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ABSTRACT: 

Importance: Smoking is associated with atherosclerotic cardiovascular disease, but the relative 

contribution to each subtype (coronary artery disease [CAD], peripheral artery disease [PAD], 

and large-artery stroke) remains less well understood. 

Objective: To determine the effect of smoking on risk of coronary artery disease, peripheral 

artery disease, and large-artery stroke. 

Design: Mendelian randomization study using summary statistics from genome-wide 

associations of smoking (up to 462,690 individuals), coronary artery disease (up to 60,801 

cases, 123,504 controls), peripheral artery disease (up to 24,009 cases, 150,983 controls), and 

large-artery stroke (up to 4,373 cases, 406,111 controls) 

Setting: Population-based study of primarily European-ancestry individuals 

Participants: Participants in genome-wide association studies of smoking, coronary artery 

disease, peripheral artery disease, and stroke. 

Exposures: Genetic liability to smoking defined by lifetime smoking index: an integrated 

measure of smoking status, age at initiation, age at cessation, number of cigarettes smoked per 

day, and declining effect of smoking on health outcomes). 

Main Outcome Measure: Risk of coronary artery disease, peripheral artery disease, and large-

artery stroke. 

Results: Genetic liability to smoking was associated with increased risk of PAD (OR 2.13; 95% CI 

1.78-2.56; P = 3.6 x 10-16), CAD (OR 1.48; 95% CI 1.25-1.75; P = 4.4 x 10-6), and stroke (OR 1.4; 

95% CI 1.02-1.92; P = 0.036). Risk of PAD in smokers was greater than risk of large-artery 
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stroke (pdifference = 0.025) or CAD (pdifference = 0.0041). The effect of smoking on ASCVD remained 

independent from the effects of smoking on traditional cardiovascular risk factors. 

Conclusions and Relevance: Genetic liability to smoking is a strong, causal risk factor for CAD, 

PAD, and stroke, although the effect of smoking is strongest for PAD. The effect of smoking is 

independent of traditional cardiovascular risk factors. 

 

Key Words: smoking; genetics; atherosclerosis; Mendelian Randomization; cardiovascular 

disease; coronary artery disease; peripheral artery disease; stroke 

 

Running Title: Smoking and Atherosclerotic Cardiovascular Disease 
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INTRODUCTION: 

Atherosclerotic cardiovascular disease (ASCVD) can affect multiple vascular beds 

throughout the body, with clinical manifestations including coronary artery disease (CAD), 

stroke, and peripheral artery disease (PAD). Smoking tobacco is consistently among the leading 

risk factors for ASCVD; however, the relative contribution of smoking to the individual ASCVD 

outcomes remains less well studied. Observational studies have examined these ASCVD 

outcomes together, with a recent study by Ding et. al. finding the strongest effect of smoking 

on incident PAD compared to CAD or stroke.1–4 Observational study designs may be limited, 

however, by modest overall sample size, measurement error, and risk of residual confounding.5 

A number of studies over the past several decades have identified detrimental effects of 

smoking on traditional cardiovascular risk factors including blood pressure, lipids, and 

diabetes.6,7 Smoking also has additional independent effects on inflammation, endothelial 

function, and platelet aggregation.6 Despite the clear observational links between smoking and 

atherosclerosis, whether the effect of smoking on ASCVD is primarily mediated through 

correlated alterations of traditional cardiovascular risk factors, or operates via independent 

mechanisms is less clear. As the detrimental effects of smoking may persist for decades,4 

clarifying the basis of the smoking-atherosclerosis relationship could enable more targeted risk-

reduction strategies among both current and former smokers, and identify novel treatment 

strategies for those at highest risk of ASCVD. 

Recently, large genome-wide association studies of smoking, coronary artery disease, 

stroke, and peripheral artery disease have identified genetic loci associated with each of these 

conditions.8–11 The Mendelian randomization (MR) framework leverages the natural 
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randomization of genetic variation at conception (under certain assumptions) to mitigate the 

risk of confounding when estimating relationships between traits. Therefore, this approach may 

allow for more precise quantification of potential differences between exposure-outcome 

pairs.12 The method has further been extended to consider exposures jointly, a form of 

mediation analysis that enables the estimation of the direct effect of each exposure on an 

outcome of interest.13  

Here, leveraging population-scale human genetics data from genome-wide association 

studies, we utilized the MR framework with genetic variants as instrumental variables to: (i) 

estimate the total causal effect of smoking on coronary artery disease, peripheral artery 

disease, and large-artery stroke, the primary manifestations of ASCVD; (ii) quantify differences 

in the estimates of effects of smoking between ASCVD outcomes; (iii) validate the effect of 

smoking on traditional cardiovascular and inflammatory risk factors for ASCVD; and (iv) assess 

the extent to which traditional cardiovascular and inflammatory risk factors mediate the 

relationship between smoking and ASCVD outcomes. 

