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Abstract

IMPORTANCE Smoking is associated with atherosclerotic cardiovascular disease, but the relative

contribution to each subtype (coronary artery disease [CAD], peripheral artery disease [PAD], and

large-artery stroke) remains less well understood.

OBJECTIVE To determine the association between genetic liability to smoking and risk of CAD, PAD,

and large-artery stroke.

DESIGN, SETTING, ANDPARTICIPANTS Mendelian randomization study using summary statistics

from genome-wide associations of smoking (UK Biobank; up to 462 690 individuals), CAD (Coronary

Artery Disease GenomeWide Replication andMeta-analysis plus the Coronary Artery Disease

Genetics Consortium; up to 60801 cases, 123 504 controls), PAD (VAMillion Veteran Program; up to

24009 cases, 150 983 controls), and large-artery stroke (MEGASTROKE; up to 4373 cases, 406 111

controls). This study was conducted using summary statistic data from large, previously described

cohorts. Review of those publications does not reveal the total recruitment dates for those cohorts.

Data analyses were conducted from August 2019 to June 2020.

EXPOSURES Genetic liability to smoking (as proxied by genetic variants associated with lifetime

smoking index).

MAINOUTCOMES ANDMEASURES Risk (odds ratios [ORs]) of CAD, PAD, and large-artery stroke.

RESULTS Genetic liability to smoking was associated with increased risk of PAD (OR, 2.13; 95% CI,

1.78-2.56; P = 3.6 × 10−16), CAD (OR, 1.48; 95% CI, 1.25-1.75; P = 4.4 × 10−6), and stroke (OR, 1.40;

95% CI, 1.02-1.92; P = .04). Genetic liability to smoking was associated with greater risk of PAD than

risk of large-artery stroke (ratio of ORs, 1.52; 95% CI, 1.05-2.19; P = .02) or CAD (ratio of ORs, 1.44;

95% CI, 1.12-1.84; P = .004). The association between genetic liability to smoking and atherosclerotic

cardiovascular diseases remained independent from the effects of smoking on traditional

cardiovascular risk factors.

CONCLUSIONS ANDRELEVANCE In this mendelian randomization analysis of data from large

studies of atherosclerotic cardiovascular diseases, genetic liability to smoking was a strong risk factor

for CAD, PAD, and stroke, although the estimated association was strongest between smoking and

PAD. The association between smoking and atherosclerotic cardiovascular disease was independent

of traditional cardiovascular risk factors.
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Key Points

Question Are there differential

associations between genetic liability to

smoking and atherosclerotic

cardiovascular disease (ASCVD)

outcomes (coronary artery disease,

peripheral artery disease, and

ischemic stroke)?

Findings In this mendelian

randomization study including summary

data for more than 1 million individuals,

genetic liability to smoking was

associated with increased risk of ASCVD,

with the largest association with

peripheral artery disease, independent

from other cardiovascular risk factors.

Meaning Findings of this study indicate

that genetic liability to smoking has a

strong, independent effect on ASCVD

but is most strongly associated with

peripheral artery disease; further

studies of the differential effects of

other ASCVD risk factors may improve

risk stratification and treatment.
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Introduction

Atherosclerotic cardiovascular disease (ASCVD) can affect numerous vascular beds throughout the

body, with clinical manifestations including coronary artery disease (CAD), stroke, and peripheral

artery disease (PAD). Smoking tobacco is consistently among the leading risk factors for ASCVD;

however, the relative contribution of smoking to the individual ASCVD outcomes remains less well

studied. Observational studies have examined these ASCVD outcomes together, with a recent study

by Ding et al finding the strongest association between smoking and incident PAD compared with

CAD or stroke.1-4Observational study designs may be limited, however, by modest overall sample

size, measurement error, and risk of residual confounding.5

A number of studies during the last several decades have identified detrimental effects of

smoking on traditional cardiovascular risk factors, including blood pressure, lipids, and diabetes.6,7

Smoking also has independent effects on inflammation, endothelial function, and platelet

aggregation.6Despite the clear observational links between smoking and atherosclerosis, whether

the effect of smoking on ASCVD is primarily mediated through correlated alterations of traditional

cardiovascular risk factors, or operates via independent mechanisms is less clear. Because the

detrimental effects of smoking may persist for decades,4 clarifying the basis of the smoking-

atherosclerosis relationship could enable more targeted risk-reduction strategies among both

current and former smokers and identify novel treatment strategies for those at highest risk

of ASCVD.

