nutritional phenotypes in the UK Biobank cohort32. Moreover, the functional 

LCT SNP rs4988235 variant is associated with 1,5-anhydroglucitol (P=4.23x10-28)34, an indicator 

of glycemic variability35. There was a nominally significant correlation of Bifidobacterium with 

raw vegetable intake (rg=0.36, P=0.0016), but this correlation was not statistically significant 25 

after correction for multiple testing. 
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Figure 5. Phenome-wide association study (PheWAS) domain enrichment analysis. The 
analysis covered top-SNPs from 30 mbTLs and 20 phenotype domains. Three thresholds for 
multiple testing were used: 0.05, 8.3x10-5 (Bonferroni adjustment for number of phenotypes and 
genotypes studied) and 5x10-8 (an arbitrary genome-wide significance threshold). Only 5 
categories with at least one significant enrichment signal are shown. 

 

NC_000019.9:g.49218060= (rs35866622, FUT1/FUT2 locus) was positively associated 

with fish intake and height. The secretor allele was negatively associated with the risks of 

cholelithiasis and Crohn’s disease, alcohol intake frequency, high cholesterol and waist-to-hip 10 

ratio (adjusted for body mass index (BMI), with PP.H4.abf > 0.9).  

Consistent with the single SNP analysis, gene-based PheWAS also showed  a strong link 

of the LCT locus with metabolic traits (e.g. P=5.7x10-9 for BMI), whereas several nutritional 

(e.g. P=1.26x10-20 for oily fish intake), immune-related (e.g. P=1.73x10-12 for mean platelet 
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volume), gastrointestinal (e.g. P=8.77x10-14 for cholelithiasis) and metabolic signals (e.g. 

P=1.13x10-13, high cholesterol) mapped to the FUT1/FUT2 locus (Fig. 5, Supplementary Table 

13). 

Finally, we performed a phenotype domain enrichment analysis (Online Methods). We 

observed that top loci were enriched with signals associated with the metabolic domain 5 

supported by 4 mbTLs, followed by nutritional, cellular, immunological, psychiatric, 

ophthalmological, respiratory and reproductive traits, and the activities domain (Fig. 5, 

Supplementary Table 14). 

Mendelian Randomization analysis 

To identify the potential causal links between gut microbial taxa and phenotypes, we performed 10 

bi-directional two-sample MR analyses using the TwoSampleMR package36. We focused on two 

groups of phenotypes: diseases (autoimmune, cardiovascular, metabolic and psychiatric) and 

nutritional phenotypes37–42. The complexity of the mechanisms by which host genetics affect 

microbiome composition, and the limited impact of genetic variants on microbial taxa variability, 

require caution when performing and interpreting causality estimation using MR analysis43. We 15 

therefore carried out several sensitivity analyses and excluded any results that showed evidence 

of being confounded by pleiotropy (Online Methods). Only pairs supported by three or more 

SNPs were considered. With these strict cut-offs, no evidence for causal relationships between 

microbiome taxa and dietary preferences was identified (Supplementary Tables 15, 16). 

However, our results suggest that a higher abundance of the class Actinobacteria and its genus 20 

Bifidobacterium may have a protective effect on ulcerative colitis (Actinobacteria: OR=0.56 

[95%CI: 0.44-0.71] for each SD increase in bacterial abundance, PBHadj=8.8x10-4; 

Bifidobacterium: OR=0.51 [95%CI: 0.39-0.71], PBHadj=9.8x10-5) (Fig. 6a,b). We also observed 

that higher abundance of family Oxalobacteraceae has a protective effect on rheumatoid arthritis 

(OR=0.82, [95%CI: 0.74-0.91], PBHadj=0.028, Fig. 6c).  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 

Figure 6. Mendelian randomization (MR) analysis. The X-axes show the SNP-exposure effect 
and the Y-axes show the SNP-outcome effect (SEs denoted as segments). (a) MR analysis of 
class Actinobacteria (exposure) and ulcerative colitis (outcome). (b) MR analysis of genus 
Bifidobacterium (exposure) and ulcerative colitis (outcome). (c) MR analysis of family 5 
Oxalobacteraceae (exposure) and rheumatoid arthritis (outcome). 
 

Discussion 

We report here on the relationship between host genetics and gut microbiome composition in 

18,340 individuals from 24 population-based cohorts of European, Hispanic, Middle Eastern, 10 

Asian and African ancestries. We have estimated the heritability of the human gut microbiome 

and the effect of host genetics on the presence and abundance of individual microbial taxa. We 

studied the heterogeneity of the mbTL signals and characterized the impact of technical and 

biological factors on their effect magnitude. In addition, we explored the relevance of the 

identified mbTLs to health-related traits using GSEA, PheWAS and MR approaches. 15 

Our large, multi-ethnic study allowed for an informative investigation of the human gut 

microbiome. However, there was large heterogeneity in the data, which reflects biological 

differences across the cohorts and methodological differences in the processing of samples. 

