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Despite significant progress in combating malaria in recent years the burden of severe

disease and death due to Plasmodium infections remains a global public health concern.

Only a fraction of infected people develops severe clinical syndromes motivating a

longstanding search for genetic determinants of malaria severity. Strong genetic effects

have been repeatedly ascribed to mutations and allelic variants of proteins expressed

in red blood cells but the role of inflammatory response genes in disease pathogenesis

has been difficult to discern. We revisited genetic evidence provided by inflammatory

response genes that have been repeatedly associated to malaria, namely TNF, NOS2,

IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants

having opposing roles in the development of distinct malaria clinical outcomes and

unveiled diverse levels of genetic heterogeneity that shaped the complex association

landscape of inflammatory response genes with malaria. However, scrutinizing genetic

effects of individual variants corroborates a pathogenesis model where pro-inflammatory

genetic variants acting in early infection stages contribute to resolve infection but at

later stages confer increased vulnerability to severe organ dysfunction driven by tissue

inflammation. Human genetics studies are an invaluable tool to find genes and molecular

pathways involved in the inflammatory response to malaria but their precise roles in

disease pathogenesis are still unexploited. Genome editing in malaria experimental

models and novel genotyping-by-sequencing techniques are promising approaches to

delineate the relevance of inflammatory response gene variants in the natural history of

infection thereby will offer new rational angles on adjuvant therapeutics for prevention

and clinical management of severe malaria.

Keywords: malaria, NOS2 gene, type 1 interferon receptor 1 (IFNAR1), genetics, TNFA gene, CD40LG gene, HMOX1

gene, TLRs (toll-like receptors)

INTRODUCTION

During the last decade intensive efforts have succeeded in implementing malaria epidemiological
control measures and in deploying new anti-malaria drugs that have significantly decreased the
disease burden across the world (1). Nevertheless, malaria claims close to half a million deaths each
year (2) demanding deeper understanding of severe malaria pathogenesis (3). Malaria is caused
by mosquito-transmitted Plasmodium protozoan parasites that develop in multiple stages within
the vertebrate host. The chronology of infection exposes the host to distinctive intracellular and
extracellular forms that emerge sequentially during the natural history of infection (1, 4) (Figure 1).
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FIGURE 1 | Natural history of malaria infection in a naïve susceptible host. P.

falciparum expansion in the liver and in blood stage infection is represented in

a logarithmic scale. Exposure of parasite extra-cellular forms (purple) to the

host immune system is brief in case of sporozoites (<1 h) and momentaneous

in the case of free merozoites in the blood (few minutes). In a typical infection

liver stage parasites (blue) expand in few dozens of hepatocytes in circa 5.5

days, a clinically unapparent phase (blue arrow). Synchronous blood stage

parasite expansion is represented (green), considering six rounds of

trophozoite division during erythrocytic schizogony. In naïve individuals blood

stage infection causes tertian fever (one brood infection) and mild malaria

(brown arrow) but the clinical severity (red arrow) is co-determined by parasite

pathogenicity factors and by the host genetic make-up.

Free parasite forms- sporozoites and merozoites- are non-
replicative and obligatory for life cycle progression. Although
directly exposed to the immune system free parasites represent
brief phases in infection that do not elicit protective responses
in naive subjects (5). In contrast, intracellular parasite forms
hidden in hepatocytes or in erythrocytes, undergo significant
expansion, damaging, and ultimately destroying infected cells
while offering a large number of inflammatory triggers and
immunogenic targets (4, 6, 7).

Nevertheless, the effectiveness of anti-parasite responses is
defied both by the dynamics of infection (e.g., high parasite
growth rate) and by variations in the parasite antigenic
complexity represented by stage-specific sets of antigens or by
mechanisms of antigenic diversification and clonal antigenic
variation (7–9). As a result the host immune system engages
in multiple ineffective responses, a scenario that allows parasite
cell-cycle progression and transmission to the next mosquito
host. Clinical outcomes of blood-stage infection range from
unapparent infection to life-threatening conditions depending
on the caliber and effectiveness of anti-parasite responses
(10). The severity of clinical manifestations result from direct
parasite effects on infected cells (e.g., hemolysis), systemic effects
of parasite activity and growth (e.g., malaria paroxysms and
metabolic imbalances) as well as organ lesions (mainly in brain,
lungs, liver, spleen, kidney, and placenta) generated by massive

parasite clearance reactions and mal-adapted inflammatory
responses (11). Thus, exacerbation of inflammatory responses
during infection is a key determinant in development of
immunopathology and organ dysfunction associated with severe
malaria syndromes (12–14). This review scrutinizes genetic
association evidence supporting that pro-inflammatory genetic
variants have dual roles in disease pathogenesis.