Recently, large genome-wide association studies (GWASs) of smoking, coronary artery disease,

stroke, and peripheral artery disease have identified genetic loci associated with each of these

conditions.8-11 Themendelian randomization (MR) framework leverages the natural randomization of

genetic variation at conception tomitigate risks of confounding that limit other observational

methods. Genetic variants are randomly allocated across the population at meiosis and conception,

mimicking randomization in a clinical trial. Under certain assumptions, the MR framework mitigates

risks from environmental confounding and reverse causality that may affect other observational

methods.12 This approachmay allow formore precise quantification of potential differences between

exposure-outcome pairs.12 The method has further been extended to consider exposures jointly, a

form of mediation analysis that enables the estimation of the direct effect of each exposure on an

outcome of interest.13 In the present analysis, we studied the association between genetic liability to

smoking (defined by genetic variants associated with measures of smoking) and ASCVD and

cardiometabolic outcomes.

Here, leveraging population-scale human genetics data from GWASs, we used theMR

framework with genetic variants as instrumental variables to (1) estimate the total effect sizes for

associations between smoking and risk of PAD, CAD, and stroke, the primary manifestations of

ASCVD; (2) validate the association between smoking and traditional cardiovascular and

inflammatory risk factors for ASCVD; and (3) assess the extent to which traditional cardiovascular

and inflammatory risk factors affect the relationship between smoking and ASCVD outcomes.

Methods

Smoking Genetic Instrument Selection

Genetic variants were used as instrumental variables for 2 different measures of smoking. These

genetic exposures used as proxies for smoking are referred to herein as “genetic liability to smoking.”

The 2measures of smoking used throughout the study are lifetime smoking index11 and smoking

initiation.14 The primary measure of smoking was lifetime smoking index, a previously validated

continuous measure that accounts for self-reported smoking status, age at initiation, age at

cessation, number of cigarettes smoked per day, and a simulated half-life constant that captures the

decreasing effect of smoking on health outcomes following a given exposure (Table).11 A genetic

instrument for lifetime smoking index was constructed from summary statistics of a GWAS of UK
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Biobank participants (UK Biobank; N = 462690) using independent (r2 = 0.001; distance, 10000

kilobases; European-ancestry participants of the 1000 genomes project) genome-wide significant

variants (P < 5 × 10−8) as the exposure, as previously described.11 Each SD increase in the lifetime

smoking index instrument corresponds to an individual smoking 20 cigarettes daily for 15 years and

stopping 17 years ago, or smoking 60 cigarettes daily for 13 years and stopping 22 years ago. The

smoking index instrument was previously validated using an independent set of participants and

with positive-control outcomes of coronary artery disease and lung cancer.11 To further validate the

instrument, we performed 2-sample MR using lifetime smoking index as the exposure, and smoking

initiation, age of smoking initiation, smoking cessation, and cigarettes per day,14 as reported by

GWAS and Sequencing Consortium of Alcohol and Nicotine, as outcomes. To evaluate the strength of

the smoking index instrument, we calculated the F statistic.15 In sensitivity analyses, genetic liability

to smoking was assessed using smoking initiation as the exposure, rather than lifetime smoking

index. This study is reported according to the Strengthening the Reporting of Observational Studies

in Epidemiology (STROBE) reporting guideline for observational studies.16 This study used only publicly

available, deidentified summary statistics from previously published works, making it exempt from

institutional review board review according to the University of Pennsylvania regulations.

Table. Overview of Genetic Data Setsa

Trait Cohort Year PMID

No.