Overall, seven different methods of fecal DNA extraction and three different 16S rRNA regions 

were used12,44. In addition, differences in the ethnicities, ages and BMIs of the participants led to 20 

a remarkable variation in microbiome richness, diversity and composition across cohorts. Diet, 

medication and lifestyle, among other factors2,3, are known to influence the microbiome but were 

not included in our analysis because this data were not available for all cohorts. Large variation 
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in the microbiome composition may have reduced the power of our mbTL analysis (see 

Supplementary Note).  

We did not detect a host genetic effect on bacterial diversity, in line with a lack of its 

detectable heritability. Thirty-one taxon-specific mbTLs (20 mbQTLs and 11 mbBTLs) were 

identified at P<5x10-8. Even with our large sample size, the number of mbTLs identified is rather 5 

modest. Only the association of LCT locus with Bifidobacterium (P=1.28x10-20) passed the 

conservative study-wide significance threshold of P>1.95x10-10. However, we observed that 

heritable taxa tend to have more genome-wide significant loci and suggestively associated loci, 

and twin-based heritability is significantly correlated with SNP-based heritability. Our results 

confirm that only a subset of gut bacteria is heritable, and that the genetic architecture affecting 10 

the abundance of heritable taxa is complex and polygenic.  

The association between the LCT locus and the Bifidobacterium genus was the strongest 

in our study. It has been shown that the functional SNP in the LCT locus, rs4988235, determines 

not only the abundance of the Bifidobacterium genus, but also the strength of the association 

between this genus and milk/dairy product intake7. Here, we showed the ethnic heterogeneity 15 

and age-dependent nature of the LCT-Bifidobacterium association – the effect is weaker in 

children and adolescents – consistent with existing knowledge on lactose intolerance45,46. The 

strongest mbQTL effect was observed in the Hispanic Community Health Study/Study of 

Latinos (HCHS/SOL) cohort that comprises individuals of Hispanic/Latin American ethnicity 

and shows the highest prevalence of the lactose intolerant NC_000002.11:g.136616754CC 20 

(rs182549) genotype (683 out of 1,097 individuals).   

To explore the potential functional effects of mbTLs on health-related traits, we used 

GSEA, PheWAS and MR approaches. The GSEA indicated enrichment of mbQTLs for genes 

expressed in the small intestine and brain. These results support the existence of the gut–brain 

axis mediated by microbiome and likely influencing gastrointestinal, brain and mood disorders47–25 

49. In addition, the PheWAS analysis identified a significant overlap between the genetic variants 

affecting gut microbes and a broad range of host characteristics, including psychiatric, metabolic 

and immunological traits, and nutritional preferences, amongst other phenotype groups 

(Supplementary Table 14). Moreover, genetic determinants of bacterial abundance are involved 

in regulating host metabolism, particularly obesity-related traits. Among the interesting bacteria, 30 

earlier studies have linked the relative abundances of Ruminococcus50, Lachnospiraceae51 and 
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Ruminococcaceae52 to obesity. PheWAS analysis also indicated that SNPs from the LCT and 

FUT2 loci that associated with bacterial taxa are also associated to dietary preference factors, 

including fish, cereal, bread, alcohol, vegetable and ground coffee intake, along with other 

dietary phenotypes. Interestingly, other genes found to be associated with mbTLs also included 

olfactory receptors (OR1F1) and genes involved in the absorption and metabolism of B2 and 5 

B12 vitamins (RFK and CUBN). 

Genetic anchors to microbiome variation also allow for estimation of causal links with 

complex traits through MR approaches53–55. MR results indicate that Actinobacteria and 

Bifidobacterium might have a protective effect in ulcerative colitis. Cross-sectional studies have 

reported an increased abundance of Actinobacteria in healthy individuals as compared to 10 

inflammatory bowel disease patients56,57, although these results have not always been 

consistent58,59. Bifidobacterium  was also previously shown to have a beneficial effect on 

ulcerative colitis in a clinical trial58,60. We also revealed that abundance of family 

Oxalobacteraceae in the gut microbiome might be protective for rheumatoid arthritis; the 

abundance of this family in lung was previously shown to be negatively associated with 15 

rheumatoid arthritis61. Protective effects of the bacterial taxa on these diseases support the 

potential of microbiome-based therapy.  