ANTI-PARASITE RESPONSES

The host response to malaria includes a wide range of both
cell-intrinsic and systemic mechanisms but the initial responses
in a naive host are mostly driven by non-specific reactions
(1). Liver stage infection is clinically silent as the number
of infected hepatocytes is relatively low (15). Liver infection
progression is counteracted by hepatocyte killing mechanisms,
including activation of hepatocyte-intrinsic apoptosis pathways
(16–20) and innate responses of liver non-parenchymal cells (21–
24). Nevertheless, completion of liver stage infection is usually
secured by parasite-driven mechanisms that inhibit apoptosis of
infected hepatocytes (19, 25), inhibit hepatocyte autophagy (26)
or suppress liver macrophages responses (27, 28). As a result, a
small number of infected hepatocytes sustain parasite growth and
generate a relatively high number of merozoites that are freed in
the bloodstream initiating blood stage infection.

An archetypal infection in a naive host leads to exponential
increase blood stage parasites due to the cyclic expansion
of asexual parasite forms (Figure 1) but in natural infection
parasite growth is many times counteracted by strong host
responses. Parasite molecules expressed in the surface of
infected erythrocytes (IE) induce powerful innate responses
leading to detection, engulfment, and destruction of large
numbers of IE mainly in the spleen and liver (29–31). Pattern
recognition receptors (e.g., TLRs) expressed by professional
antigen presenting cells contribute to IE recognition and
engulfment (32, 33). Phagocytosis triggers a respiratory burst
response involving reactive oxygen species in intracellular
parasite killing (34) but also leads to production of cytokines
and chemokines that engage and polarize subsequent
antibody- and cytotoxicity-mediated adaptive immune
responses (35).

In this pro-inflammatory environment the mounting of
adaptive responses in secondary lymphoid organs, mainly
in the spleen white pulp (31) favors the generation of
cytophilic or opsonizing antibodies that recognize Plasmodium
antigens expressed in the surface of infected erythrocytes (36).
Similarly, opsonizing antibody responses target free merozoites
for destruction and correlate with disease protection (37, 38)
and infection resolution (39–41). Nevertheless, variation and
diversification of parasite antigens expressed in the erythrocyte
surface subvert adaptive responses thereby sustaining infection
progression (42). Furthermore, parasite virulence factors such
as higher intrinsic growth rate, broad erythroid tropism, and
cyto-adherence (43–46) are determinants of increased blood-
stage parasite loads that in turn exacerbate the pro-inflammatory
responses associated with severe disease (10, 47).
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IMMUNOPATHOLOGY AND SEVERE
OUTCOMES

Several immunologic mechanisms triggered by infection in non-
immune individuals paradoxically favor disease development as
they reveal inefficiencies in eliminating the parasite. The host
immune system reacts to parasite molecules released during
IE rupture (e.g., hemozoin pigment and lipid-associated GPI
anchors, so-called “malaria toxins”) through innate immunity
receptor signaling (e.g., TLRs) leading to release of pro-
inflammatory mediators, namely TNF-alpha, IL-1β, IL-6, and
IFN-gamma (48–50). In overt blood-stage infection this
inflammatory environment is amplified by reciprocal activation
loops involving monocytes, NKT cells, T cells, and endothelial
cells (11). Systemic microvascular endothelial activation by
inflammatory mediators, IE and parasite components (e.g.,
nucleosomes and microvesicles) plays a decisive role in
organ inflammation (51, 52) with marked up-regulation of
adhesion molecules (e.g., ICAM1) and imbalances in vasoactive
mediators (angiotensins, endothelin-1, and nitric oxide) (53–
55). Often, adhesion of activated monocytes, T cells and
platelets (56–58) leads to altered vascular permeability and
coagulation disturbances with induction of endothelial cell
damage and death. In counterbalance, tissue damage cues
such as alarmins and cytokines released by parenchymal
cells engage macrophages and lymphoid cells in inflammation
resolution and tissue repairing responses (59). These general
tissue protective responses that counteract inflammation may
operate in malaria by induction of regulatory T cells (60, 61),
production of anti-inflammatory cytokines [e.g., TGF-β (62,
63)] and stimulation of oxidative-stress protection systems [e.g.,
heme oxigenase 1 and nitric oxide (59)]. The inflammatory
mechanisms and tissue protective responses elicited by infection
interplay with parasite factors and microanatomy components
in different organs to determine tissue-specific vulnerability
to immunopathology (64), ultimately allowing development of
specific malaria clinical syndromes.

INFLAMMATORY RESPONSE GENES AND
MALARIA CLINICAL OUTCOMES

The epidemiology of severe malaria suggests that cumulative
exposure to the malaria parasite confers resilience against life-
threatening disease (1). Nevertheless, malaria epidemiology alone
does not explain why only a relatively small fraction of primary
Plasmodium infections develop severe clinical forms. Compelling
genetic evidence collected in recent years shows that malaria
contributed to shape the human genome and it is established that
variants in genes coding for proteins expressed in erythrocytes
are major genetic determinants of resistance to infection and
resilience to severe disease (65–71).