Sample size Cases Controls

Smoking (lifetime smoking index) UKB 2019 31689377 462 690

Coronary artery disease CARDIoGRAMplusC4D 2015 26343387 184 305 60 801 123 504

Peripheral artery disease MVP 2019 31285632 174 992 24 009 150 983

Large-artery stroke MEGASTROKE 2018 29531354 150 765 4373 406 111

Overweight GIANT 2013 23563607 158 855 93 015 65 840

Diabetes DIAGRAM+GERA+UKB 2018 30054458 655 666 61 714 1178

Hyperlipidemia UKB 2018 29846171 462 933 56 753 406 180

Chronic kidney disease CKDGen 2015 26831199 117 165 12 385 104 780

Hypertension UKB 2018 29846171 462 933 2095 460 838

Body mass index GIANT 2015 25673413 339 224 NA NA

C-reactive protein INTERVAL 2018 29875488 3301 NA NA

Fasting glucose MAGIC 2012 22581228 58 074 NA NA

Fasting insulin MAGIC 2012 22581228 51 750 NA NA

HbA1C MAGIC 2010 20858683 46 368 NA NA

HDL cholesterol GLGC 2013 24097068 187 167 NA NA

Interleukin 6 receptor INTERVAL 2018 28369058 3394 NA NA

Interleukin 1β INTERVAL 2018 29875488 3301 NA NA

Interleukin 6 INTERVAL 2018 29875488 3301 NA NA

LDL cholesterol GLGC 2013 24097068 173 082 NA NA

Serum creatinine (eGFRcrea) CKDGen 2015 26831199 133 814 NA NA

Systolic blood pressure UKB 2018 29846171 436 419 NA NA

Total cholesterol GLGC 2013 24097068 187 365 NA NA

Triglycerides GLGC 2013 24097068 177 861 NA NA

Waist circumference GIANT 2015 25673412 232 101 NA NA

Waist to hip ratio GIANT 2015 25673412 224 459 NA NA

Abbreviations: CARDIoGRAMplusC4D, Coronary Artery Disease GenomeWide

Replication andMeta-analysis plus the Coronary Artery Disease Genetics Consortium;

CKDGen, Chronic Kidney Disease Genetics Consortium; DIAGRAM, Diabetes Genetics

Replication and Meta-analysis consortium; eGFRcrea, estimated glomerular filtration

rate (creatinine); GERA, Genetic Epidemiology Research on Aging; GIANT, Genetic

Investigation of Anthropometric Traits consortium; GLGC, Global Lipid Genetics

Consortium; HbA1C, hemoglobin A1C; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; MAGIC, Meta-Analyses of Glucose and Insulin-Related Traits Consortium;

MVP, Million Veteran Program; NA, not applicable; PMID, PubMed identification number;

UKB, UK Biobank.

a Overview of genetic data sets used in themendelian randomization analyses. The

number of cases and controls is reported for case-control studies, with total sample

size reported for all studies.
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ASCVDOutcome Selection

The ASCVD outcomes were obtained from large GWASs of CAD, PAD, and large-artery stroke (Table).

The CAD effects were obtained from the Coronary Artery Disease GenomeWide Replication and

Meta-analysis plus the Coronary Artery Disease Genetics Consortium 1000 Genomes GWAS, which

included 60801 CAD cases and 123 504 controls of primarily European ancestry (77%) across 48

studies, including a combination of incident and prevalent disease.8 The PAD effects were obtained

from the Million Veterans Program GWAS, which included 24009 prevalent PAD cases and 150983

controls of European ancestry enrolled at 63 Veterans Affairs (VA)Medical Centers across the United

States.9 The large-artery stroke effects were obtained from the MEGASTROKE consortium GWAS,

which included 4373 cases and 406 111 controls of European ancestry enrolled across 10 studies,

including a combination of incident and prevalent cases.10

Cardiometabolic Risk Factor Selection

The effects of genetic variants on cardiometabolic risk factors were obtained from publicly available

summary statistics fromGWASs of continuous traits (total cholesterol level, low-density lipoprotein

cholesterol level, high-density lipoprotein cholesterol level, level of triglycerides, body mass index,

waist to hip ratio, fasting glucose level, fasting insulin level, systolic blood pressure, estimated

glomerular filtration rate, circulating C-reactive protein level, circulating interleukin 1B level,

circulating interleukin 6 level, and circulating interleukin 6R level), and binary traits (type 2 diabetes,

hypertension, hyperlipidemia, chronic kidney disease, and overweight) identified using theMR-Base

platform (Table).17-24 These risk factors were selected as commonmarkers of cardiometabolic risk,

inclusion in risk calculators, and genetic, observational, and randomized clinical trial evidence of

association with coronary artery disease.25-29

Mendelian Randomization

In the primary analysis, the total effect of lifetime smoking index on ASCVD outcomes (CAD, PAD, and

stroke) was estimated using random-effects inverse-variance–weightedMRwithin the

TwoSampleMR package in R (Figure 1).5,30 In sensitivity analyses, fixed-effects inverse-variance–

weighted, maximum likelihood, weighted-median, penalized weighted-median, andMR pleiotropy

residual sum and outlier methods were performed to account for potential violations of the