In summary, we report the largest study to date to investigate the genetics of human 

microbiome across multiple ethnicities. Microbiome heterogeneity and high inter-individual 

variability substantially reduces the statistical power of microbiome-wide analyses: similar to 20 

earlier microbiome GWAS studies, we report a limited number of associated loci. Nevertheless, 

our results point to causal relationships between specific loci, bacterial taxa and health-related 

traits. Heritability estimates suggest that these associations are likely part of a larger spectrum 

that is undetectable in the current study sample size. This warrants future studies that should take 

advantage of larger sample sizes, harmonized protocols and more advanced microbiome analysis 25 

methods, including metagenomics sequencing instead of 16S profiling and quantification of 

bacterial cell counts. Given the essential role of the gut microbiome in the metabolism of food 

and drugs, our results contribute to the development of personalized nutrition and medication 

strategies based on both host genomics and microbiome data. 
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supervised the project. A. vd G., A.C., H.J.W., Ur.V., M.J.B., S.S. and L.F. developed the 

pipeline for the meta-analysis and contributed to the methodology and statistical analysis. K.W. 15 

contributed to the PheWAS enrichment analysis. A.K., C.M.G., R.B., D.R., J.W., A.D., C.L.R., 

J.A.R.G., C.T.F., X.L., D.Z., M.J.B., M.D.A., S.S., R.Kr., J.R. and A.Z. wrote the manuscript, 

with contributions from all authors.  

K.A.M, L.J.L and M.F collected and managed the CARDIA cohort. A.D.P, J.A.R.G., K.C., L.B. 

and W.T. collected and managed the GEM cohort. H.B., J.S., J.T., S.A.S, and S.J.S collected and 20 

managed the COPSAC study. D.B., O.P., T.H., T.J., and T.H.H. collected and managed the 

DanFunD study. D.A.H., G.F., J.R., J.W., K.H.W., M.J., N.J.T., R.Y.T., R.B. and S.V.S. 

collected, genotyped and managed the FGFP study. C.M.G, F.R., H.A.M., L.D. and V.W.V.J. 

collected and managed the Generation R study. H.N.K., H.S. and H.L.K. collected and managed 

the KSCS study. C.W., J.F., A.Z., L.F., S.S. and A.K. collected and managed the LLD cohort. 25 

A.J.L., E.O., K.L., M.Lk. and M.B. collected and managed the METSIM cohort. A.A.M.M., 

D.M.A.E.J., D.K. and Z.M. collected and managed the MIBS-CO cohort. H.P. and ZDW 
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collected and managed the NGRC cohort. C.T.F., D.I.B., E.J.C.G., G.E.D., G.W. and R.G.I 

collected and managed the NTR cohort. Da.R., E.B., E.S. and O.W. collected and managed the 

PNP cohort. A.A., L.A., M.D.A., Su.W. and X.L. collected and managed the PopCol cohort. 

A.F., C.B., M.C.R., M.Ld and W.L collected and managed the BSPSPC and FOCUS cohorts. 

A.G.U., C.Mv.D, Dj.R. and R.Kr. collected and managed the RS cohort. F.F., F.U.W., G.H., 5 

H.V., M.M.L, St. W. and Uw.V. collected and managed the SHIP and TREND cohorts. L.Y.M., 

Q.Q., R.Kn., R.C.K. and R.D.B collected and managed the SOL cohort. C.I.L.R, C.J.S., J.T.B., 

M.A.J. and T.D.S. collected and managed the TwinsUK cohort. A.A.V. and J.S.T contributed to 

the discussion. All authors approved the final manuscript.  
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Online Methods 

Data collection 5 

A total of 25 cohorts, comprising18,340 participants of different ethnicities and ages, 

participated in the microbiome GWAS analysis (Supplementary Tables 1, 2). The Supplementary 

Note provides detailed descriptions of data collection per cohort.  

16S microbiome data processing 

The rationale behind the selection of the 16S rRNA processing pipeline was described 10 

previously11. In short, the divergence in the 16S rRNA gene domains between cohorts makes 

operational taxonomic unit (OTU)-level analysis impossible, while the use of a direct taxonomic 

classification of the reads and an up-to-date reference database allowed us to achieve good 

between-domain concordance of taxonomic composition and a higher mapping rate. 

The participating cohorts varied in their sample collection protocol, selection of DNA 15 

purification kits used to extract DNA from fecal samples, the 16S domain selected for PCR 

(Supplementary Table 1), read length, depth, post-sequencing quality control (QC) and the 

software used to merge tags of paired-end sequencing. After processing the QC-filtered merged 

reads, all cohorts implemented the standardized 16S processing pipeline 

(https://github.com/alexa-kur/miQTL_cookbook) that uses SILVA release 12815 as a reference 20 

database, with truncating the taxonomic resolution of the database to genus level.  

