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I. Introduction

OSTEOPOROSIS is a common disease affecting the ma-
jority of older women and a significant minority of

older men. It is defined as the gradual reduction in bone
strength with advancing age, particularly in women post
menopause, such that bones fracture with minimal trauma
(1–4). Although fractures of the hip, wrist, and spine are
often focused upon, almost any bone can fracture (5–21). Age
per se is the strongest risk factor for osteoporotic fracture;
however, the variance in bone density is similar across all
ages. A range of hormonal and environmental factors
heighten the risk of osteoporosis, yet together these risk
factors explain only a small proportion of the overall risk.
Trauma is an important factor with the event of fracture often
the result of a relatively weak bone being subjected to force,
such as in a fall. Any bone will fracture if subjected to ex-
cessive force, e.g., in a motor vehicle accident. However
weakened, osteoporotic bones can fracture without any ob-
vious antecedent trauma. This complete spectrum in bone
strength is the focus of this review, particularly the genetic
factors that may influence sensitivity to environmental and
hormonal factors. These factors and their interactions con-
tribute to the end result of bone strength in later adult life
when the risk for osteoporotic fractures rises.

Osteoporosis is one of the major and growing health care
problems around the world largely related to the general

aging of societies with improvement in public and preven-
tive health and delay in mortality. In a recent community-
based study in an Australian country town, it was estimated
that for a 60-yr-old Caucasian woman the remaining life-time
risk of an osteoporotic fracture was about 60% and almost
30% for a man of the same age (5). Moreover, the prevalence
of vertebral deformities and fractures, including those in
men, appears to have been underestimated (8, 12, 17, 18,
22–24). Based on the Australian population mentioned
above, the overall direct costs, including rehabilitation, of
osteoporosis in both men and women were estimated to be
about 30 million US$ per million of population annually (25).
A similar population-based analysis in the United States in
1995 estimated 52.5 million US$ per million (26). The age-
adjusted incidence of hip fractures is reported to be lower in
Asian than Caucasian populations, but there are wide dif-
ferences in the incidence of hip fractures even across various
Caucasian communities (14, 24, 27–30). However, osteopo-
rosis is becoming a major problem even in developing coun-
tries and, by the middle of the next century, more hip frac-
tures are predicted in the populous Asian countries than in
the rest of the world combined (7, 14, 18, 24, 27–30). The
difference in incidence between ethnic and racial groups may
relate to environmental factors, but also may reflect inherited
differences in susceptibility. Thus osteoporosis affects both
women and men and has an impact comparable to, if not
greater than, the major health problems, such as cardiovas-
cular disease and malignancy. Given the increased mortality
associated with major osteoporotic fractures (6, 31, 32), the
impact of this disease on mortality also cannot be ignored.
Understanding the inherited factors involved and their po-
tential interaction with environmental factors may hold the
key to better prevention and treatment.

The likelihood of a fracture event relates to the forces
applied and the strength of the bone (33) and of course to the
duration of observation. Fractures without major trauma,
e.g., falls from standing height or less, suggest inadequate
structural integrity of the bone. Falls are important contrib-
utors to fracture risk; however, their causes are beyond the
scope of this review. Bone strength relates to the total amount
of bone and to its structural and microstructural integrity.
These latter components are measured to some extent inde-
pendently of bone size by quantitative ultrasound, which is
also predictive of fracture risk independent of bone density
(34–37). Bone strength depends upon the total amount of
bone, size, and density as well as its structural and material
properties. The bone mass of an individual at any time in
their life depends upon the amount of bone formed and

Address reprint requests to: John A. Eisman, Ph.D., M.B., B.S., Bone and
Mineral Research Program, The Garvan Institute of Medical Research, St.
Vincent’s Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South
Wales 2010, Australia. E-mail: j.eisman@garvan.unsw.edu.au

0163-769X/99/$03.00/0
Endocrine Reviews 20(6): 788–804
Copyright © 1999 by The Endocrine Society
Printed in U.S.A.

788

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/6/788/2530844 by guest on 25 August 2022



consolidated by the late teens or early twenties and the sub-
sequent loss with aging and postmenopause (38–48). The
determinants of peak bone mass, turnover, and loss are a
major focus of osteoporosis research. The role of genetic
factors as a determinant of these phenotypic characteristics
is the subject of this review.

II. Determinants of Bone Mass

The assessment of bone structure is particularly important
in relation to genetic studies. The tools used over the past few
decades have advantages over earlier invasive measure-
ments, which were not readily applicable for large popula-
tion studies. The new noninvasive techniques include the
radiological measures of quantitative computerized tomog-
raphy and more recently dual photon absorptiometry or dual
energy x-ray absorptiometry. However, these techniques do
not completely correct for bone size, which may itself be
under genetic control. Quantitative ultrasound has also been
shown to provide comparable predictive power for osteo-
porotic fracture risk in some epidemiological studies (34, 35).
Although there is debate about the best parameter (e.g., ul-
trasound velocity or broad band attenuation) or site of mea-
surement (e.g., heel, digit) this approach has the potential
advantage of lesser influence from bone and body size. Each
of the densitometric and ultrasound techniques has partic-
ular advantages and disadvantages but their safety and non-
invasive nature have allowed rapid expansion of knowledge
of the behavior of bone and the prediction of fracture risk.
Bone phenotype measured by any of these techniques re-
mains the most powerful predictor of subsequent fracture
risk.

Peak bone mass achieved by late childhood-early adult-
hood appears to be under genetic control but also is influ-
enced by life-style factors such as physical loading and cal-

cium intake. With puberty, bone mass increases about 3-fold
over just a few years (46, 49–51) and remains relatively stable
thereafter until the late forties or early fifties after which it
starts to decline in both men and women. There is accelerated
bone loss with sex hormone deficiency after the onset of
menopause and for 10–15 yr after (13, 40, 44, 48, 52–54). This
also occurs with estrogen deficiency of any cause, e.g., due to
anorexia. Bone loss continues and actually accelerates with
aging in both men and women (55). Thus, bone mass in later
life depends upon peak bone mass achieved and subsequent
loss due to natural aging processes and various hormone-
deficiency and disease-related insults (Fig. 1). Androgen de-
ficiency is also associated with osteoporosis in men (56–58).
Importantly, sex hormone deficiency-related bone loss can be
prevented and at least partially reversed by estrogen re-
placement (44, 54, 59–61) and to a somewhat lesser extent by
treatment with selective estrogens (62).