instrumental variable assumptions, presence of horizontal pleiotropy, heterogeneity, and error in the

instrument-exposure associations.5,31,32 The latter method (1) tests for the presence of horizontal

pleiotropy, (2) removes pleiotropic genetic variants, and (3) tests for differences in estimates before

and after outlier removal.33 Diagnostic leave-one-out, single single-nucleotide variant, and funnel-

plot analyses were performed to visually assess for outliers and bias. The Egger bias intercept test

was used to quantitatively detect evidence of horizontal pleiotropy. In sensitivity analysis, a genetic

instrument for smoking initiation was used as the exposure.14 Because 2-sample MR of binary

exposures provides effect estimates per 1-unit change in the exposure, the results of the effect of the

smoking initiation exposure on ASCVD outcomes are expressed as odds of the outcome per 2.72-

fold (1 log odds unit) increase in the odds of ever smoking.34Differences in the effect of smoking on

ASCVD outcomes in each vascular bed were estimated using the ratio of the odds ratios (ORs), based

on a null hypothesis that the ORs for the associations between smoking and each ASCVD outcome

are not different.35

The effect of lifetime smoking on cardiometabolic risk factors was estimated using random-

effects inverse-variance–weighted 2-sample MR (Figure 1). Because the genetic exposure for lifetime

smoking index was derived fromUK Biobank participants, andMR estimates derived from studies

with a high proportion of overlapping samples may be biased, studies of cardiometabolic outcomes

that included non–UK Biobank participants were preferred when available.36 The genetic exposure

for smoking initiation, which included both UK Biobank participants and participants from several

other studies, was used in sensitivity analyses to further minimize bias from participant overlap. The
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MR Steiger test of directionality was performed to validate direction of association between smoking

(as the exposure) and cardiometabolic risk factors (as the outcomes).37

To determine whether any effect of smoking on ASCVDmay be attenuated by effects of

smoking on traditional cardiovascular risk factors, multivariable MRwas performed. This method can

be used to jointly estimate the direct effect of multiple exposure on an outcome, and account for

potential violations of MR assumptions (Figure 1).38,39 Independent (r2 = 0.001; distance, 10000

kilobases) genome-wide significant (P < 5 × 10−8) variants associated with traditional cardiovascular

and inflammatory risk factors (low-density lipoprotein cholesterol level, high-density lipoprotein

cholesterol level, level of triglycerides, bodymass index, type 2 diabetes, systolic blood pressure, and

circulating interleukin 6 levels) were identified using theMR-Base platform. The direct effect of

lifetime smoking index was then estimated in models accounting for each traditional risk factor alone

and in a model considering all risk factors simultaneously.

Statistical Analysis

For the primary analysis of smoking on ASCVD outcomes, the statistical significance threshold was

set at a 2-sided P < .05. The relative associations between lifetime smoking index and the primary

ASCVD outcomes were compared using the ratio of the ORs.35 For the secondary analysis of smoking

on cardiometabolic risk factors, correction for multiple comparisons was made using the Bonferroni

method (P < .05 / 21 = .002). Cardiometabolic traits with nominal associations (.002 �P < .05) were

considered suggestive. In themultivariable analysis considering the joint effects of smoking and risk

factors on ASCVD outcomes, the statistical significance threshold was set at a 2-sided P < .05. All

analyses were performed using R version 3.6.2 (R Foundation for Statistical Computing). Review of

Figure 1. Mendelian Randomization Analysis Overview

Genetic instrument

462 690 UK Biobank participants

126 SNVs associated with Lifetime Smoking
Index at genome-wide significance

Risk factor

Smoking
Indirect pathwaysConfounding factors

Assumption 3
Genetic variants affect
the outcome directly
through the risk factor
of interest

Assumption 1
Genetic variants are
associated with the
risk factor of interest

Assumption 2
Genetic variants are

independant from
biologically plausible

confounders

Disease outcomes

Coronary artery disease (60 801 cases, 123 504 controls)

Peripheral artery disease (24 009 cases, 150 983 controls)

Large-artery stroke (4373 cases, 406 111 controls)