Briefly, the procedure was as follows. First, all samples were rarefied to 10,000 reads 

using a predefined random seed to allow for rarefaction reproducibility. Samples with fewer than 

10,000 reads were discarded. Second, RDP classifier v.2.1216 was used to bin the reads to a 

reference database. For each taxonomic level, the posterior probability of 0.8 was used as a 25 
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cutoff to bin each read to the corresponding taxon. The posterior cutoff probability was traced for 

each taxonomic level separately. For example, if the posterior probability passed the cutoff on 

family level but not on genus level, the read was binned to taxonomy on the family level (all 

corresponding upper taxonomic levels) and discarded on the genus level. It was also assigned to 

a special “NOTAX_genus” pseudo-taxon to maintain data compositionality. 5 

To characterize the contribution of cohort-wise metadata (16S domain, DNA extraction 

method, cohort ethnicity, lysis temperature and type of lysis buffer) to the microbiome 

composition, we used a distance-based redundancy analysis test in which each cohort 

represented a sample and variables represented mean abundances of genera in the corresponding 

cohort (taxa with prevalence below 20% discarded). The association of metadata with richness 10 

was performed by multivariate linear regression analysis.  

The alpha diversity indices, including Shannon, Simpson and inverse Simpson indices, 

were calculated on genus level with non-adjusted, non-transformed taxa counts. For all other 

analyses, the taxonomic counts of non-zero samples were natural log–transformed and adjusted 

for potential covariate effects using linear regression. The list of covariates used in the regression 15 

models varied between cohorts, but always included sex, age, genetic principal components 

(PCs) calculated on non-imputed genetic data (3 PCs for monoethnic cohorts, 10 PCs for 

multiethnic cohorts and 5 PCs for the HCHS/SOL cohort as a multi-ethnic population of 

different, but closely related ethnicities; see Supplementary Note for Cohort descriptions) and 

cohort-specific potential microbiome batch effects, if applicable. Variables such as the length of 20 

time in non-frozen storage, the 16S sequencing batch, etc. were also included. The residuals of 

the adjustment were then scaled and centered (mean=0 and SD=1).  

In the analysis of microbiome composition heterogeneity, the cohorts SHIP/SHIP-

TREND and GEM_HCE_v12/GEM_HCE_v24/GEM_HCE_ICHIP were merged to SHIP and 

GEM, respectively, because they were analyzed with exactly the same protocols in the same 25 

laboratories. In the microbiome–genetics analysis, these five cohorts were included individually 

as they differed in the genotyping arrays and/or general populations they represented.  

For each cohort, only the taxa present in more than 10% of the samples were included in 

the quantitative microbiome trait loci (mbQTL) mapping, whereas taxa present in more than 10% 

but less than 90% of the samples were included in binary trait loci (mbBTL) mapping 30 

(Supplementary Table 3). Study-wide cutoffs for mbQTL mapping included an effective sample 
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size of at least 3,000 samples and presence in at least three cohorts. For mbBTLs, a mean 

abundance higher than 1% in the taxon-positive samples was required. This resulted in 211 taxa 

(131 genera, 35 families, 20 orders, 16 classes and 9 phyla) that passed taxon inclusion cutoffs 

for mbQTL analysis, and 177 taxa (108 genera, 34 families, 16 orders, 12 classes and 7 phyla) 

for mbBTL analysis. 5 

Genetic data processing 

Despite the difference in genotyping array platforms, most cohorts used similar procedures for 

imputation and post-imputation filtering steps. Twenty-three out of 24 cohorts used the Michigan 

Imputation Server (https://imputationserver.sph.umich.edu/index.html) for imputation, using the 

HRC 1.0 or 1.1 reference panel62. Due to restrictions in manipulating data, the PNP study 10 

employed an in-house pipeline for imputation instead, using IMPUTE263,64 software (v.2.3.2) 

and 1000G reference panel with addition of population-matched genotypes of Jewish 

individuals65. The post-imputation cutoffs were the same for PNP and the other cohorts. 

Post-imputation VCFs were transformed into TriTyper format and filtered using 

GenotypeHarmonizer v.1.4.20 software66. The following cutoffs were applied for inclusion: 15 

minor allele frequency >0.05, pointwise imputation QC >0.4 and SNP-wise call rate filtering 

>0.95. 

Heritability analysis 

Heritability was calculated using data collected on 169 MZ and 419 DZ pairs of twins from the 

TwinsUK cohort (total of 1,176 individuals). Twin-based heritability was calculated by fitting an 20 

ACE model using the OpenMx package (v.2.8.3), as previously described5. Prior to heritability 

estimation, the taxonomic abundance was normalized using inverse rank sum transformation. 

Since the NTR cohort comprised only MZ twins, the between-cohort heritability concordance 

was calculated as the correlation of intraclass correlation coefficient (ICC) for MZ twins. 

Pearson’s correlation between NTR’s and TwinsUK’s ICCs was used to estimate the 25 

concordance. For mbQTLs, SNP-based heritability was calculated by LD score regression using 

‘LDSC’ tool67.  
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Microbiome GWAS analysis 

The modified version of the eQTL mapping pipeline 

(https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline) was used to 

perform mbQTL mapping68. 