Interestingly, a growing number of genetic association studies
also report that inflammation-related genes have a role in
determining the course and clinical outcomes of infection. Yet,
the action of individual genetic variants has been difficult to
resolve and in some cases genetic variants appear to have

pleiotropic effects (72). This is in part due to disparities in study
design, regional differences in intensity of malaria transmission,
diversity of Plasmodium biotypes, and relatively small sample
sizes with unknown genetic substructure, particularly in Africa
(70, 73). Usage of larger sample sizes in multicentric studies do
not overcome the possibility that functional consequences of a
given genetic variant may vary among geographic locations (74).
Moreover, the diversity of malaria phenotypes and Plasmodium
species used in case definition of different studies may
preclude the identification of genetic variants as general malaria
risk factors. Nevertheless, cumulative evidence corroborating
the association of specific inflammatory genes with malaria
phenotypes is instrumental to value their contribution to malaria
pathogenesis and to scrutinize their roles during infection.

Here we attempted to integrate evidence obtained in genetic
association studies in light of a malaria pathogenesis model
informed by experimental and epidemiological evidence. This
model attributes a dual role to inflammatory responsiveness
during the natural history of infection and takes in consideration
the intra-host infection dynamics and the history of exposure
to malaria (Figure 2). Accordingly, pro-inflammatory alleles
promoting strong anti-parasite responses are predicted to
increase resistance against infection and uncomplicated disease
but also contribute to mal-adapted inflammatory responses that
underlie progression to severe malaria syndromes. Conversely,
alleles that mediate low inflammatory responsiveness may
increase susceptibility to unapparent infection and favor mild
malaria but would confer resilience to inflammation-driven
severe organ damage. In this context, low inflammatory
responsiveness offers an explanation for why individuals
surviving initial infections resisting to severe malaria are
inefficient in clearing the parasite and show long periods of
asymptomatic parasitemia. This implies, that genetic control
of malaria clinical outcomes afforded by genetic variance
in inflammatory genes is modified by cumulative exposure
to infection translating into efficient infection resolution or
asymptomatic infection (Figure 2).

We followed a gene-centered approach to screen malaria
association studies encompassing different clinical phenotypes,
geographic regions, and Plasmodium species aiming to identify
gene variants that have repeatedly produced evidence for
positive association, namely in TNF, NOS2, IFNAR1, HMOX1,
TLRs, CD36, and CD40LG genes (Supplementary Table 1).
Subsequently, genetic effects of these individual variants
were scrutinized across different case-control studies using a
terminology that takes in account the malaria status of the
groups of individuals that are compared in each study (Table 1).
The analysis of the malaria association landscape in individual
genes reconciled apparently incongruent data and offers a
perspective on the roles of specific inflammatory mediators in
malaria pathogenesis.

TUMOR NECROSIS FACTOR

Tumor necrosis factor (TNF) is a potent pro-inflammatory
mediator involved in various steps of immune responses. It has
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FIGURE 2 | Genetic variants in inflammatory response genes and infection

outcomes. Genetic variants controlling inflammatory responsiveness are

proposed determinants of malaria clinical outcomes dependent on history of

exposure to infection. Under the framework of a polygenic model of malaria

susceptibility the additive effects of genetic variants conferring strong

inflammatory responsiveness to infection concur to severe disease but may

favor efficiency of anti-parasite responses in repeatedly exposed individuals.

On the other hand, joint effects of alleles conferring low inflammatory

responsiveness results in increased resilience to severe malaria but are

associated to asymptomatic parasitemia in exposed individuals possibly due

to inefficient parasite clearance.

long been recognized that TNF takes part in anti-Plasmodium
responses that lead to intra-erythrocytic parasite killing and
parasitemia reduction (75). Yet, TNF was also implicated as
a causative factor in development of malaria-associated organ
pathology (76–78). Elevation of TNF serum levels is a common
finding in malaria episodes (79) and was noted that high TNF
production capacity correlates with faster parasite clearance
and with resolution of malaria attacks (80). The TNF response
appears to follow the parasitemia kinetics with increased serum
levels in children with high-density parasitemia and decaying
with parasite clearance (81, 82). Nevertheless, TNF serum levels
were repeatedly found increased in children with severe malaria
(82–87) implying an intricate role in malaria pathogenesis (88).