339 224 Body mass index

3301 C-reactive protein

117 165 Chronic kidney disease

187 167 HDL cholesterol

462 933 Hyperlipidemia

462 933 Hypertension

3394 Interleukin-6 receptor

3301 Interleukin 1β

3301 Interleukin 6

173 082 LDL cholesterol

158 855 Overweight

133 814 Serum creatinine

436 419 Systolic blood pressure

187 365 Total cholesterol

177 861 Triglycerides

655 666 Type 2 diabetes

232 101 Waist circumference

224 459 Waist to hip ratio

Overview of mendelian randomization analyses and

major assumptions. Solid lines represent the direct

pathway in which genetic variants serve as

instruments for a risk factor of interest, and the effect

on a disease outcome is measured. Dashed red lines

represent pathways that potentially violate mendelian

randomization assumptions. For atherosclerotic

cardiovascular disease outcomes, the number of cases

and controls are listed. For cardiometabolic outcomes,

the total sample size is listed. See Table for additional

cohort information. HDL indicates high-density

lipoprotein; LDL, low-density lipoprotein; and SNV,

single-nucleotide variant.
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the publications used in the present analysis does not reveal the total recruitment dates for the

included cohorts. Data analyses were conducted from August 2019 to June 2020.

Results

Selection of Genetic Variants as Proxies for Smoking

Of the 126 independent single-nucleotide variants associated with lifetime smoking index, 116 were

available in the summary statistics for stroke, 107 for CAD, and 105 for PAD (eTable 1 in the

Supplement). For the lifetime smoking index genetic instrument, the F statistic was greater than 10

(range, 25-163; mean, 41), suggesting low risk of weak-instrument bias. To validate the genetic

instrument for lifetime smoking index, we performed MR using smoking traits from the GWAS and

Sequencing Consortium of Alcohol andNicotine consortium as outcomes. The lifetime smoking index

was significantly associated with increased smoking initiation (OR, 1.66; 95%CI, 1.59-1.73; P < .001),

smoking cessation (OR, 1.43; 95% CI, 1.37-1.5; P < .001), increased amount of smoking (cigarettes per

day) (β = 0.514; 95% CI, 0.4-0.63; P < .001), and decreased age of smoking initiation (β = −0.38;

95% CI, −0.44 to −0.32) (eFigure 1 in the Supplement).

Association of SmokingWith Risk of ASCVDOutcomes

In inverse-variance–weightedMR analysis, each 1 SD increase in genetic liability to lifetime smoking

index was associated with increased risk of PAD (OR, 2.13; 95% CI, 1.78-2.56; P = 3.6 × 10−16), CAD

(OR, 1.48; 95% CI, 1.25-1.75; P = 4.4 × 10−6), and stroke (OR, 1.40; 95% CI, 1.02-1.92; P = .04)

(Figure 2). The Egger bias intercept test identified horizontal pleiotropy for the smoking-CAD

pathway (intercept, 0.01; P = .046) (eTable 2 in the Supplement) although the findings remained

robust in sensitivity analyses using MRmethods that account for the possibility of horizontal

pleiotropy (Figure 2B; eFigures 2, 3, 4, and 5 in the Supplement), and when using an alternative

genetic instrument for smoking (smoking initiation). Genetic liability to smoking initiation was

Figure 2. Total Effect Sizes for Associations Between Smoking and Risk of Peripheral Artery Disease (PAD), Coronary Artery Disease (CAD), and Stroke
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A, In inverse-variance–weightedmendelian randomization, each 1 SD increase in genetic

liability to smoking is associated with significantly increased risk of PAD, CAD, and

large-artery stroke. Smoking is most strongly associated with increased risk of PAD

compared with large-artery stroke (P = .04) and CAD (P < .001). Odds ratios (ORs) are

expressed per 1 SD increase in lifetime smoking index. B, Scatter plots demonstrating the

effect of each smoking-associated genetic variant on each atherosclerotic cardiovascular

disease outcome on the log-odds scale. Colored lines represent results of each

mendelian randomization sensitivity analysis, making different assumptions about

horizontal pleiotropy, heterogeneity, and error in the instrument-exposure associations.

SNV represents single-nucleotide variant.
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associated with increased risk of PAD (OR, 2.36; 95% CI, 1.81-3.09; P < .001), CAD (OR, 1.76; 95% CI,

1.39-2.23; P < .001), and stroke (OR, 2.02; 95% CI, 1.33-3.06; P < .001) (eFigure 6 in the

Supplement).

We next determined whether the estimated effect sizes for the association of smoking differed

between the ASCVD endpoints. The primary inverse-variance weighted point estimate for the

association of smoking with PADwas significantly greater than the estimates for large-artery stroke

(ratio of ORs, 1.52; 95% CI, 1.05-2.19; P = .02) or CAD (ratio of ORs, 1.44; 95% CI, 1.12-1.84; P = .004).