The microbiome GWAS was performed in three ways. First, we performed GWAS on 5 

three microbiome alpha diversity metrics (Shannon, Simpson and Inverse Simpson), using 

Spearman correlation between SNP dosages and alpha diversity metrics after adjustment for age, 

sex, technical covariates and genetic principal components.  

Second, we used Spearman correlation to identify loci that affect the covariate-adjusted 

abundance of bacterial taxa, excluding samples with zero abundance (mbQTLs).  10 

Third, we identified the loci associated with probability of presence vs absence of the 

bacterial taxon (mbBTLs). To perform mbBTL analysis, we used a two-stage approach 

composed of fast correlation screening followed by logistic regression analysis as a robust 

method for binary traits GWAS19. First, we calculated the Pearson correlation between SNP 

dosage and bacterial presence encoded as 0/1, without adjusting for any covariate effect and 15 

using the previously mentioned eQTL mapping pipeline, and used weighted Z-score meta-

analysis to calculate non-centrality for SNP-taxon association. Finally, all SNP-taxon pairs with 

a first stage meta P-value <1x10-4 were recalculated using multiple logistic regression (R base 

package, versions from 3.2.0 to 3.5.1 depending on the group) with bacterial presence as an 

outcome and using SNP dosage along with the list of covariates as predictors. All the mbBTLs 20 

that reached nominal genome-wide significance threshold (P<5x10-8) in logistic regression 

analysis had a Pearson correlation P-value (at first stage) more significant than P<10-6, 

presuming the completeness of two-stage procedure in revealing genome-wide significant 

mbBTL using P<10-4 cutoff at the first stage of analysis. 

mbTL meta-analysis 25 

Meta-analysis was performed using a weighted Z-score method implemented in 

BinaryMetaAnalyzer (v.1.0.13B available on MiBioGen Cookbook), a part of the eQTL 

mapping pipeline that was used in large-scale eQTL meta-analyses20,68. Per-cohort, Z-scores 
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were calculated from Spearman correlation p-values using inverse normal transformation, 

transforming two-tailed p-values to one-tailed p-values and tracing the effect directions using the 

following formula: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑆𝑆𝑆𝑆)  ∗  𝑞𝑞𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞(1 − 𝑃𝑃/2)  

Where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅𝑆𝑆𝑆𝑆) denotes the sign of Spearman correlation, 𝑞𝑞𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞 denotes the quantile 5 

function for the normal distribution and 𝑃𝑃 denotes the two-tailed p-value of Spearman 

correlation. For quantitative mbQTLs, the cohorts were weighted by the square root of the 

effective sample size (the number of samples having the bacterial taxon). For binary mbQTLs, 

the square root of the reported cohort size was used as a weighting for each study. The summary 

statistics generated for mbQTLs also include meta-effect sizes and standard errors. These were 10 

generated using the inverse variance weighted meta-analysis method performed on the per-

cohort effect sizes and standard errors, backtracked from association Z-scores and minor allele 

frequencies using the strategy proposed and implemented by Zhu et al69, where they also give the 

detailed derivation of the following equations:  𝑏𝑏� = 𝑧𝑧𝑧𝑧 15 𝑧𝑧 =
1�2𝑝𝑝(1− 𝑝𝑝)(𝑠𝑠 + 𝑧𝑧2)

 

Where, 𝑏𝑏 is the estimated effect size, 𝑧𝑧 is the estimated standard error, 𝑝𝑝 is the allele frequency 

and 𝑠𝑠 is the sample size. 

Heterogeneity exploration analysis 

Cross-study heterogeneity of the effects of genetic variants in the relative abundance of 20 

taxonomical units was assessed using Cochran's Q-test for heterogeneity70, as implemented in 

METAL v2018-08-2871, for all genome-wide significant variants (P<5x10-8) found in our main 

analysis. To avoid reporting false-positive associations due to different study designs or data 

collection methods, we used a stringent threshold of P<0.05 to reject the null hypothesis of no 

heterogeneity. This threshold is conservative considering that several variants were tested 25 

simultaneously, and no correction for multiple testing was applied. When there was evidence of 

heterogeneity, a random effect model was also implemented at the meta-analysis level to confirm 
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the association results, using the metaphor R package v.2.0-0 (https://cran.r-

project.org/web/packages/metafor/metafor.pdf).  