Medical diseases, including malabsorption, renal dysfunc-
tion, respiratory diseases, immobilization, rheumatoid ar-
thritis, immunological disorders, and hematopoietic malig-
nancies, can have a major impact on bone in individuals. In
these situations the underlying disease and its associated
morbidity and mortality are usually more important than the
effect on bone, but treatment, particularly with corticoste-
roids, can have a major effect on bone, and corticosteroid-
associated osteoporosis is a major side effect. Interestingly,
some people seem more (or less) sensitive to the effects of
corticosteroids. This may reflect gene-environment interac-
tions and, although little is known is this area, it will likely
be an important area for future research.

Before considering the effect of inherited factors on bone
mass, it is necessary to consider the effects of lifestyle and
hormonal factors. The actual effect of these factors may relate
to underlying inherited susceptibilities or resistances. Life-
style factors include diet, exercise, alcohol intake, and to-

FIG. 1. Bone density change with age in women and men. Bone density (solid lines) follows a gradual decline from the peak values achieved
by early adulthood in both women (left panel) and men (right panel). In women there is additional loss due to menopause. Low bone density
in later life thus can result from achievement of a relatively low peak bone density (dashed line) or excessive bone loss (dotted line) with advancing
age in both men and women. Both adverse patterns may coexist in some individuals.

December, 1999 GENETICS OF OSTEOPOROSIS 789

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/6/788/2530844 by guest on 25 August 2022



bacco use among a range of others that are less well char-
acterized. Excessive intake of common salt (NaCl),
phosphate, caffeine, and excessive use of tobacco and alcohol
have been associated with increased fracture incidence in
epidemiological studies (1, 11, 60, 63–66). Dietary intake of
calcium has been a major focus. Although dietary calcium is
considered an important component of skeletal develop-
ment, there is considerable disagreement about what is “ad-
equate” (1, 30, 45, 46, 50, 51, 54, 63, 67–76). Intakes of 1,200–
1,500 mg/day have been recommended around puberty and
after menopause and 800–1,000 mg/day suggested for other
life stages. The rationale for such figures is difficult to es-
tablish. In many countries, particularly those with little dairy
intake for cultural reasons, the average dietary calcium in-
take is considerably below those figures, yet the age-adjusted
incidence of osteoporotic fracture is not notably increased.
Such discrepancies may relate to ethnic or racial differences
in sensitivity to these environmental factors or to bone size
or geometry or be confounded by other lifestyle factors (77,
78). Interestingly, lactase deficiency, which could be ex-
pected to result in lower calcium intake by limiting dairy
intake, was not associated with differences in bone density
in one mid-Western United States twin study (79). These
apparent discrepancies between dietary calcium intake and
osteoporotic fracture incidence may also relate to inherited
components of calcium handling, which will be addressed
below.

Physical loading on the skeleton has a role in maintaining
bone mass. This effect is most apparent in studies of immo-
bilization and micro-gravity, which result in rapid bone loss
in animal as well as human models (44, 46, 49, 80–87). In
athletes, increased loading has been shown to be associated
with increased bone mass often localized to the sites of load-
ing (88–90). Life-long loading may be central to such effects
in view of limited evidence of beneficial bone effect of achiev-
able physical exercise levels and duration in older people.
The “dose-response” between bone mass and physical load-
ing over the physiologically relevant range is shallow and
variable. It is unclear to what extent genetic factors may have
an impact on that relationship.

Hormonal factors include sex hormone deficiency as well
as excesses of glucocorticoids, T4, and PTH. Certainly the best
characterized effect on the skeleton is the accelerated loss that
occurs in relation to sex hormone deficiency and continues
for at least 10–15 yr after menopause. The rate and extent of
this bone loss vary widely between individuals, leading to
categorization of slow and fast losers. The mechanisms for
these differences are unexplained but appear to depend in
part upon inherited factors. Glucocorticoid excess, either en-
dogenous as in Cushing’s disease or from exogenous sources
for therapeutic reasons, results in significant bone loss (91,
92). A limiting factor for long-term use of glucocorticoids can
be their effects on bone mass resulting in severe osteoporosis.
Nevertheless, there is no clear relationship between the level
of glucocorticoid exposure and the resultant loss of bone.
This also indicates the possible operation of inherited factors
relating to the sensitivity of bone to glucocorticoids. Similar
variability of effects on bone can be seen for thyroid hormone
excess (2, 11). Finally, the effect of PTH excess on bone mass,
particularly of cortical bone mass, has been reported in hy-

perparathyroidism (92a, 92b). However, PTH has anabolic
effects on bone and therapy with PTH has been associated
with increases in bone mass. For this hormone the final effect
may relate to its competing effects on bone formation and
resorption, and genetic factors may modulate the develop-
ment and/or progression of hyperparathyroidism.

III. Inherited Predisposition For and
Against Osteoporosis

Several key studies have focused on the inheritance of the
predisposition to development of osteoporotic fractures. Al-
though not always considered, inherited factors are logically
as likely to operate to protect against as to predispose to the
development of osteoporosis. Generally, epidemiological
studies have examined family history of osteoporotic frac-
ture as a risk factor for the development of osteoporotic
fracture (3, 4, 46–48, 93–102). In such epidemiological stud-
ies, which necessarily examine this relationship on a group
rather than an individual basis, family history of fractures
and indeed specific types of fractures are consistent with an
inherited component (3, 93, 96–98). Importantly, any appar-
ent inherited predisposition to fracture would not necessar-
ily be related to inherited alterations in bone strength. For
example, predisposition to falling and, for that matter, lon-
gevity per se would increase the apparent risk obtained from
a family history. However, family studies have demon-
strated that mothers with osteoporotic fractures have daugh-
ters with lower bone density. Interestingly, the bone density
“deficit” seems to be relatively specific for skeletal sites (3, 93,
96–98). Thus, it seems that a large part of the inherited
predisposition to osteoporotic fractures is due to inherited
factors in bone mass, density, and/or material quality of
bone. The concept of inherited predisposition in terms of
bone mass leads naturally to the question of how such an
inherited predisposition could be mediated. The assumption
has been that it would be the result of the interaction between
a relatively large number of genes, i.e., complex multifacto-
rial genetic factors.