Association of SmokingWith Risk of Traditional Cardiometabolic Risk Factors

We next considered the effect of increasing genetic liability to lifetime smoking on other

cardiometabolic traits that are known ASCVD risk factors. Increasing genetic liability to lifetime

smoking was significantly associated (P < .001) with increased risk of type 2 diabetes (OR, 1.89; 95%

CI, 1.53-2.33), hypertension (OR, 1.05; 95% CI, 1.04-1.07), waist circumference (β = 0.33; 95% CI,

0.17-0.49), bodymass index (β = 0.35; 95% CI, 0.14-0.57), and waist to hip ratio (β = 0.23; 95% CI,

0.12-0.33), with a suggestive (P < .05) increase in the risk of hyperlipidemia (OR, 1.00; 95% CI, 1.00-

1.01) and risk of being overweight (OR, 1.43; 95% CI, 1.07-1.91) (Figure 3). In a sensitivity analysis

considering an alternative genetic instrument for smoking, the results were similar (eFigure 7 in the

Figure 3. Total Effect Sizes for Associations Between Smoking and Cardiometabolic Risk Factors for Atherosclerotic Cardiovascular Disease
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–0.0853 (–0.453 to 0.282)

–0.0246 (–0.0874 to 0.0382)

–0.00797 (–0.0998 to 0.0838)

0.00574(–0.0988 to 0.11)

0.00581 (–0.0592 to 0.0708)

0.00647 (–0.0145 to 0.0274)

0.00986 (–0.055 to 0.0748)

0.032 (–0.304 to 0.368)

0.0447 (–0.0167 to 0.106)

0.069 (–0.0373 to 0.175)

0.161 (–0.302 to 0.625)

0.218 (–0.117 to 0.554)

0.226 (0.118 to 0.334)

0.331 (0.173 to 0.488)

0.353 (0.138 to 0.567)

Inverse-variance–weightedmendelian randomization was performed to determine

whether genetic liability to smoking altered risk of cardiometabolic risk factors for

atherosclerotic cardiovascular disease. Genetic liability to smoking increased risk of both

(A) binary traits and (B) continuous traits that are common risk factors for

cardiometabolic disease. Effect estimates are expressed per 1 SD increase in lifetime

smoking index. CKDGen indicates Chronic Kidney Disease Genetics Consortium;

DIAGRAM, Diabetes Genetics Replication andMeta-analysis consortium; eGFR,

estimated glomerular filtration rate; GERA, Genetic Epidemiology Research on Aging;

GIANT, Genetic Investigation of Anthropometric Traits Consortium; GLGC, Global Lipid

Genetics Consortium; HbA1C, hemoglobin A1C; HDL, high-density lipoprotein; LDL,

low-density lipoprotein; MAGIC, Meta-Analyses of Glucose and Insulin-Related Traits

Consortium; OR, odds ratio; and UKB, UK Biobank.
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Supplement). TheMR Steiger test confirmed the directionality of these significant and suggestive

findings (P < .001) (eTable 3 in the Supplement).

Influence of Traditional Cardiometabolic Risk Factors

on Smoking-ASCVDRelationship

To evaluatewhether increasing genetic liability to smokingwas directly associatedwith increased risk

of ASCVD, or whether the association was attenuated after accounting for traditional cardiovascular

risk factors (type 2 diabetes, lipids, bodymass index, and systolic blood pressure), we performed

multivariable MR. Increasing genetic liability to smoking was associated with increased risk of PAD,

CAD, and stroke, after accounting for effects of smoking on each risk factor independently, and in a

combined model considering all risk factors (Figure 4). The point estimates for the association of

smoking with ASCVD were not substantially attenuated after accounting for traditional risk factors

(PAD: OR, 2.84 [95% CI, 1.28-6.32]; P = .01; CAD: OR, 1.47 [95% CI, 0.52-4.18]; P = .47; stroke: OR,

3.44 [95% CI, 0.65-18.20]; P = .15), or in a model further including interleukin 6 as a marker of

Figure 4. Direct Effect Sizes for Associations Between Smoking and Risk of Peripheral Artery Disease (PAD),

Coronary Artery Disease (CAD), and Stroke
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.01
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<.001