Additionally, when there was evidence for heterogeneity of a SNP-effect across cohorts, 

we implemented a meta-regression approach using the same package to assess whether variables 

such as age, ethnicity or sequenced region could explain the observed effect-size heterogeneity.  5 

Analysis of SNP–age interaction analysis in the LCT locus 

To discover whether the association of functional SNPs in the LCT locus to the abundance of the 

Bifidobacterium genus varied between groups of adults and infants, we performed age–SNP 

interaction analysis in the GEM cohort, which comprises three sub-cohorts that each have a 

comparable number of individuals above and below puberty age. The age of 17 years was 10 

selected to split the cohort into the age groups: adolescents or adults. Since the GEM cohort was 

composed of three sub-cohorts of different ethnic composition, we evaluated the interaction in 

both joint analysis and in each subcohort separately, using the following formula: 𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑧𝑧𝑆𝑆𝑆𝑆 +  𝑃𝑃𝑃𝑃[1-3] +  𝐴𝐴𝑠𝑠𝑆𝑆group +  𝑃𝑃𝑞𝑞ℎ𝑞𝑞𝑞𝑞𝑜𝑜 +  𝑧𝑧𝑆𝑆𝑃𝑃dos +  𝑧𝑧𝑆𝑆𝑃𝑃HZ +  𝑧𝑧𝑆𝑆𝑃𝑃GT:𝐴𝐴𝑠𝑠𝑆𝑆group 

where Bac is the log-transformed count of genus Bifidobacterium, PC[1-3] are three floats with 15 

the first 3 genetic PCs, Cohort is a batch variable that determines the cohort the sample belongs 

to, SNPdos is a float-encoded dosage of alternative allele, SNPHZ is a Boolean variable describing 

heterozygosity, SNPGT is a genotype encoded as an unordered factor and Agegroup is a two-level 

factor (above or below split level). The inclusion of a numeric dosage variable and a Boolean 

SNPHZ variable allowed us to properly adjust for the recessive effect of the SNP on 20 

Bifidobacterium abundance without neglecting SNP imputation uncertainty as embedded in SNP 

dosage.   

The analysis was then repeated for each GEM subcohort separately, using the same 

model.  

Association of mbTL-associated taxa with host phenotypes 25 

Bacterial taxa found to be significantly associated with genetic determinants were correlated with 

207 host phenotypes, including the intrinsic host properties, diet, disease and medication 
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information, in the LLD and FGFP cohorts. We used Spearman correlation with Benjamini-

Hochberg (BH)-adjustment for multiple testing to assess the correlation between phenotypes and 

bacteria that had mbQTLs. For the taxa with mbQTLs, samples with zero abundance were 

truncated. For the taxa with mbBTLs, the abundance was transformed to a binary trait encoding 

presence/absence.  5 

FUMA analyses of meta-analysis results 

Functional mapping and annotation of 30 meta-analysis results were performed with FUMA 

(v1.3.5), an integrated web-based platform31. Summary statistics from the mbQTL analyses for 

each of the 20 independent association signals were used in the analysis. Genome-

wide significant loci and their boundaries were defined as non-overlapping genomic regions that 10 

extend across an LD window of r2≥0.4 (based on the 1000G EUR reference panel)72 from the 

association signals with P<5.0x10– 8. Independent (r2<0.1) lead SNPs from each locus were 

defined as those most strongly associated with a microbial trait (i.e. with the lowest P value) at 

the specific region. Multiple risk loci were merged into a single genomic locus if the distance 

between their LD blocks was <250 kb. 15 

Functional annotation of all candidate risk SNPs was obtained from different repositories 

integrated in FUMA. Furthermore, these functionally annotated SNPs were mapped to protein-

coding genes using the following two strategies: (1) positional mapping, with the maximum 

distance of 10 kb to protein-coding genes, and (2) eQTL mapping, using information from data 

repositories such as GTEx v7 and Blood eQTL browser 20 

(http://genenetwork.nl/bloodeqtlbrowser/)20.  

As the mbBTL mapping procedure provides accurate statistics for only the subset of 

SNPs (see Microbiome GWAS analyses paragraph), and we thus lack full summary statistics, we 

only performed positional mapping for mbBTLs, taking in the protein-coding genes within 10 kb 

distance of the 10 leading SNPs per trait.  25 

All mapped protein-coding genes were combined into one list for either mbQTL or 

mbBTL analysis prior to performing GSEA integrated in FUMA. In further investigations, 

hypergeometric tests of enrichment of all mapped genes were performed not only in tissue-
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specific (differentially expressed) gene sets, but also in gene sets curated from various sources, 

e.g. MsigDB. We reported all enriched gene sets (≥2) with an FDR adjusted P-value <0.05.  

PheWAS, genetic correlation and colocalization analysis 

We performed the PheWAS look-ups in the summary statistics results of 4,155 traits collected by 

the GWASATLAS32 (http://atlas.ctglab.nl/, accessed on: 25-09-2019) database for the top SNPs 5 

per mbQTL locus that were revealed by either mbQTL or mbBTL mapping. GWASATLAS 

includes 600 traits from the UK Biobank and is enriched with extensive phenotypes on 

proteomics (n=1124 proteins), hematology (n=36), metabolomics (n=1145 metabolic features) 

and immune markers (n=241), studied across variable sample sizes. It also contains 1,009 

GWASs performed prior to the UK Biobank effort, all categorized under 27 phenotype domains. 10 

Next, we tested if any of these 27 domains were enriched by the phenotypes associated to one of 

the SNPs of interest (using a liberal P-value threshold of 0.05 for the SNP–phenotype 

association) as compared to the expected distributions under the null hypothesis. In order to 

obtain the distributions under the null hypothesis, we selected matching 1000 SNPs for each top 

SNP using SNPSNAP73 matched by allele frequency, gene density, number of LD pairs and 15 

distance from the closest gene.  