 

METHODS: 

Genetic Instrument Selection 

The lifetime smoking index is a continuous measure that accounts for self-reported 

smoking status, age at initiation, age at cessation, number of cigarettes smoked per day, and a 

simulated half-life constant that captures the declining effect of smoking on health outcomes 

following a given exposure.11 A genetic instrument for lifetime smoking index was constructed 

from summary statistics of a genome-wide association study of UK Biobank participants (UK 
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Biobank; N = 462,690) using independent (r2 = 0.001, distance = 10,000 kb, European-ancestry 

participants of the 1000 genomes project) genome-wide significant (p < 5 x 10-8) variants as the 

exposure, as previously described.11 Each standard-deviation increase in the lifetime smoking 

index instrument corresponds to an individual smoking 20 cigarettes daily for 15 years and 

stopping 17 years ago, or smoking 60 cigarettes daily for 13 years and stopping 22 years ago. 

The corresponding SNP effects for CAD8 (CARDIoGRAMplusC4D 1000 Genomes; N = 60,801 

cases, 123,504 controls), PAD9 (Million Veterans Program; N = 24,009 cases, 150,983 controls), 

and large-artery stroke10 (MEGASTROKE; N = 4,373 cases, 406,111 controls) were used as the 

outcomes, without the use of proxy SNPs. The smoking index instrument was previously 

validated using an independent set of participants and with positive-control outcomes of 

coronary artery disease and lung cancer. To further validated the instrument, two-sample MR 

was performed using lifetime smoking index as the exposure, and smoking initiation, age of 

smoking initiation, smoking cessation, and cigarettes per day,14 as reported by GSCAN, as 

outcomes. To evaluate the strength of the smoking index instrument, the F-statistic was 

calculated.15  

 

Mendelian Randomization 

In the primary analysis, the total effect of lifetime smoking index on ASCVD outcomes 

(CAD, PAD, and stroke) was estimated using random-effects inverse-variance weighted MR 

within the TwoSampleMR package in R.165 In sensitivity analyses, fixed-effects inverse-variance 

weighted, maximum likelihood, weighted-median, penalized weighted-median, and MR-PRESSO 

methods were performed to account for potential violations of the instrumental variable 
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assumptions, heterogeneity, and error in the instrument-exposure associations.5,17,18 Diagnostic 

leave-one-out, single-SNP, funnel-plot analyses were performed. The Egger bias intercept test 

was used to detect evidence of horizontal pleiotropy. In sensitivity analysis, a genetic 

instrument for smoking initiation was used as the exposure.14 Because two-sample Mendelian 

randomization of binary exposures provides effect estimates per 1-unit change in the exposure, 

results of the effect of the smoking initiation exposure on ASCVD outcomes are expressed as 

odds of the outcome per 2.72-fold (1 log-odds unit) increase in the odds of ever smoking.19 For 

the primary analysis, power calculations were performed to estimate the minimum effect for 

which the study had an 80% power to detect a difference at a two-tailed significance level of p 

< 0.05. Differences in the effect of smoking on ASCVD outcomes in each vascular bed was 

estimated using a test of interaction.20 

The effect of lifetime smoking on cardiometabolic risk factors was estimated using 

random-effects inverse-variance weighted two-sample MR. Outcomes were obtained from 

publicly available summary statistics from genome-wide association studies of continuous traits 

(total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, BMI, waist-to-hip ratio, 

fasting glucose, fasting insulin, systolic blood pressure, estimated glomerular filtration rate, 

circulating C-reactive protein levels, circulating IL1B, circulating IL6, and circulating IL6R levels), 

and binary traits (type II diabetes mellitus, hypertension, hyperlipidemia, chronic kidney 

disease, overweight) identified using the MR-Base platform (Supplemental Table 1).21–28 