Child-parent resemblances are taken for granted in terms
of externally obvious and less obvious traits, such as per-
sonality. Yet relatively little is known about the mediation of
such apparently genetically determined traits. Indeed the
degree of physical resemblance varies widely, yet such re-
semblances relate to a range of structural parameters, such
as height and build. Presumably, bone mass is one of these
genetically modulated parameters. Groups involved in os-
teoporosis research have been particularly interested in ad-
dressing how the familial similarity in various anthropo-
morphic features could translate to similarities in bone
density.

A number of family (and animal) studies of bone density
have now shown apparently high levels of heritability of
bone phenotype, as assessed by bone densitometry (3, 4, 46,
83, 86, 94–98, 100, 101, 103–112). Other studies of familial
association have shown similarly high degrees of heritability
for other parameters such as quantitative ultrasound (105,
113). Overall these studies suggest that 60–80% of variance
in bone phenotype measurement at any age or group is
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genetically determined. One interesting study of young girls
and their mothers indicated half-heritability contributions of
23–35%. This would be equivalent to 46–70% heritability
from both parents if, as suggested from other studies, there
are similar contributions from both parents (114). Moreover,
this heritability, which was comparable to that for height
(38%), was apparent in these girls before puberty, and the
correlation changed little as they progressed through pu-
berty (114). These data are consistent with genetic factors
playing a major role in inherent bone structural character-
istics and skeletal size and that these heritable effects are
already programmed before puberty. Recent studies have
started to address the extent to which other anthropomor-
phic parameters segregate with bone density and other bone
phenotypes. They suggest that a significant part of the her-
itability is related to shared genetic contributions to skeletal
size and body composition. These studies also suggest that
there are both shared and distinct genetic factors contribut-
ing to the determination of bone density at different skeletal
sites. These data are yet to be extended to examine differ-
ences between ethnic and racial groups.

IV. Genetic Factors in Bone Phenotype

Family-based studies can be confounded by the inevitable
comparisons of individuals of widely different ages and
year-of-birth cohorts and by familial similarities in lifestyle
choices (46–48, 66, 86, 94, 95, 104). Heritability has been
investigated using the twin model by studying the relative
degree of the difference between monozygotic (identical)
and same-sex dizygotic (nonidentical) twins. These analyses
make the assumption that twin pairs of the same age and sex
share their environments and other lifestyle factors to a sim-
ilar extent whether they are mono- or dizygotic. This as-
sumption can be and usually is examined for many external
factors that could impact on bone phenotype. Incidentally,
monozygotic twins can be used to examine the impact of
various environmental and lifestyle factors since the twin

pairs are of the same age, sex, and genetic make-up (66, 115,
116).

Using this approach we (see Fig. 2) and others have shown
that both lumbar spine and femoral neck bone density are
more similar in monozygotic than in dizygotic twins (39, 66,
105, 107–112, 118–120). This genetic effect appeared to be
greater at some sites than others, however it is not clear
whether this relates to real differences in genetic vs. envi-
ronmental effects or to the relative precision of measurement
at any site or even side-to-side differences (37). Overall, how-
ever, several studies suggest that different genes may reg-
ulate bone density at different skeletal sites as measured by
different modalities such as densitometry and ultrasound
(105, 109, 110, 112, 113). More recent studies have shown
similar genetic determination of bone parameters assessed
by quantitative ultrasound and bone geometry (66, 105, 108,
120, 121). In several such studies 50–80% of the age-related
variability of bone phenotypic parameters appeared to be
genetically determined.

The concept of genetic effects on bone would have rela-
tively little clinical utility, if it were not possible to relate such
genetic factors to identification of high-risk groups or to the
better understanding of cause-and-effect leading to im-
proved interventions. To understand and apply these con-
cepts, it is useful to consider the difference between contin-
uous and discontinuous models of genetic effects (Fig. 3).
Clinicians are familiar with the discontinuous model of ge-
netic “disease” due to loss-of-function or, less commonly,
gain-of-function mutation of a gene or genes. This model is
entirely appropriate to disorders of bone structure and func-
tion such as osteogenesis imperfecta or osteopetrosis with
major effects on structural components of bone (e.g., colla-
gen), or on the normal development of bone cells (e.g., os-
teoclasts). However, these are clinical entities distinct from
the clinical disease of osteoporosis that affects such a high
proportion of elderly men and women. Less severe muta-
tions in these pathways could be associated with less severe
disease, and indeed individuals with premature osteoporosis

FIG. 2. Similarity of bone density in monozygotic and dizygotic twins. Lumbar spine bone density is more similar between monozygotic twins,
who are genetically identical, than between dizygotic twins, who share on average half their genes. Analysis of these data suggests that 75–80%
of the variance in bone density in individuals matched for age, sex, and general health is genetically determined. [Derived from Ref. 117.]
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have been reported to be heterozygotes for some forms of
osteogenesis imperfecta (122–124). Some studies have iden-
tified structurally relevant mutations in the collagen 1a1
gene in familial forms of osteoporosis as distinct from os-
teogenesis imperfecta (122–126). In one of these studies al-
most one in five subjects of a selected group had such mu-
tations (123). However, given that osteoporosis affects more
than half of the normal older female population, such col-
lagen mutations probably explain only a relatively minor
part of the entire osteoporosis spectrum. Differences in the
regulatory regions of the collagen genes could be of greater
frequency and biological relevance (see Section VI).