Several TNF-α promoter single nucleotide polymorphisms
(SNPs) that control gene expression or TNF production (89–
92) are associated with control of parasitemia levels (92–95) and
with increased anti-P. falciparum IgG levels (96). This suggests
that TNF variants may play a role in the effectiveness of anti-
parasite responses. Furthermore, the role of promoter variants
in clinical malaria (e.g., rs1800629) is highlighted by reports
associating TNF with vulnerability to severe disease, including
cerebral malaria (97–102) and malaria in pregnancy (103, 104)
(Figure 3 and Supplementary Table 1). Likely, control of TNF
gene expression by these polymorphisms is context-dependent
regarding secreting cell types, cell activation status, and action of

TABLE 1 | Terminology of malaria genetic effects.

Genetic effects in malaria case -control studies

Disease/infection susceptibility

Increased risk of a malaria phenotype (or infection) when comparing to healthy (or

uninfected) individuals.

Disease/infection resistance

Decreased risk of a malaria phenotype (or infection) when comparing to healthy (or

uninfected) individuals.

Disease progression

Increased risk of a malaria phenotype when comparing with infected individuals

(including asymptomatic parasite carriers).

Disease protection

Decreased risk of a malaria phenotype when comparing with infected individuals

(including asymptomatic parasite carriers).

Disease vulnerability

Increased risk of a specific disease syndrome/outcome when comparing to other

symptomatic clinical forms.

Disease resilience

Decreased risk of a specific disease syndrome/outcome when comparing to other

symptomatic clinical forms.

Genetic effects of alleles identified in association studies are denoted according the clinical

status of the control group.

other inflammatorymediators (105). Accordingly, it was reported
that TNF2 allele (-308, aka rs1800629) controlled elevation of
serum TNF in severe malaria patients but not in patients with
uncomplicated malaria suggesting that its capacity to control
gene expression may be modified in the course of infection
(106). Also, TNF-238G allele (rs361525) shows opposing effects
on vulnerability to cerebral malaria and severe malaria anemia
(107) suggesting differential roles of TNF in the spectrum of
severe malaria syndromes. It should be noted that some of these
association signals could result from genotypic combinations
with neighboring genes, namely lymphotoxin-alpha (LTA) (88)
and more detailed analysis of this region is needed to discern the
involvement of TNF in human severe malaria (108).

Nevertheless, the data collectively suggest that TNF response
capacity in malaria is controlled by TNF polymorphisms and
that TNF represent a prototype of a pro-inflammatory factor in
the natural course of infection; controlling parasite expansion
in early stages of infection but acting in a context-dependent
manner to increase the risk of specific severe malaria syndromes.
The exact mechanisms by which TNF is involved in severe
malaria remains unknown and requires a detailed functional
testing of the network of TNF-TNFR family (88). However, it is
noteworthy that other genetic modifiers of malaria susceptibility,
namely NOS2, act as downstream effectors of TNF signaling
encouraging further investigations on the intertwining of TNF
and nitric oxide in disease development.

NITRIC OXIDE SYNTHASE 2 (NOS2)

Nitric oxide (NO) is a free radical involved in multiple biological
processes, including inflammatory responses. Decreased NO
bioavailability in severe malaria patients is a well-established
pathogenesis factor (53, 109, 110) possibly impacting on
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FIGURE 3 | Genetic effects of TNF SNPs associated to clinical malaria. The scaled diagram of exon-intron structure of TNF gene shows malaria associated SNPs in

the promoter region and one SNP in intron 3 (bar 1Kb). Detrimental effects in malaria severity and parasitemia are represented by red arrows while beneficial effects

are represented by blue arrows. TNF alleles associated with malaria are conferring several severe phenotypes with the exception of rs361525 that concomitantly is

associated to protection from severe malaria anemia. For allele description and reported genetic effects (Supplementary Table 1).

endothelial activation (111) and macrophage polarization (112).
Experimental mouse models of cerebral malaria demonstrated
that increasing nitric oxide bioavailability protects against
cerebral malaria by deterring systemic inflammation and the
activation of immunocytes and endothelial cells (113–115).
However, the therapeutic value of NO in severe malaria still lacks
solid supportive evidence (116).

The NOS2 gene codes for the inducible NO synthase (iNOS)
and has been probed in several genetic studies that collectively
uncovered common genetic variants functionally correlated
with increased NO bioavailability in infected individuals (117–
119). Meaningfully, these variants have beneficial effects in
clinical malaria, namely lower incidence of symptomatic re-
infection (119) and uncomplicated malaria (117, 118, 120–
123), decreased risk of severe malaria (121, 124, 125),
including severe anemia and cerebral malaria (117, 118).
Nonetheless, the same NOS2 alleles (e.g., rs6505469) were also
associated with higher incidence of asymptomatic infection
among apparently healthy individuals (117) (Figure 4 and
Supplementary Table 1). This suggests that increased NO
bioavailability in infected individuals counteracts detrimental
effects of malaria inflammatory responses but is also impairing
parasite clearance responses in early stages of infection. In
contrast, other NOS2 variants in the promoter region that
favor reduced NO bioavailability in absence of infection (e.g.,
rs8078340) were underrepresented in individuals with lower
markers of exposure to pre-erythrocytic infection (e.g., anti-
CSP antibodies) suggesting they contribute to resistance to
infection (117).