We then extracted corresponding results from the GWASATLAS for the matched 30,000 

SNPs (1000 matching SNPs per each top mbTL SNP). The enrichment of each domain was 

tested by comparing the proportions of observed and expected significant results for the SNPs of 

interest using the prop.test function in R. This resulted in one-sided P-values and odds ratios. 20 

Seven domains (Aging, Body structures, Connective tissue, Ear-Nose-Throat, Infection, 

Muscular and Social Interactions) that included fewer than 20 GWAS tables were excluded from 

the enrichment tests, resulting in 20 domains. We used a conservative Bonferroni-based P-value 

threshold of 8.06x10-5 for the enrichment testing, accounting for 20 domains and a total of 30 

mbTL top SNPs coming from both the mbQTL and mbBTL mapping. In addition, we performed 25 

gene-based PheWAS look-ups in the GWASATLAS for candidate genes of interest within 250 

kb around the association peaks, as defined by the FUMA algorithms.  

The genetic correlation between Bifidobacterium and its PheWAS-related traits (from 

Table S12) was estimated following a LD-score regression approach67 using the ‘ldsc’ tool. For 
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testing colocalization of the PheWAS signals, we used the approximate Bayes factor approach as 

implemented by the “coloc.abf” function from the “coloc” library in R74, using genetic variants 

within ±250 kb around the top signals.  

Mendelian Randomization analysis 

MR analyses were performed in R using TwoSampleMR package (v.0.5.5)36. Causality direction 5 

was tested between the microbiome and two data types: (1) autoimmune, cardiovascular, 

metabolic (including weight-related phenotypes) and psychological diseases (GWAS summary 

statistics from MRBase36) known to be associated with microbiome composition2,3,37–42,47 and (2) 

42 nutritional phenotypes and alcohol intake frequency from the UK Biobank round 2 

(http://www.nealelab.is/uk-biobank/). 10 

For MR analyses, the combined meta-effects and standard errors from inverse variance 

meta-analysis were used.  

To test if a complex trait affected microbiome composition, we selected independent 

genetic variants associated with complex traits at the genome-wide significant level (P<5x10-8) 

and used these as instruments in our MR analyses. For complex diseases, we transformed Odd 15 

Ratios (ORs) and C.I. to effect sizes and standard errors using the built-in function of the 

TwoSampleMR package. To test if microbiome changes were causally linked to complex traits, 

we first confined ourselves to bacteria with genome-wide significant QTLs. For these, we 

selected all SNPs with a less stringent cut-off of P<1x10-5 in our MR analyses as instruments. 

This strategy was used to increase the number of SNPs available in order to perform sensitivity 20 

analyses, as shown previously53. Independent SNPs were selected as instrumental variables 

based on r2 < 0.001 in 1000G EUR data, within the TwoSampleMR package. When no shared 

SNPs were available between exposure and outcome, proxies from the 1000G EUR data (r2 > 

0.8) were added. We kept only the results based on at least three shared SNPs. MR causality tests 

were performed using the Wald ratio, and Wald ratios were meta-analyzed using the inverse-25 

variance weighted (IVW) method75. We also estimated the causality using additional methods: 

the weighted mode method76, which provides an alternative approach to IVW; MR-Egger77, 

which estimates the degree of horizontal pleiotropy in the data; and MR PRESSO78, which 

estimates the pleiotropy and corrects for it by removing outliers from the IVW model. We also 
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assessed the heterogeneity of the results using Cochran’s Q statistics75 and using leave-one-out 

analyses36. We estimated instrument variable (IV) strengths using F statistics: the amount of 

variance explained by IVs was calculated for each exposure using the TwoSampleMR package 

(get_r_from_lor function) for binary traits and VPE as defined in Shi et al79. F statistics were 

then calculated as 
r2 ∗ (N – 1 – k)

(1 – r2)∗ k , where r2 is the variance explained, N is the sample size and k is 5 

the number of IVs. We kept the results for the conventional threshold of F statistics >10 80.  

After performing the MR tests, we excluded duplicated GWAS traits, as the same 

phenotype is often studied in multiple GWAS. To remove the duplicates, we kept the study with 

the largest sample size among all the tested GWAS studies for each trait. 