Because the lifetime smoking index exposure instrument was derived from UK Biobank 

participants, and MR estimates derived from studies with a high proportion of overlapping 

samples may be biased, studies of cardiometabolic outcomes that included non-UK Biobank 
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participants were preferred when available.29 The smoking initiation exposure, which included 

both UK Biobank participants and participants from several other studies, was also used in 

sensitivity analysis to further minimize bias from participant overlap. The MR Steiger test of 

directionality was performed to validate direction of association between smoking (as the 

exposure) and cardiometabolic risk factors (as the outcomes).30  

To determine whether any effect of smoking on ASCVD may be mediated through 

traditional cardiovascular risk factors, multivariable MR was performed.31,32 Independent (r2 = 

0.001, distance = 10,000 kb) genome-wide significant (p < 5 x 10-8) variants associated with 

traditional cardiovascular and inflammatory risk factors (LDL-cholesterol, HDL-cholesterol, 

triglycerides, BMI, type II diabetes mellitus, systolic blood pressure, and circulating IL6 levels) 

were identified using the MR-Base platform. The direct effect of lifetime smoking index was 

then estimated in models accounting for each traditional risk factor alone, and in a model 

considering all risk factors jointly. 

 

Statistical Analysis 

For the primary analysis of smoking on ASCVD outcomes, the statistical significance 

threshold was set at a two-sided p < 0.05. For the secondary analysis of smoking on 

cardiometabolic risk factors, correction for multiple comparisons was made using the 

Bonferroni method (p < 0.05/21 =  0.0024). Cardiometabolic traits with nominal associations 

(0.0024 ≤ p < 0.05) were considered suggestive. In the multivariable analysis considering joint 

effects of smoking and risk factors on ASCVD outcomes, the statistical significance threshold 
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was set at a two-sided p < 0.05. All analyses were performed using R version 3.6.2 (R 

Foundation for Statistical Computing). 

 

RESULTS: 

Selection of Genetic Variants as Proxies for Smoking 

 Of the 126 independent SNPs associated with lifetime smoking index, 116, 107, and 105 

were available in the stroke, CAD, and PAD summary statistics (Supplemental Table 2). For the 

lifetime smoking index genetic instrument, the F-statistic was greater than 10 (range 25-163, 

mean 41), suggesting low risk of weak-instrument bias. To validate the genetic instrument for 

lifetime smoking index, MR was performed using smoking traits from the GSCAN consortium as 

outcomes. Lifetime smoking index significantly increased risk of smoking initiation and 

cessation, increased amount of smoking (cigarettes per day), and decreased age of smoking 

initiation (Supplemental Figure 1).  

 

 

Effect of Smoking on Atherosclerotic Cardiovascular Disease Outcomes 

For the primary analysis, power calculations indicated the lifetime smoking index 

instrument provided >80% power to detect ORs >1.15 for CAD, >1.22 for PAD, and >1.52 for 

large-artery stroke. In inverse-variance weighted Mendelian randomization analysis, each 1 

standard deviation increase in genetic liability to lifetime smoking index increased risk of PAD 

(OR 2.13; 95% CI 1.78-2.56; P = 3.6 x 10-16), CAD (OR 1.48; 95% CI 1.25-1.75; P = 4.4 x 10-6), and 

stroke (OR 1.4; 95% CI 1.02-1.92; P = 0.036) (
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Figure 1). The Egger bias intercept test identified horizontal pleiotropy for the smoking-

CAD pathway (intercept = 0.01, p = 0.046) (Supplemental Table 3), although the findings 

remained robust in sensitivity analyses using MR methods that account for the possibility of 

horizontal pleiotropy (Supplemental Figures 2-5), and when using an alternative genetic 

instrument for smoking (smoking initiation) (Supplemental Figure 6).  

We next determined if the causal effect of smoking differed between the ASCVD 

endpoints. The primary inverse-variance weighted effect estimate of smoking initiation on PAD 

was significantly greater than the estimates for large-artery stroke (ORPAD 2.13 vs. ORstroke 1.4; 

pdifference = 0.025) or CAD (ORPAD 2.13 vs. ORCAD 1.48; pdifference = 0.0041).  