If structural gene mutations are relevant to the “mutation”
model of the relatively uncommon extreme abnormal bone
phenotype, the majority of “osteoporosis” cases would seem
to require other genetic explanations. In fact most individ-
uals with osteoporosis lie close to the normal distribution of
bone density, i.e., in the range of 2–3 sd below the mean of
YOUNG normal; this is mostly within the expected range of
age-matched normal (i.e., mean 6 2 sd). Indeed, using the
World Health Organization definition that relates osteopo-
rotic fracture risk to difference from young normal, the ma-
jority of the elderly population are expected to be “osteo-
porotic.”

The concept of inherited components to the risk of devel-
opment of osteoporosis could lead to a negative approach in
relation to osteoporosis prevention, since any inherited factor
would by its very genetic nature be “immutable.” This may
be true for mutations in a structural gene or for mutations

associated with gross loss- or gain-of-function. However, this
may not be relevant to less severely modified forms of genes
where the normal physiological counter-regulatory systems
could overcome minor “deficiencies” in their function. This
concept is central to the understanding of the possibility of
“normal” genetic variability and its exploitation for better
understanding of genetic predisposition to disease and in
response to therapy. Indeed, it was found that genetic factors
contribute to the determination of bone turnover as assessed
by various biochemical indices. This indicates that the ge-
netic factors may be modulating bone turnover and thus
mediating their effects on bone mass through changes in this
normal bone regulation of bone. On the other hand, it is
important to recognize that bone turnover is itself related to
environmental and other genetic factors. Thus genetic vari-
ants could be expected to have distinctly different effects on
physiological parameters and phenotypic expression of bone
depending upon the genetic as well as the environmental
background (66, 110, 112, 119, 127).

V. Vitamin D Receptor (VDR) Gene Polymorphisms
and Bone Phenotype

A. VDR gene polymorphisms and bone phenotype

One of the first genes to be associated with the common
form of osteoporosis is that for the VDR. In the first set of
studies, common polymorphic alleles in the VDR gene were
reported to be linked with different serum levels of a marker

FIG. 3. Normal and mutational variation in bone density. Bone density, as for any physiological parameter, has a normal “mean” with a
distribution around that age-matched mean. This distribution can be conceptualized as above with some extreme outliers distinct from the
“normal” population but related to mutations, which cause very weak (e.g., osteogenesis imperfecta) or very dense bones (e.g., osteopetrosis).
Fracture risk increases with age as the age-matched mean declines relative to the young normal mean. With advancing age many within the
normal age-matched range, i.e., within 2 SD of the mean, will fall more than 2 SD below young normal mean and are thus likely to suffer such
fractures. The high lifetime risk of osteoporotic fractures indicates that many more people from within the normal range will suffer fractures
compared with the small numbers with extreme mutations. Thus, genetic changes, which could result in shifts in bone density within that normal
range, are of considerable importance for the targeting and prevention of osteoporosis from a public health point of view.
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of bone turnover, osteocalcin (128). Osteocalcin, the functions
of which are still poorly understood, is produced almost
exclusively by osteoblasts and is the most common protein
in bone after collagen. In earlier twin studies it had been
shown to be under strong genetic “control” (119, 129). Other
markers, e.g., the procollagen type I propeptide, cleaved and
released when collagen is produced, were also shown to be
genetically linked in some (130) but not all studies (131–133).
The reasons for these differences may be similar to those
related to the differences observed in relationships between
candidate genes and bone density in various ethnic and
environmental backgrounds as discussed below.

In the earlier twin studies the linkage in bone turnover
markers were shown to be related to differences in bone
density, so it was reasonable to examine various samples for
a linkage between the VDR gene alleles and bone density. In
the first such study a strong relationship was reported be-
tween common VDR alleles and bone density in twin and
nontwin Caucasian populations in Australia (134). We sub-
sequently reported problems in our original genotyping of
the dizygotic twin part of the study, such that the heritability
component attributable to this gene is somewhat less (135,
136). Our initial population data had suggested a difference
between the extreme homozygote genotypes of up to 1 sd
unit (;10%) in bone density, while later twin studies have
found weak effects on bone density (137, 138) or no effect on
either bone density or ultrasound characteristics (131, 138).
This work generated much interest resulting in a large num-
ber of follow-up studies and considerable controversy. Sev-
eral population studies have shown a weak effect, perhaps
0.3–0.5 sd unit (4–13%), in several Caucasian and Asian
populations (130, 139–158). However others, including some
large carefully performed studies, have found no discernible
effect in various Caucasian and Asian populations (131–133,
138, 156, 159–168). Among those studies that did find a VDR
bone density relationship, a Dutch study (144) has reported
a VDR gene allele effect in a sample of several thousand
elderly individuals; however, the effect is in the opposite
direction to the previous studies. Another smaller Scottish
study and a US study have reported similar findings (146,
151). The conflicting findings have been reviewed (169–171),
and two meta-analyses suggest that the VDR effect is real and
likely to account for about 0.3 sd between alternate homozy-
gotes (172, 173). Reasons for the differences in apparent effect
of the VDR alleles remain uncertain; however, it is likely that
differences in genetic (racial/ethnic) background and pos-
sibly environmental factors may alter the expression of subtle
genetic differences. Interaction of the VDR gene allelic dif-
ferences with the genetic background may relate to differ-
ences noted between Asian and Caucasian studies. However,
positive and negative studies have been observed in both
Asian and Caucasian cohorts.

In addition to the original polymorphisms in the 39-region
of the VDR gene, a start codon polymorphism has been
reported. It has been reported to be associated with differ-
ences in bone density in different population groups, par-
ticularly Mexican-American groups (142, 143, 174) and in
Japanese women (175), although not in a study of premeno-
pausal French women (159). Interestingly, in one of these
Mexican-American study groups (141), the allelic sites fur-

ther 39 in the gene were associated with differences in bone
density, which were not statistically significant but of the
same magnitude, 0.25–0.5 sd suggested from the earlier
meta-analysis (172).