After excluding duplicates and tests performed with weak instruments (F statistics <10), 10 

we applied a BH correction for multiple testing to the results obtained from the IVW MR test, 

and subsequently used a stringent filtering procedure on the significant results to avoid false-

positives. Specifically, we removed the MR results that were based on fewer than three SNPs 

and thus could not be further investigated with sensitivity analyses. We also removed the MR 

results that were not supported by other MR tests (weighted mode method P >0.05, MR PRESSO 15 

P>0.05) and those that showed substantial pleiotropy or heterogeneity as estimated by MR-Egger 

(MR-Egger intercept P<0.05) or MR PRESSO outliers-adjusted test (P>0.05), as well as those 

where leave-one-out analysis identified one SNP driving the signal (all but one leave-one-out 

configurations had P<0.05). Of note, MR-Egger slope, which represents the causal estimate, was 

not used as a filtering step given the reduced power to detect causal effects. It is also worth 20 

noting that for all but one of the reported MR results that passed all the filters above, the MR-

Egger slope p-value was greater than 0.05, therefore an MR-Egger intercept P<0.05 cannot be 

used to exclude presence of pleiotropy. Even though many of our MR-Egger intercept results 

provided little evidence of directional pleiotropy, it is worth noting that a P<0.05 cannot exclude 

the presence of pleiotropy and requires further understanding of the biological mechanisms 25 

underpinning the relationship between genetic variation, the gut microbiome and health 

outcomes. To exclude more complex causality scenarios, we also removed those results for 

which the reverse MR P-value was below 0.05. Of note, the causal relationship identified for the 

microbiome feature class Actinobacteria (as exposure) and ulcerative colitis (outcome) showed a 
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consistent effect direction when using only the only genome-wide significant SNP, but with 

wider confidence interval (OR=0.40 [95% CI: 0.22-0.71] Pnominal=0.002). 

Data availability statement 

Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org website built 

using the MOLGENIS framework81.  5 

16S data availability: 

BSPSPC and FOCUS data is available from Sequence Read Archive (SRA), PRJNA673102 

All CARDIA data, including 16S rRNA sequencing, cannot be made available on publicly 

available databases due to the confidentiality restrictions. The data can be requested from 

CARDIA Study Data Coordinating Center at the University of Alabama at Birmingham, 10 

following CARDIA Confidentiality Certification rules. The process for obtaining data through 

CARDIA is outlined at: https://www.cardia.dopm.uab.edu/publications-2/publications-

documents. 

COPSAC data is available on SRA (PRJNA683912). 

DanFunD is not deposited on the public databases due to the legal and ethical restrictions. 15 

Access to the data and biological material can be granted by the DanFunD steering committee 

(https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-

collaborate.aspx). 

FGFP data is available on European Genome-Phenome Archive (EGA), EGAS00001004420 

GEM data is available on SRA (PRJEB14839). 20 

Generation R and Rotterdam Study data cannot be made publicly available due to ethical and 

legal restrictions; these data are available upon request to the data manager of the Rotterdam 

Study Frank van Rooij (f.vanrooij@erasmusmc.nl) or of the Generation R Study Claudia 

Kruithof (c.kruithof@erasmusmc.nl) and subject to local rules and regulations. 

HCHS/SOL data is available from ENA (European Nucleotide Archive), ERP117287. 25 

KSCS data is available at the public repository, Clinical and Omics data archives (CODA) in the 

Korea National Institute of Health by accession number R000635 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.06.26.173724doi: bioRxiv preprint 

http://www.mibiogen.org/
https://www.cardia.dopm.uab.edu/publications-2/publications-documents
https://www.cardia.dopm.uab.edu/publications-2/publications-documents
https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-collaborate.aspx
https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-collaborate.aspx
https://doi.org/10.1101/2020.06.26.173724
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

(http://coda.nih.go.kr/coda/coda/search/omics/genome/selectSearchOmicsGenomePop/R000635.

do). 

LLD and MIBS data are available from EGA, EGAS00001001704, EGAS0000100924). 

METSIM data is available on SRA (SRP097785). 

NGRC data is available on ENA (ERP016332). 5 

NTR has a data access committee that reviews data requests and will make data available to 

interested researchers. The data come from extended twin families and pedigree structures with 

twins, which create privacy concerns and thus cannot be shared on publicly available databases. 

Researchers may contact prof Eco de Geus (eco.de.geus@vu.nl) for data request.. 

PNP is available on ENA (PRJEB11532). 10 

POPCOL is available on EGA (EGAS00001004869). 

SHIP and SHIP-TREND data can be obtained from the SHIP data management unit and can be 

applied for online through a data access application form (https://www.fvcm.med.uni-

greifswald.de/dd_service/data_use_intro.php) 

TwinsUK data is available on the European Nucleotide Archive (ENA, accession ERP015317).  15 

Code availability statement 

All code used in the study is available on the Consortium GitHub (https://github.com/alexa-

kur/miQTL_cookbook) or on the websites of corresponding software packages.  
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