The protective effects of NOS2 variants have not been
consistently observed in different studies possibly owing to
differences in the genetic variants analyzed, in the ethnic

groups studied or in regional epidemiologic patterns of clinical
malaria (126, 127). Nevertheless, the available genetic evidence
cohesively supports the hypothesis that NO bioavailability holds
an anti-inflammatory role in malaria pathogenesis that translates
into decreased ability to clear the parasite in early stages of
infection but enhancing protection against clinical inflammatory
manifestations. The pathophysiological impact of NOS2 genetic
variance is still not resolved but it should be noted that the NOS2
polymorphisms controlling NO bioavailability in absence of
clinical malaria (e.g. rs8078340) are distinct from those associated
with alterations of NO bioavailability in overt clinical disease (e.g.
rs1800482) (117) (Figure 4). This implies that a distinct regimen
of NOS2 genetic control is operating in infected individuals that
should be taken into account when comparing groups of infected
and non-infected individuals.

TYPE 1 INTERFERON RECEPTOR 1
(IFNAR1)

Type 1 interferons (IFN-1) are secreted by immune and non-
immune cells including lymphocytes, macrophages, dendritic
cells, fibroblasts, and endothelial cells. IFN-1 production is
induced upon innate recognition of exogenous nucleic acids and
proteins by innate receptors such as membrane-bound Toll-like
receptors (TLRs) and cytosolic RNA helicases. Studies in vitro
and in mice converge at the notion that sensing malaria parasites
via innate immune receptors is linked to a IFN-1 response (128–
130). A multi-level role of IFN-I signaling during Plasmodium
infection in experimental models has been uncovered by the use
of mice deficient in Ifnar1 (a subunit of the IFN-1 receptor) or
in components of the IFN-I induction pathways (e.g., MDA5,

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1771

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Penha-Gonçalves Genetics of Malaria Inflammation

FIGURE 4 | Genetic effects of NOS2 SNPs associated to malaria and nitric oxide bioavailability. The scaled diagram of NOS2 exon-intron structure depicts SNPs in

the 5′region (rs11080358–rs1800482) and in the cistronic region (rs3794767–rs3729508) associated with malaria and with control of nitric oxide (NO) bioavailability.

Genetic variants that decrease NO bioavailability in the 5′region have beneficial effects (blue arrows) in early stages of infection, possibly by favoring anti-parasite

responses. In contrast, SNPs that increase NO bioavailability (mapping in the 5′ region or in the cistronic region) show an anti-inflammatory action favoring infection

when parasite burden is low or when infection is unapparent (red arrows) but protect from mild malaria and increase resilience against severe malaria (blue arrows). (*)

CCTTT and−1659 polymorphisms showed association with malaria severity and cerebral malaria but their role on NO bioavailability is not known. For allele description

and reported genetic effects (Supplementary Table 1).

MAVs, cGAS, STING, Irf7, and Irf3) (129–131). Mouse studies
identified distinct mechanisms that recruit the IFN-1/IFNAR1
axis to the response against malaria, including: (i) stimulation
of hepatocyte-intrinsic interferon responses that counteract
liver stage parasite expansion (22, 24); (ii) exacerbated IFN-
1 production by plasmocytoid dendritic cells (DCs) leading
to enhanced IFNAR1 signaling in conventional DCs that
in turn drive responses against blood-stage parasite (131);
(iii) IFNAR1-mediated effects in the CD4T helper-antibody
axis that dampen the response against blood stage parasite
allowing hyperparasitemia development (132–135); and (iv) the
requirement for IFNAR1 expression in CD8T cells to license
the cytotoxic effector functions that lead to cerebral malaria
development in mice (136, 137).

Together these findings raise the possibility that IFN-
1/IFNAR1 signaling exerts beneficial effects in early stages of
infection when innate immune responses dominate. In contrast,
detrimental effects are expected at later stages if IFN-1 signaling
intrudes in the mounting of adaptive immune responses by
impairing anti-parasite responses driven by CD4T cells or
exacerbating cytotoxic CD8T cell-mediated reactions leading to
tissue damage.