B. VDR gene polymorphisms and calcium
homeostatic responses

Gene-environment interaction has been examined for
VDR alleles and dietary calcium intakes, which have varied
widely across studies with mean intakes from 300–400 mg/
day to more than 1,000 mg/day. A possible relationship
between VDR genotype and calcium homeostasis via cal-
cium intake has been addressed in two longitudinal studies
(176, 177). In the Ferrari study there were genotype-related
differences in change in bone density over time, such that the
“Bb” heterozygotes responded to calcium intake while the
“bb” maintained and “BB” lost bone density over time irre-
spective of calcium intake. In the Krall study there appeared
to be genotype-related differences such that at low dietary
calcium intakes the “BB” genotype subjects responded best
to calcium supplementation. In a further short-term study,
intestinal calcium absorption was studied at low (,300 mg/
day) and high (1,500 mg/day) calcium intakes (178). The BB
genotype subjects did not increase their intestinal calcium
absorption at lower calcium intake as well as the bb genotype
subjects. There have been variable findings of differences in
calcium handling and bone responses to calcium therapy
with respect to VDR genotype in some (113, 152, 178–181) but
not all (162, 163, 182, 183) studies. In a study in Thai women,
VDR genotype was not associated with differences in bone
density but was associated with urinary calcium excretion,
which presumably reflects differences in efficiency of gut
calcium absorption (160). In this study, urinary calcium ex-
cretion was 38% greater in “bb” than “Bb” genotype subjects.
As in other studies in Asian subjects the frequency of “BB”
genotype was too low for meaningful analysis. However, in
another study in young children, the VDR gene start codon
polymorphism (Fok1) was associated with major differences
in calcium absorption (42% between extreme homozygotes)
as well as in bone density (184). In relation to gut calcium
absorption, two separate but small studies did not identify
any genotype-related difference in intestinal VDR level (147,
183, 185) suggesting that the intestine is not the primary
mediator of any genotype-related differences. In fact, VDR
polymorphisms have been reported to have effects on para-
thyroid gland regulation (186–189). This suggests differences
in PTH regulation as a possible pathway for subtle differ-
ences in vitamin D regulation of bone and calcium homeo-
stasis.

The various studies of calcium absorption and response to
calcium intake suggest that any potential VDR genotype
effect would be largely masked at high effective calcium
intakes. Looked at another way, this would suggest that VDR
genotype could be considered as a guide to the identification
of individuals in whom calcium supplementation could be
expected to be most efficacious. Thus calcium supplemen-
tation would be most effective (and justifiable) in “BB” and
possibly in “Bb” genotype subjects with little if any value in
“bb” genotype subjects. Despite some conflicting data, which
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may relate to ethnic and environmental heterogeneity, it
seems clear that polymorphisms of the VDR gene are asso-
ciated with differences in bone density, bone size, gut cal-
cium absorption, and bone turnover. These data provide a
basis for understanding the studies of differential bone den-
sity responses of the different VDR genotype subjects not
only to long-term calcium supplementation but also to vi-
tamin D intake and treatment with “active” vitamin D com-
pounds, as considered below.

Several Japanese studies have reported differences in bone
density response to 1a-hydroxylated vitamin D metabolites
or analogs (129, 190, 191). The “bb” genotype, which is most
common in Japanese cohorts (;75% of the subjects), was
more responsive to the vitamin D compounds compared
with the “Bb” genotype, which either did not respond as well
or actually worsened with the treatment. Given that the “Bb”
genotype is the most common (;50%) in Caucasian popu-
lations, VDR genotype differences could contribute to the
variable and generally less impressive responses to vitamin
D metabolites and analogs in Caucasian as opposed to Jap-
anese studies. A Dutch study of simple vitamin D supple-
mentation in the prevention of hip fracture found that the
bone density response to the supplement varied according to
VDR genotype (161). In this relatively small study, bone
density increased significantly in the “BB” and “Bb” geno-
type subjects (.4%) but not in “bb” genotype subjects
(20.3%). These two groups of studies, albeit in different
racial groups, suggest that “BB” and “Bb” subjects may re-
spond positively to simple vitamin D but not to 1a-hydroxy-
lated vitamin D. By contrast, “bb” subjects may respond
positively to 1a-hydroxylated vitamin D but not to simple
vitamin D.

These data suggest that some of the differences observed
in relation to VDR alleles and bone density end-points may
relate to their environment. For example, any differences
between “BB” and “bb” genotypes could be expected to be
least apparent in a population with relatively high calcium
or relatively high vitamin D intake and amplified in those
with low calcium and thus habitually relatively high 1,25-
dihydroxyvitamin D levels. However, it remains to be shown
in prospective randomized studies if VDR genotype-related
differences do determine bone density responses.

C. VDR gene polymorphisms, body size, and development

Body size, as measured by body weight, lean mass, fat
mass, or height, has one of the strongest associations with
bone density and bone mass in a wide range of studies (3, 49,
80, 86, 104, 107, 109, 112, 147, 192–195). Depending upon the
parameter used, it has been argued that fat mass or lean mass
is the stronger predictor (116, 192–194), particularly of spine
bone mass or density. In this regard some studies suggest a
relationship between body size and VDR genotypes. One
study in 589 French children reported that at 2 yr, body
length and weight were greater in “BB” than “bb” girls but
less in “BB” than “bb” boys. They noted the same relation-
ships at birth and 2 yr in longitudinal studies of 145 infants
(196). This is consistent with a retrospective study in infant
health records of 66 postmenopausal British women in whom
those with the BB genotype had 7% higher weight than “bb”

cohorts at 1 yr of age (197). Higher weight and higher bone
mineral content in “bb” genotype subjects was found in
another small study of 32 premenopausal women (147). An-
other study in 146 men over a wide age range suggested that
lower forearm bone mineral density in “BB” than “Bb” or
“bb” individuals was due to larger bone area for the same
bone mineral content (198). Another large study found bone
density was associated with VDR genotype in nonobese
(body mass index , 30 kg/m2) older women (140). Impor-
tantly, this association appeared to be driven by an interac-
tion between VDR and muscle strength (153). A Japanese
study found an association between bone density and VDR
genotype that was possibly due to an effect on age at men-
arche (199). These relationships between bone density and
bone and body size and development may explain some of
the differences observed between studies. Relationships be-
tween VDR genotypes and insulin secretion (200, 201) and
between serum insulin levels and bone density (202) may
underlie some of these effects.