 

Effect of Smoking on Cardiometabolic Risk Factors 

 We next considered the effect of increasing genetic liability to lifetime smoking on other 

cardiometabolic traits that are known ASCVD risk factors. Increasing genetic liability to lifetime 

smoking increased the risk of type 2 diabetes, hypertension, waist circumference, body mass 

index, and waist-to-hip ratio, with a suggestive (p < 0.05) increase in the risk of being 

overweight (Figure 2). In sensitivity analysis considering a genetic instrument for smoking 

initiation as the exposure, results were similar (Supplemental Figure 7). The MR Steiger testing 

confirmed the direction of these findings (Supplemental Table 4). 

 

Cardiometabolic Risk Factors as Mediators of Smoking-ASCVD Risk 

 To evaluate whether increasing genetic liability to smoking increases risk of ASCVD 

directly, or whether the effect is mediated by traditional cardiovascular risk factors (type 2 
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diabetes, lipids, body mass index, and systolic blood pressure), we performed multivariable 

Mendelian randomization to estimate the direct effects of smoking. Increasing genetic liability 

to smoking increased risk of PAD, CAD, and stroke, after accounting for effects of smoking on 

each risk factor independently, and in a combined model considering all risk factors (Figure 3). 

There was no significant attenuation of the effect estimates after accounting for traditional risk 

factors, or in a model further including interleukin-6 as a marker of inflammatory risk of ASCVD. 

 

DISCUSSION: 

Using Mendelian randomization, we leveraged population-scale human genetics to 

estimate the causal risk of smoking on cardiometabolic risk factors and atherosclerotic 

cardiovascular disease outcomes across diverse vascular beds (CAD, PAD, and stroke). By 

drawing from multiple large genome-wide association studies, we were able to consider an 

order-of-magnitude more cases of smoking, cardiometabolic risk factors, and ASCVD outcomes 

compared to previous observational studies. While observational studies remain at risk of bias 

due to residual confounding, the genetic instrumental variables utilized here in the Mendelian 

randomization framework provide effect estimates that are unconfounded from environmental 

factors. Because genetic variants are randomly assorted during meiosis, mimicking 

randomization in a clinical trial, we were able to estimate putative causal relationships between 

smoking and cardiometabolic traits.  

Our results suggest that smoking has a direct atherogenic effect that varies across 

vascular beds. This finding is largely consistent with prior investigations of smoking on ASCVD. 

While the association between smoking and ASCVD has been demonstrated previously in 
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observational studies, our Mendelian randomization analysis provides strong evidence 

consistent with a causal relationship. Our finding that smoking appears to more strongly 

influence the risk of PAD compared to CAD or stroke is consistent with recent results from the 

ARIC cohort, in which the effect of smoking was greatest for PAD.4 While the mechanism 

behind the stronger relationship between smoking and PAD is not clear, structural and 

functional differences within the vascular beds and the complex interplay between smoking 

and other ASCVD risk factors may contribute.33,34 

 The genetic liability to smoking is also associated with cardiometabolic traits that are 

themselves risk factors ASCVD. The MR finding that increasing genetic liability to smoking is 

associated with type 2 diabetes is consistent with recent observational and MR studies.6,35–37 

We also identified increasing genetic liability to smoking as a risk factor for hypertension and 

increased waist circumference, body mass index, and waist-to-hip ratio, although prior studies 

have suggesting conflicting effects of smoking on these traits.38–43 A prior single-sample MR 

analysis from the Nord-Trøndelag Health Study (HUNT Study) found a protective effect of 

smoking on BMI, waist circumference, and hip circumference, but found no associations with 

blood pressure, lipids, or glucose levels.40 This study may have been limited by the single-

sample design, modest study size, and weak single-SNP (rs1051730) instrument for smoking, 

which all may have contributed to bias toward observational estimates.44 A more recent MR 

study has identified a bidirectional relationship between smoking traits and BMI.45 Conflict 

among observational studies may be related to residual confounding or reverse causality. MR 

assumes that genetic variants proxying an exposure produce similar effects to the exposure 

itself, although this assumption may not always be valid. For example, lifetime exposure to 
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adverse genetics may have different health consequences when compared to more 

concentrated environmental exposures, highlighted by the much larger protective effects of 

genetically lower LDL-cholesterol and systolic blood pressure on risk of coronary heart disease 

in comparison to effect estimates from randomized trials of treatments for these risk 