Accordingly, several studies identified Type 1 Interferon
Receptor 1 (IFNAR1) gene polymorphisms associated with mild
malaria, disease severity and cerebral malaria in children
(136, 138–141) (Figure 5 and Supplementary Table 1).
Interestingly, IFNAR1 SNP alleles that are associated with
CM resilience also show to confer increased risk of mild

malaria development (Figure 6). This is exemplified by the
rs2843710 derived allele which showed higher frequency
in mild malaria cases as compared to uninfected controls
but had lower frequency in CM patients when compared to
patients with mild malaria (136) (Figure 6). The duality of
this pathway in human malaria is paralleled in experimental
models where increased amounts of IFN-1 improve anti-
parasite responses by increasing IFNAR1 signaling in early
stages of infection (131) while exacerbated IFN-1/IFNAR1
signaling later in infection increases vulnerability to severe
disease (136, 137).These genetic association signals would
be undetectable if CM patients were directly compared with
healthy individuals providing a word of caution in the design
of studies investigating genetic factors that concomitantly
confer susceptibility to mild malaria and resilience to severe
malaria syndromes.

HEME OXYGENASE 1 (HMOX1)

Heme oxygenase-1 (HO-1) is a catabolic enzyme that cleaves
heme to generate biliverdin, carbon monoxide, and ferrous
iron (142). HO-1 activity has anti-inflammatory effects and has
been shown to be protective against severe forms of malaria
in mice (143–145). In particular, vulnerability to experimental
cerebral malaria (ECM) was unearthed by the deletion of
Hmox1 (the gene encoding HO-1) in otherwise resilient mice
and was abrogated by HO-1 induction or carbon monoxide
administration (144). Tissue damage elicited in experimental

Frontiers in Immunology | www.frontiersin.org 6 July 2019 | Volume 10 | Article 1771

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Penha-Gonçalves Genetics of Malaria Inflammation

FIGURE 5 | Genetic effects of IFNAR1 SNPs associated to clinical malaria. The scaled diagram of IFNAR1 exon-intron structure represents SNPs that have shown

association with different malaria clinical outcomes (bar = 1Kb). Experimental data suggest that detrimental IFNAR1 genetic effects (red arrows) could be attributed to

alleles mediating decreased IFNAR1 signaling that impairs innate anti-parasite responses while beneficial effects (blue arrows) would be conferred by alleles that also

decrease IFNAR1 signaling in the context of adaptive effector responses, and in particular deter cerebral immunopathology. For allele description and reported genetic

effects (Supplementary Table 1).

FIGURE 6 | Opposing genetic effects of IFNAR1 SNP alleles in cerebral

malaria and mild malaria. Genetic effects of minor frequency alleles at seven

IFNAR1 SNPs in an Angolan dataset (136). Blue symbols represent the Odds

Ratio and confidence intervals obtained by comparing 110 cases of CM and

129 mild malaria patients (OR< 1 corresponds to increased CM resilience).

Red symbols represent the Odds Ratio and confidence intervals obtained by

comparing 129 patients with mild malaria and 305 uninfected controls for the

same alleles (OR > 1 corresponds to increased mild malaria susceptibility).

infection is counteracted by HO-1 through reducing exposure to
oxidative stress and inhibiting inflammatory action of immune
cells without affecting parasite load; this represents a prototypic
case of the disease tolerance phenomenon (59). In sharp contrast,
modulation of Hmox1 expression and HO-1 enzymatic activity
during experimental liver stage infection revealed that HO-
1 is a down-modulator of the inflammatory response against

intra-hepatocytic parasite forms and acts to promote liver stage
infection (146).

Human studies focusing in the HMOX1 gene showed that
polymorphisms functionally controlling HO-1 (promoter repeat,
SS) expression or activity (147) were also associated with CM
vulnerability in Asia (Myanmar) (148) and Africa (Angola)
(149). On the other hand, the alternative alleles in the gene
promoter (repeat, L) showed protection from respiratory distress
in The Gambia (150) and mild malaria in Brazil (151) (Figure 7
and Supplementary Table 1), but not in Ghana (152). It was
reported that HOMX1 promoter alleles associated with disease
severity in children also confer higher levels of HO-1 and
enhance neutrophil respiratory burst (150). Interestingly, it was
demonstrated in the mouse that expression ofHmox1 induced by
NO leads to protection from experimental cerebral malaria (114).
Further research is needed to clarify how HMOX1 gene variants
act in cerebral malaria pathogenesis (150) but its tempting to
speculate that genetic interaction with NOS2 functional variants
may help to explain the contribution of HMOX1 to the genetic
complexity of human cerebral malaria.