D. Potential mechanisms for VDR allelic associations

The association or linkage of the VDR with bone or body
phenotype could be due to the linkage of these polymor-
phisms to differences in a nearby gene or genes or to a
functional or regulatory change in the VDR gene itself. Al-
though changes in nearby genes cannot be excluded, the
studies, indicative of variations in various aspects of bone
and calcium homeostasis in relation to VDR genotypes, sug-
gest that the changes are related in some way to functions of
the vitamin D endocrine system. Any functional difference in
the vitamin D-endocrine system could be due to a coding
region mutation resulting in an altered receptor protein or
due to an altered regulatory mechanism resulting in an al-
tered amount of normal receptor protein produced in dif-
ferent tissues. Importantly, the initially described polymor-
phisms do not produce any coding region differences, and
even the start codon polymorphism, which encodes a VDR
protein shorter by three amino acids, may not generate any
functional differences. In Japanese women, the start codon
polymorphism has been reported to be associated with bone
density and to be associated with a 70% difference in effi-
ciency of transcriptional responses to 1,25-dihydroxyvitamin
D in vitro (175). By contrast, two other studies found no
relationship of VDR protein level in relation to BsmI geno-
types in monocytic cells and skin fibroblasts, respectively
(203, 204). Although the original report of the VDR gene
alleles and bone density suggested that the 39-untranslated
region altered stability of heterologous gene transcripts, a
more recent study found no effect of these regions on mRNA
stability of heterologous gene transcripts in vitro (134, 206).
In a recent development, the single human VDR gene has
been reported to have multiple promoters resulting in mul-
tiple transcripts with evidence for tissue specificity of pro-
moter activities and encoded receptor proteins, differing by
up to 10% in size (207). Subtle differences in the balance of
these different isoforms within and between tissues could
mediate bone and calcium homeostatic differences. As yet no
functional differences have been ascribed to the distinct VDR
protein isoforms nor have any differences in these distinct
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promoter regions been linked to any of the previously de-
scribed polymorphisms. Further studies on these alternative
transcripts will be of considerable interest.

VI. Collagen Ia1 Gene

The collagen Ia1 gene is another most interesting gene to
emerge in the search for candidate genes in the determina-
tion of osteoporosis risk. In the initial studies a polymor-
phism in intron 1 of the collagen Ia1 gene was shown to be
associated with differences in bone density (151, 208). In
subsequent studies this effect has been noted to be of varying
strength or absent in various studies (48). In particularly
interesting recent studies, the collagen Ia1 alleles have been
associated with risk of nonvertebral fractures in the large
Dutch population study (209) and for vertebral but not hip
fractures, respectively, in smaller Danish and Swedish stud-
ies (210, 211). In a French study in healthy premenopausal
women (212) there was a relationship between the collagen
gene alleles and bone density but not after adjustment for
height. This suggests that the collagen gene effects may be
related to body size as has been suggested for the VDR gene
alleles (see Section V.C. above). In the Dutch study the effect
on bone density was not particularly strong in 50- to 80-yr-
old women, and the association with fracture was most
marked in the relatively small number of older subjects (209).
It remains to be seen whether there is a stronger and un-
equivocal effect in older old (801 year old) subjects, among
whom the majority of hip fractures occur. An effect in older
subjects could suggest that the collagen gene alleles affect
bone turnover and loss; however, there were only weak or
no relationships with biochemical markers of bone turnover
in the French study (212).

In studies of possible functional differences, the intron 1
polymorphism has been reported to involve a consensus
binding site for a transcriptional regulator, SpI. The poly-
morphism associated with lower bone density appears to
result in less efficient transcription (208). This could be a
causative pathway analogous with the effects of collagen
gene mutations in osteogenesis imperfecta.

The collagen Ia1 gene polymorphisms are unique in the
genetics of osteoporosis in that they have been associated, at
least in some studies, with fracture risk. However, the overall
strength of this effect is still modest, and it is not clear
whether any effect is direct on bone density or on other
characteristics of the bone phenotype.

VII. Other Candidate Genes and Chromosomal Loci

Although both the VDR and collagen Ia1 gene polymor-
phisms have been associated with bone density, it is clear that
a large number of other genes with modest effects and pos-
sibly some major effect genes remain to be identified. Several
studies suggest that other genes involved in homeostasis of
bone density, including potential regulators of bone cell
function and calcium homeostasis, may be determinants of
bone phenotype. Genome screening in human linkage stud-
ies and mouse models is now providing exciting results.

Polymorphisms of another steroid receptor gene, the es-

trogen receptor gene, have been associated with differences
in bone density. These results initially reported in Japanese
women (213) have been found in other (150, 191, 214–216) but
not all studies (217). Interactions between estrogen receptor
and VDR polymorphisms on bone density (150) and of es-
trogen receptor gene polymorphisms’ effects on calcium ho-
meostasis in postmenopausal women with parathyroid
gland dysfunction (218) suggest potential gene-gene inter-
actions.