<.001

<.001

<.001

<.001

.47

.47

<.001

.02

.01

<.001

.03

<.001

.13

.15

.04

.23

.29

.27

.09

.04

OR (95% CI)

OR (95% CI)

OR (95% CI)

2.83 (1.26-6.35)

2.84 (1.28-6.32)

2.98 (2.29-3.88)

2.6 (1.61-4.19)

3.28 (2.1-5.13)

2.37 (1.57-3.56)

2.75 (1.96-3.86)

2.13 (1.78-2.56)

1.48 (0.513-4.24)

1.47 (0.519-4.18)

1.77 (1.39-2.25)

1.99 (1.1-3.58)

1.71 (1.12-2.61)

2.02 (1.42-2.87)

1.41 (1.03-1.94)

1.48 (1.25-1.75)

3.58 (0.687-18.7)

3.44 (0.65-18.2)

1.63 (1.03-2.58)

1.63 (0.739-3.62)

1.43 (0.733-2.81)

1.43 (0.756-2.71)

1.74 (0.912-3.3)

1.4 (1.02-1.92)

Multivariable mendelian randomization was

performed to estimate the direct effect of the

association of smoking with atherosclerotic

cardiovascular disease after accounting for the effects

of smoking on other cardiovascular risk factors. The

estimated direct effects of smoking on PAD, CAD, and

stroke are not substantially attenuated in models

adjusting for traditional cardiovascular risk factors

(type 2 diabetes, bodymass index, lipids [high-density

lipoprotein cholesterol, low-density lipoprotein

cholesterol, and triglycerides], and systolic blood

pressure), or inflammation (interleukin 6 [IL-6] levels).

Odds ratios (ORs) are expressed per 1 SD increase in

lifetime smoking index.
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inflammatory risk of ASCVD (PAD: OR, 2.83 [95% CI, 1.26-6.35]; P = .01; CAD: OR, 1.48 [95% CI, 0.51-

4.24]; P = .47; stroke: OR, 3.58 [95% CI, 0.69-18.70]; P = .13) compared with the univariate

estimates.

Discussion

UsingMR, we leveraged population-scale human genetics to estimate a potentially causal association

between smoking, cardiometabolic risk factors, and ASCVD outcomes across diverse vascular beds

(CAD, PAD, and stroke). By drawing from several large GWASs, we were able to consider more cases

by an order ofmagnitude for smoking, cardiometabolic risk factors, and ASCVD outcomes compared

with previous observational studies. Although observational studies remain at risk of bias due to

residual confounding, the genetic instrumental variables used here in the MR framework provided

effect estimates that were less susceptible to reverse causality and confounding from environmental

factors. Because genetic variants are randomly assorted duringmeiosis, mimicking randomization in

a clinical trial, we were able to estimate potentially causal relationships between smoking and

cardiometabolic traits.

Our results suggested that smoking had a direct atherogenic effect that varied across vascular

beds. This finding is largely consistent with prior investigations of smoking on ASCVD. Although the

association between smoking and ASCVD has been shown previously in observational studies, our

MR analysis provides strong evidence that may be consistent with a causal relationship. Our finding

that smoking appears to more strongly influence the risk of PAD compared with CAD or stroke is

consistent with recent results from the ARIC (Atherosclerosis Risk in Communities) study cohort, in

which the effect of smoking was greatest for PAD, and a recent MR analysis of UK Biobank

participants demonstrating a strong effect of smoking on PAD.4,40 Although themechanism behind

the stronger relationship between smoking and PAD is not clear, structural and functional differences

within the vascular beds and the complex interplay between smoking and other ASCVD risk factors

may contribute.41,42 For example, although both acute PAD and CAD events typically result from

luminal thrombosis, and both diseases have atherosclerotic manifestations, typical acute CAD lesions

occur in the setting of atherothrombosis, while acute PAD-associated lesions more typically result

from in situ thrombosis or embolism.43 Indeed, a strong association between the factor V Leiden

variant (F5 p.R506Q) and PAD has been identified; however, this association is not present for CAD,

raising the possibility that smoking-related changes in coagulation may explain some of the

differential associations between smoking and ASCVD outcomes.9,44 Further understanding of the

mechanistic differences in ASCVD pathophysiology across vascular beds may ultimately lead tomore

targeted prevention and treatment strategies.