INNATE SENSORS (TLRS AND RELATED
GENES)

Toll-like receptors (TLRs) are ancient components of the
immune system that recognize pathogen associated molecular
patterns (PAMPs) and are infection sensors at the onset of
innate immune responses. Conceivably, TLR signaling could be
involved both in resolving early infection and in heightening
inflammation and immunopathology. It has been shown that
binding to IE and recognition of Plasmodium moieties such as
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FIGURE 7 | Genetic effects of HMOX1 gene polymorphisms associated to clinical malaria. Scaled diagram of HMOX1 exon-intron structure depicting a microsatellite

(GT)n repeat in the HMOX1 gene promoter region and a malaria associated SNP in intron 2. Genetic effects of long alleles (GT)n repeat (blue) and short repeats and

intronic SNP (red) have distinct association in occurrence of clinical malaria and are involved in the control of HOMX1 gene expression. For reported genetic

associations (Supplementary Table 1).

the glycosylphosphatidylinositol anchors (GPI) or hemozoin-
DNA complexes can be mediated by several TLRs, providing
sensor redundancy in the immuno-detection of blood stage
parasites (48, 49, 153). A number of reports suggest that variants
in different TLRs and their adaptor molecules are associated
with control of parasite load (TLR9, rs187084), susceptibility
to severe disease (TLR1, rs4833095), resilience to fatal disease
(TIRAP S180L) and susceptibility to severe disease, including
poor pregnancy outcomes (TLR4, rs4986790) (136, 154–160)
(Supplementary Table 1). Together these studies convey the
notion that recognition of Plasmodium-derived molecules by
innate receptors contribute to the host response in different
steps of the natural course of malaria likely by linking with pro-
inflammatory responses, such as interferon production (131).
Downstream effectors of TLR signaling include a variety of
pro-inflammatory cytokines and chemokines such as IFN-γ,
IL-6, TNF, IL-12, IFN-1, MCP-1, and IL-8 that take part in
the amplification of anti-parasite responses during acute blood-
stage infection (32, 161). Furthermore, it has been proposed
that polymorphisms in TLRs influence circulating cytokines
levels during Plasmodium vivax malaria (162). The association
of different TLRs to malaria clinical outcomes suggests that
Plasmodium components of diverse nature trigger genetically
controlled innate responses that in turn determine the course
of infection.

CD36 AND ADHESION MOLECULES

Several lines of evidence suggest that adhesion molecules
expressed in endothelial cells are involved in pathogenesis of
severe malaria by promoting cytoadhesion and possibly the
sequestration of IE in microvessels (163, 164). CD36 is a
scavenger receptor that was also identified as a receptor for
P. falciparum-infected red blood cells (165). It has been noted

that CD36 gene variants showing association to cerebral malaria
are not associated to other severe malaria syndromes (74, 149).
In particular, the low frequency allele (rs3211938; 1264G) in
the exon 10 of CD36 was associated to cerebral malaria (166)
and to higher malaria incidence [165) but favored resistance
to severe anemia (167) (Supplementary Table 1). Individuals
homozygous for this mutation which ablates CD36 protein
surface expression showed reduced antibody response to malaria
blood stage antigens (168, 169) suggesting that CD36 takes part
in the initial steps of the adaptive immune response possibly
by mediating phagocytosis of infected red blood cells. Although
the role of CD36 in malaria is unsettled (164) these intriguing
findings may be related with the multifunctional properties of
CD36 namely as a co-receptor that together with TLR4-TLR6
heterodimers acts in the initiation of macrophage inflammatory
responses triggered by microbial diacylated lipopeptides (170,
171). Nevertheless, it is possible that CD36 heterozygosity at
rs3211938 interferes with the adhesion of IE to endothelial cells, a
proposed cerebral malaria pathogenesis mechanism that involves
other surface molecules expressed in endothelial cells, including
ICAM-1, PECAM-1 and EPCR (164, 172–175).

CD40 LIGAND (CD40LG) AND ADAPTIVE
IMMUNITY GENES

CD40 ligand is expressed in the surface of activated T cells and
binds to CD40 in B cells, regulating B cell proliferation, activation
of antigen presentation cell, and immunoglobulin class switching.
The CD40LG gene maps to chromosome X and hemizygous
males or homozygous females for the minor allele at rs3092945
in the promoter region showed increased resistance to severe
malaria (176) an effect that was detected in a multicentric study
but was subjected to modifiers in different populations (70).
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This interesting finding raises the possibility that the genetic
control of adaptive immune responses and in particular antibody
responses could play a role in controlling parasitemia and thereby
govern vulnerability to severe disease in exposed individuals.
Accordingly, a recent study found that rs6682413 in the IL23R-
IL12RB2 intergenic region was associated with severe malaria
anemia (177), supporting observations that IL12 and IL23 pro-
inflammatory effects are involved in pathogenesis of severe
malaria syndromes (178, 179). In turn, Interferon gamma (IFN-
γ) is a key mediator of inflammatory and immune responses
induced primarily by interleukin-12 (IL-12). Besides its role in
controlling early stages of infection, IFN-γ production by CD4T
cells is a hallmark of Th1 polarization enhancing activation
of CD8T cells, B cells, and macrophages that may lead to
severe immunopathology (180). This is corroborated by genetic
studies associating IFN-γ and IFNGR1 gene variants withmalaria
infection and cerebral malaria (139, 181).