Polymorphisms of genes for cytokines and factors in-
volved in regulation of bone cell function have been involved
in bone phenotypic differences in human and mouse models.
Interleukin-6 gene polymorphisms were associated with a
relatively large difference in bone density between one ho-
mozygote and the heterozygote (219) and according to a CA
repeat polymorphism (220). Interleukin-6 may also be asso-
ciated with bone density in a mouse model of accelerated
senescence (221). The interleukin-1 receptor antagonist gene
allelic variation has been reported to be associated with bone
loss at the spine in women within 5 yr of the menopause
(222). However, allele selection appeared to be made post-hoc,
which can lead to type 2 statistical errors particularly in small
studies. Moreover, in these studies there was no clear effect
in the alternate homozygote, suggesting that some of the
differences could relate to sampling biases. The interleukin
6 (and 4) genes have also been linked to bone density in a
family linkage study (223). The transforming growth factor
(TGF) pathway has also been implicated with bone density
being associated with alleles of the TGF receptor gene (224)
and weakly linked and associated with polymorphisms of
the TGFb1 gene (225). The insulin-like growth factor-I path-
way has also been associated with bone density in some
human studies (226, 227) as well as in mouse models (228–
230).

Calcitonin and PTH receptor gene alleles have been asso-
ciated with bone density. In an Italian study a calcitonin
receptor gene polymorphism was associated with lumbar
spine bone density (231). In another study based on linkage
in more than 600 family members, a number of candidate loci
(i.e., collagen Ia1, collagen IIa1, epidermal growth factor, and
interleukins 4 and 6) were shown to have weak linkage to
bone density (223). However, in that study, the strongest
linkage was with the PTH receptor gene, consistent with the
central regulatory role of this pathway in bone and calcium
homeostasis.

In Japanese women, phenotypes of the apolipoprotein E
have been reported to be associated with differences in bone
density (191). However, another recent US study found no
relationship of apolipoprotein E polymorphisms with bone
density or hip fracture incidence (232). Interestingly, in the
Japanese population sample, the estrogen receptor and VDR
genotypes had similar effects to the apolipoprotein E poly-
morphisms of about 0.5 sd between extreme homozygotes.
The role of the apolipoprotein E in transport of vitamin K and
hence in g-carboxylation of both osteocalcin and matrix
g-carboxylated proteins is suggestive of a bone-regulatory
role. Another small Japanese study has identified an HLA
type as being associated with bone density (233).

A recent US family linkage study has identified a region
of chromosome 11q12–13 associated with very high bone
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density (234). The gene(s) involved are expected to be iden-
tified and reported in the near future (235). The genome
screening approach being pursued in determination of bone
density in extended family groups has confirmed a chromo-
some 11q locus and identified other candidate chromosomal
loci at 1p36, 2p23–24, and 4qter and chromosomes 2 and 13
in various studies (124, 236, 237). The genome screening
approach seems likely to surpass and replace the candidate
gene approach (238). This approach is strongly supported
and complemented by breeding and genome screening stud-
ies in mouse models of high and low bone mass (106, 239–
241) and of early senescence (221, 242, 243).

VIII. Gene-Environment Interaction

A large number of studies on the VDR polymorphisms
have found effects on bone phenotype or calcium homeosta-
sis (139, 140, 142, 145, 147–150, 152, 157, 174, 176–178, 181,
190, 198, 244–247). Nevertheless, a number of carefully con-
ducted studies in similar ethnic and racial groups have not
found such effects (48, 131–133, 138, 141, 159, 162–165, 168,
175, 183, 248). Some of the reported differences in the ap-
parent strength and even direction of the vitamin D allelic
effects may relate to the genetic backgrounds in different
studies and environmental factors such as calcium and vi-
tamin D intakes, as discussed above. For example, in two
recent studies a VDR association with bone density was
apparent only in a subgroup selected according to estrogen
receptor genotype (150, 156). It may well be that allelic dif-
ferences beneficial in one environmental or lifestyle context
are detrimental in another (Fig. 4). This is not an unusual
suggestion given that even some of the most clearly delete-
rious mutations in human disease have been proposed to
offer some benefit under some circumstances, e.g., hemoglo-
binopathies and malarial resistance. That potentially adverse
and beneficial effects coexist in relation to allelic differences,
such as for the VDR gene alleles, is a plausible hypothesis but
yet to be formally tested. However, one recent large case-
control study in Africa found that the tt (equivalent to the BB)

genotype of the VDR was underrepresented in individuals
with chronic infections, i.e., tuberculosis and hepatitis B but
not malaria (249).

Bone density at any age is the end result of peak bone
density and subsequent loss and thus reflects the sum of
responses to various environmental exposures. If genetic
factors modulate those responses to environments, these
gene-environment interactions presumably also accumulate
over time with aging. In individuals with rheumatoid ar-
thritis, rate of loss was found to be related to VDR genotype
(250). Another interesting insight into aging in relation to
VDR gene alleles and bone density comes from a Mayo clinic
study (148). In that study a VDR gene effect was apparent in
younger subjects from their population sample but was not
in the older subjects. These age-related differences imply that
any allelic effect is modified by an accumulation of age-
related environmental exposures. Osteoarthritis and related
bone changes, which confound analyses at some skeletal
sites, particularly the lumbar spine, may reflect cohort dif-
ferences in environmental exposures, particularly work his-
tory, during critical ages and stages of development and
growth. However, degenerative changes in the spine (251) as
well as knee osteoarthritis (252, 253) have been reported to
be associated with VDR genotype. Another smaller study of
osteoarthritis of the hip found no relationship with VDR
alleles or with collagen gene (Ia1 or IIa1) alleles (254).

An important corollary of any VDR gene effect on bone
density could be an influence on the frequency of osteopo-
rosis or its age of onset. Two small studies seeking a differ-
ence in VDR gene allele frequencies between osteoporotic
and “control” subjects found no VDR genotype effects (151,
255). A larger case-control cohort study based on the Study
of Osteoporotic Fractures found no association of any frac-
ture type with VDR genotype even after adjustment for age,
bone density, or calcium intake (255a). By contrast, a recent
nested case-control study in the Nurse Health Study found
a greater than 2-fold increased risk for hip fracture associated
with the BB genotype, and the risk increased with age, lean-
ness, inactivity, and lower calcium intake (256). The need for

FIG. 4. Gene-environment interaction.
The concept that a gene variant could be
an advantage under one set of condi-
tions and a disadvantage under another
is depicted. Under conditions A, indi-
viduals with genotype 1 would be worse
off compared with those with genotype
2 or 3. However, under conditions B, the
reverse order would apply. For the VDR
gene alleles, the environmental factors
expected to impact in this way would
include dietary calcium and vitamin D
availability. For the estrogen receptor
gene alleles, these conditions would in-
clude estrogen exposure. Importantly,
these environmental factors could
change at different ages.