factors.46,47  

The effect of increasing genetic liability to smoking on ASCVD outcomes appears to be 

independent from the effects of smoking on traditional cardiovascular risk factors. The point 

estimate of the direct effect of smoking (when jointly considering smoking and cardiometabolic 

risk factors) was similar (or greater) than the total effect, suggesting the possibility of causal 

interaction between smoking and traditional risk factors, which could be investigated using 

factorial MR in a single-sample setting.48 Proposed mechanisms by which smoking may 

independently contribute to cardiovascular events include hypercoagulability, increased 

myocardial work, decreased oxygen delivery (due to elevated carboxyhemoglobin levels), 

coronary vasoconstriction, and increased catecholamine levels, among others.48  

The finding that smoking confers strong independent risk for ASCVD even when 

considering other traditional cardiovascular risk factors has important public health 

implications. More precise estimation of the effect of smoking on ASCVD outcomes may help 

calibrate the expected benefit of smoking cessation initiatives, and efforts to reduce the burden 

of cardiovascular disease should continue to focus on smoking cessation.  

The current study must be interpreted within the context of its limitations. The study 

focused primarily on individuals of European ancestry, which may limit generalization to other 

populations, highlighting the need for genomic studies in diverse ancestral groups. The 
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Mendelian randomization framework relies on a key assumption that the risk conferred by an 

exposure is equivalent whether mediated by genetics or environment, and that genetic risk is 

conferred through the exposure of interest rather than via pleiotropic effects 12. Although 

findings were consistent in sensitivity analyses using MR methods robust to the presence of 

pleiotropy, there may be gene-environment interactions, like those previously demonstrated at 

the ADAMTS7 locus for CAD and the CHRNA3 locus for PAD, that modify and alter the 

relationship between smoking and ASCVD outcomes 9,49. Although differences in the underlying 

structure of the ASCVD studies could affect the estimate of differential risk between the ASCVD 

outcomes, the two-sample Mendelian randomization framework tends to bias causal estimates 

toward the null, lending further confidence in our overall finding that smoking is strongly 

associated with increased risk of all ASCVD outcomes. Finally, future study of additional 

smoking-related traits, like duration/quantity of smoking and smoking cessation, and other MR 

methods may provide additional insight into potential differential effects of these traits in 

different vascular beds, clarifying recent observational findings that these traits may affect 

ASCVD risk.4,50 

 

CONCLUSION: 

Overall, increasing genetic liability to smoking increases risk of atherosclerotic 

cardiovascular diseases, with the strongest effect on peripheral artery disease, independent of 

traditional cardiovascular risk factors.  
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Figure 1: Total effect of smoking on risk of peripheral artery disease (PAD), coronary artery disease (CAD), and stroke 

 
In inverse-variance weighted MR, each one standard deviation increase in genetic liability to smoking was associated with 
significantly increased risk of PAD, CAD, and large-artery stroke. Smoking most strongly increased risk of PAD compared to large-
artery stroke (pdifference = 0.025) and CAD (pdifference = 0.0041). Odds ratios are expressed per one standard deviation increase in 
lifetime smoking index. OR = Odds Ratio, CI = Confidence Interval.
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Figure 2: Total effect of smoking on risk of cardiometabolic risk factors for ASCVD 

 
Inverse-variance weighted MR was performed to determine whether genetic liability to smoking altered risk of cardiometabolic risk 
factors for ASCVD. Genetic liability to smoking increased risk of both (A) binary traits, and (B) continuous traits that are common risk 
factors for cardiometabolic disease. Effect estimates are expressed per one standard deviation increase in lifetime smoking index. 
OR = Odds Ratio, CI = Confidence Interval. 
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Figure 3: Direct effect of smoking on risk of PAD, CAD, and Stroke 

 
Multivariable MR was performed to estimate the direct effect of smoking on ASCVD after accounting for the effects of smoking on 
other cardiovascular risk factors. The effect of smoking on PAD, CAD, and stroke was not substantially attenuated in models 
adjusting for traditional cardiovascular risk factors (Type 2 Diabetes, Body Mass Index, Lipids [LDL-C, HDL-C, Triglycerides], and 
Systolic Blood Pressure), or inflammation (IL6 levels). Odds ratios are expressed per one standard deviation increase in lifetime 
smoking index. OR = Odds Ratio, CI = Confidence Interval.  
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