PROSPECTIVE REMARKS

The course of infection by themalaria parasite is contingent upon
multiple factors including pathogenicity of parasite biotypes,
transmission dynamics and host genetic make-up, that determine
(im)balances between parasite expansion and host responses that
in turn drive different clinical outcomes. The search for host
genetic factors governing the development of clinical malaria
phenotypes has attracted significant research efforts in the recent
years. Under the selective pressure imposed by severe malaria,
genetic variants with strong effects surfaced in endemic regions
and were revealed in genes coding for proteins expressed in
erythrocytes, prominently hemoglobin (74).

In contrast, inflammatory response genes associated with
malaria show smaller genetic effects but unveiled key steps
of the host response in the course of infection namely,
innate recognition, phagocytosis, exacerbated inflammation,
endothelial activation, and immune adaptive responses
(Figure 8). Thus, innate receptors recognizing parasite moieties,
including TLRs appear to be critical triggers of anti-parasite
responses and together with other molecules that are also
expressed in phagocytes such as CD36 highlight the central
role of phagocytosis in combating infection. A number of
pro-inflammatory cytokines and cytokine receptors have been
identified in different association studies, including TNF
and IFNAR1 but also interferon response genes and TGF
beta 2 (Supplementary Table 1). These genetic associations
collectively implicate amplification of the inflammatory response
as a relevant determinant of infection outcomes. The role of
exacerbated inflammatory responses in endothelial activation
that underlie severe organ damage is further highlighted by
the action of anti-inflammatory mediators such as NO and
HO-1 and also by cell surface receptors promoting IE adhesion
(Figure 8). Moreover, malaria genetic association with molecules
that engage and polarize adaptive immune responses, including
CD40L, IL4 (Supplementary Table 1), IFNGR1 (181), and TIM1
(182) underline a role for antibodies in infection resolution.
Accumulation of genetic evidence revealing the involvement of

FIGURE 8 | Mechanisms of genetic determination of malaria infection

outcomes by inflammatory response genes. Genetic modifiers of human

malaria infection have been repeatedly identified in a number of inflammatory

response genes. Experimental evidence supports the involvement of these

genetic determinants in multiple cellular and molecular mechanisms that

underlie the host responses to malaria infection, namely control of parasite

load, immunopathology, and tissue damage protection. Under this

pathogenesis model specific genetic modifiers of inflammatory responsiveness

may play disparate roles in the host responses to infection depending on

contextual variables, including disease transmission dynamics, parasite

virulence factors, infection stage, tissue-specific cues, and the overall

inflammatory mellieu.

inflammatory response genes in malaria provided an invaluable
contribution to uncover nodes of the immune host responses
that determine deleterious infection trajectories (Figure 8).
The biological and physiological relevance of specific human
genetic variants and their impact in disease pathogenesis is
now experimentally approachable by usage of genome editing
methodologies that allow precise introduction of defined
mutations in malaria animal models.

The scrutiny of inflammatory genes genetic variants
associated with malaria reveals a complex genetic architecture
with multiple levels of genetic heterogeneity, namely:

(1) Alternative alleles in one gene either favor or counteract
severe disease development (e.g., HMOX1), offering direct
interpretation of their genetic effects;

(2) Different genetic variants within a gene promoter are
associated with different severe malaria syndromes (e.g.,
TNF) suggesting differential gene regulation in context of
different inflammatory milieus;
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(3) Alleles conferring both resilience to severe disease and
susceptibility to asymptomatic infection/mild malaria (e.g.,
IFNAR1) suggesting that advantages of selecting for
anti-inflammatory alleles carry fitness costs in infection
susceptibility and chronic infection;

(4) Regulatory variants acting prior infection or during
infection map in different gene regions (e.g.,
NOS2), suggesting that infection status alters gene
regulatory regimens.

(5) Genetic variants that show disparate roles in malaria
pathogenesis depending on their homo/heterozygous
state (e.g., CD36).

In this scenario, evaluation of genetic effects requires that the
overall allelic variation within an entire gene is taken into
account. New genotyping by sequencing methodologies that
generate long reads in single DNA molecules enables access to
real-haplotype data across entire genes. Data on entire gene
variants will allow a comprehensive analysis of their genetic
effects in context of genotype combinations with other genes.
These data will open new approaches to study non-allelic genetic
interactions (e.g., TNF-NOS2 or NOS2-HMOX1 interactions)
and to dissect the genetic architecture of inflammatory responses
to malaria.

In conclusion, detailed analysis of genetic effects of
inflammatory response gene variants is a key step in
malaria research to motivate experimental investigations of
the underlying pathogenesis mechanisms. This knowledge

will be critical to identify rational adjuvant therapies to
prevent fatality or undesired malaria complications and
subsequent long-term sequels that represent a high burden in
endemic regions.
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