796 EISMAN Vol. 20, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/20/6/788/2530844 by guest on 25 August 2022



large samples has been analyzed in relation to adequacy of
statistical power to identify or exclude a biologically relevant
effect (257, 258).

Several studies have examined whether VDR alleles might
be related to postmenopausal bone loss. Some studies (130,
190) suggested differences in rate of bone loss in Japanese
women according to VDR gene alleles. However, other stud-
ies in Caucasian women have not found a similar effect
(131–133, 248). In studies in young children with calcium
supplementation, an improvement was seen in bone density
in prepubertal children but not in those going through pu-
berty (51). Also increase in forearm density in peripubertal
children and young adults was not associated with VDR
genotype (182). These studies suggest that the major effects
of introduction (puberty) or removal (menopause) of sex
hormones overwhelm other effects. In that regard it is in-
teresting that the inherited bone density similarity of daugh-
ters and their parents was already apparent before puberty
(114), although in one study VDR genotype was associated
with age of menarche (199). Given that sex hormone effects
are so great, VDR alleles might not be expected to alter the
major changes of sex hormone withdrawal associated with
postmenopausal bone loss. In any case, the issue of genetic
effect on rates of bone loss remains uncertain. A genetic effect
on change of bone density over time was reported in one
short-term study in women (118) but not in longer term
studies in men, where shared environment appeared to be
more important than genetic predisposition (13, 84). Heaney
and co-workers have been studying bone density and size in
relation to calcium intake in a large group of nuns for more
than 20 yr (258a). They have found a VDR genotype effect on
femoral shaft cortical area, suggesting that any gene effect
could be on material or structural characteristics as well as
on bone turnover and density. This may be similar to the
relationships mentioned above in relation to body and bone
size, which may be central in studying and understanding
genetic effects on bone structure.

Interestingly, associations have now been reported be-
tween VDR gene alleles and PTH function in primary (186–
188) and secondary (189) hyperparathyroidism. This has also
been linked with changes in bone density over time in sub-
jects with renal disease (259, 260) and rheumatoid arthritis
(250). These findings are consistent with these alleles of the
VDR being linked to subtly altered physiological regulatory
processes. For example, the initially described 39-alleles of
the VDR, but not the more 59-start codon polymorphism, has
been associated with altered VDR levels and differences in
PTH mRNA and calcium-sensing receptor mRNA levels
(261–263).

The examples of gene-environment interaction for the
VDR gene have been described since such effects in bone and
calcium homeostasis have been addressed largely in relation
to allelic differences in that gene. However, these reports
should only be seen as examples of what will presumably be
identified for many different genes. This area of “pharma-
cogenetics” will undoubtedly be one of the major new areas
for therapeutic advance in which different genetic (and eth-
nic) backgrounds will be shown to determine responses to
different modalities of therapy. Understanding of such dif-
ferences in relation to drug metabolism already can influence

drug dose in chemotherapy. Knowledge of gene allelic dif-
ferences in type of response could underpin targeted selec-
tion of optimal therapy according to genetic background.

IX. Summary

There is clear evidence of genetic modulation of bone
phenotype parameters including bone density, quantitative
ultrasound, bone size, and bone turnover. At any particular
age and phase of life, genetic factors explain about 70% of the
variance in bone phenotype after adjustment for major med-
ical and disease factors. Hormonal factors, diet, and lifestyle
interact with those genetic factors over time.

Common allelic variation in the VDR was the first of sev-
eral genes and now chromosomal loci to be implicated in the
genetic determination of bone phenotype. The VDR poly-
morphisms have an effect weaker than originally reported,
and part of the allelic effects may be mediated by effects on
body size and development and even other hormonal reg-
ulators such as PTH or insulin. Irrespective of the strength or
mechanism of these associations, these initial findings on the
VDR stimulated the field of the genetics of osteoporosis with
targeted genetic studies and now genome scan approaches.

Intronic polymorphisms of the collagen Ia1 gene have
been shown to be related to bone density and to fracture risk
in several studies, although not all findings concur. Common
allelic variations have now been associated with bone density
for the estrogen receptor, TGFb receptor, and TGFb1, for the
insulin-like growth factor-I pathway, for interleukin-4 and -6
and the interleukin-1 receptor antagonist, for calcitonin and
the PTH receptors and for apolipoprotein E. Of considerable
interest, chromosomal loci, notably 11q 12–13, have now
been linked to bone phenotypes in human and mouse stud-
ies. The mouse strain studies seem likely to be powerful tools
providing insight to important human loci based on the
mouse-human chromosomal synteny.

Variability of genetic findings across studies seems to be
the rule rather than the exception. This variability may relate
to interaction of particular loci with specific environmental
or even other genetic loci. The importance of genetic heter-
ogeneity, including ethnicity, as well as environmental and
hormonal confounders, such as calcium and vitamin D in-
take, hormonal status and skeletal and body size, will need
to be taken into account in future gene search approaches.
Genome scans in relation to bone density and fracture end-
points will need to account for such important potential
confounders in each target population.

Interactions between genetic and environmental factors,
including lifestyle, have been investigated initially for the
VDR polymorphisms in relation to the response of bone
density and turnover to calcium intake and treatment with
simple vitamin D and active vitamin D compounds. Gene-
gene and gene-environment interactions in human and an-
imal models will be critical targets for future research. Fur-
ther genes with positive and negative effects on bone
phenotype are certain to be identified in the near future. Each
of these will need to be evaluated in relation to potential
environmental modulators in pharmacogenetic models. Un-
derstanding the molecular physiology of such gene effects is
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likely to lead to more specific treatments and to allow the
selection of more appropriate and effective treatment op-
tions.
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