Genetic liability to smoking is also associated with cardiometabolic traits that are themselves

risk factors ASCVD. TheMR finding that increasing genetic liability to smoking is associated with type

2 diabetes is consistent with recent observational andMR studies.6,45-48We also identified

increasing genetic liability to smoking as a risk factor for hypertension and increased waist

circumference, bodymass index, and waist to hip ratio, although prior studies have identified

conflicting effects of smoking on these traits.49-54 A prior single-sample MR analysis from the Nord-

Trøndelag Health Study (HUNT Study) found a protective effect of smoking on body mass index,

waist circumference, and hip circumference but found no associations with blood pressure, levels of

lipids, or glucose levels.51 Their study may have been limited by the single-sample design, modest

study size, and weak single single-nucleotide variant (rs1051730) instrument for smoking, which all

may have contributed to bias toward observational estimates.12More recent MR studies have

corroborated our finding that smoking traits are associated with increased bodymass index.48

Conflict among observational studies may be related to residual confounding or reverse causality.

Mendelian randomization assumes that genetic variants proxying an exposure produce similar

effects to the exposure itself, although this assumptionmay not always be valid. For example,

lifetime exposure to adverse genetics may have different health consequences when compared with
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more concentrated environmental exposures, highlighted by the much larger protective effects of

genetically lower low-density lipoprotein cholesterol level and systolic blood pressure on risk of

coronary heart disease in comparison with effect estimates from randomized trials of treatments for

these risk factors.55,56

The effect of increasing genetic liability to smoking on ASCVD outcomes appears to be

independent from the effects of smoking on traditional cardiovascular risk factors. The point

estimate of the direct effect of smoking (when jointly considering smoking and cardiometabolic risk

factors) was similar (or greater) than the total effect, suggesting the possibility of causal interaction

between smoking and traditional risk factors, which could be investigated using factorial MR in a

single-sample setting.57 Proposedmechanisms by which smokingmay independently contribute to

cardiovascular events include among others hypercoagulability, increased myocardial work,

decreased oxygen delivery (due to elevated carboxyhemoglobin levels), coronary vasoconstriction,

and increased catecholamine levels.57

The finding that smoking confers strong independent risk for ASCVD even when considering

other traditional cardiovascular risk factors has important public health implications. More precise

estimation of the effect of smoking on ASCVD outcomesmay help calibrate the expected benefit of

smoking cessation initiatives, and efforts to reduce the burden of cardiovascular disease should

continue to focus on smoking cessation. Further, public awareness of ASCVD varies across outcomes

and is particularly low for PAD.58 The current analysis provides strong genetic evidence for the

effects of smoking and other ASCVD risk factors on CAD, PAD, and stroke andmay be useful in raising

public understanding of these risk factor–outcome relationships.

Limitations

The current studymust be interpreted within the context of its limitations. The study focused

primarily on individuals of European ancestry, which may limit generalization to other populations,

highlighting the need for genomic studies in diverse ancestral groups. TheMR framework relies on a

key assumption that the risk conferred by an exposure is equivalent whether mediated by genetics

or environment, and that genetic risk is conferred through the exposure of interest rather than via

pleiotropic effects.12 Although findings were consistent in sensitivity analyses using MRmethods

robust to the presence of pleiotropy, there may be gene-environment interactions, such as those

previously shown at the ADAMTS7 locus for CAD and at the CHRNA3 locus for PAD, that modify and

alter the relationship between smoking and ASCVD outcomes.9,59 Although differences in the

underlying structure of the ASCVD studies could affect the estimate of differential risk between the

ASCVD outcomes, the 2-sample MR framework tends to bias causal estimates toward the null,

lending further confidence in our overall finding that smoking was strongly associated with increased

risk of all ASCVD outcomes. Similarly, differences in the ascertainment of ASCVD and cardiometabolic

traits (eg, inclusion of incident vs prevalent disease) may lead to biased estimates owing to

prevalence-incidence or to selective-survival bias although the analyzed cohorts in the present study

included predominately prevalent disease, which would be expected to bias estimates toward the

null. Finally, future study of additional smoking-related traits, such as duration or quantity of smoking

and smoking cessation, and other MRmethods may provide additional insight into potential

differential effects of these traits in different vascular beds, clarifying recent observational findings

that these traits may affect ASCVD risk.4,60

Conclusions

In this MR study using genetic data from large studies of smoking, atherosclerosis, and

cardiometabolic disease, genetic liability to smoking was associated with increased risk of ASCVD,

with the strongest association between smoking and PAD, independent from traditional

cardiovascular risk factors.
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