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Abstract: Diabetes has reached epidemic proportions worldwide. Currently, approximately 537 million
adults (20–79 years) have diabetes, and the total number of people with diabetes is continuously
increasing. Diabetes includes several subtypes. About 80% of all cases of diabetes are type 2
diabetes (T2D). T2D is a polygenic disease with an inheritance ranging from 30 to 70%. Genetic and
environment/lifestyle factors, especially obesity and sedentary lifestyle, increase the risk of T2D. In
this review, we discuss how studies on the genetics of diabetes started, how they expanded when
genome-wide association studies and exome and whole-genome sequencing became available, and
the current challenges in genetic studies of diabetes. T2D is heterogeneous with respect to clinical
presentation, disease course, and response to treatment, and has several subgroups which differ in
pathophysiology and risk of micro- and macrovascular complications. Currently, genetic studies of
T2D focus on these subgroups to find the best diagnoses and treatments for these patients according
to the principles of precision medicine.
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1. Introduction

Type 2 diabetes (T2D) has reached epidemic proportions worldwide. Currently, ap-
proximately 537 million adults (20–79 years) have diabetes, and the total number of people
with diabetes is projected to increase to 643 million by 2030 and 783 million by 2045, accord-
ing to the statistics of the International Diabetes Federation [1]. Diabetes is diagnosed by
elevated fasting glucose, elevated 2 h glucose in an oral glucose tolerance test, or elevated
hemoglobin A1c levels [2]. T2D reduces life expectancy and quality of life and increases
the risk of macro- and microvascular complications [3].

A genetic component to T2D is important given the inheritance observed in families,
the high prevalence for this disease in certain ethnic groups, and the difference in con-
cordance rates between monozygotic and dizygotic twins [4]. The heritability of T2D has
been reported to range from 30 to 70% [5]. Both insulin secretion and insulin action are
impaired in T2D. Their relative importance has been debated, but it is now recognized
based on genetic studies that β-cell dysfunction is the key factor in the development of this
disease [6]. Genetic and environmental/lifestyle factors, especially obesity and sedentary
lifestyle, increase the risk of T2D [3]. Several trials have reported that it is possible to delay
or prevent T2D by healthy diet and physical activity [7].

The aim of this review is to discuss how studies on the genetics of diabetes started,
how they expanded when genome-wide association studies (GWAS) and exome and whole-
genome sequencing became available, and what the challenges for T2D are currently and
may be in the near future. T2D is a heterogeneous disease but patients with T2D are
currently treated as a homogeneous entity, although the current guidelines emphasize
a personalized approach for diabetes treatment [8]. Recent studies have revealed new
evidence that the identification of the subgroups of T2D may allow new tailored therapies
for patients belonging to different subgroups of T2D in the near future.
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2. Approaches in Studies of the Genetics of Diabetes
2.1. Development of Technologies for Genetic Studies

Advances cloning, sequencing, genotyping, and analytical tools during the last
30 years made the studies of the genetics of different diseases possible. The Human
Genome Project was instrumental for the development of genetic studies. This project
constructed genetic and physical maps of the human genome, determined the sequence
of human DNA, and identified the complete set of human genes [9]. In 1994, the human
genetic linkage map fulfilled the first of the major goals when >100 laboratories published a
comprehensive human linkage map [9]. That was the starting point for microsatellite-based
genetic markers, and the development of statistical methods to analyze the data [10]. The
next steps, microarray-based detection of structural variation and exome- and genome-wide
sequencing methods by using new technology (Figure 1), were crucial for the development
of genetic studies [11].

Figure 1. Phases in the studies of genetics of diabetes. Identification of monogenic diseases became
possible after the development of cloning and sequencing. Genome-wide association studies made it
possible to investigate the genetics of polygenic diseases, and exome and genome sequencing made it
possible to identify rare variants. Gene–environment interaction studies involve both genetic and
environmental effects.

2.2. Candidate Gene Studies and Linkage Analyses

In the 1960s, it was believed that diabetes was a polygenic disorder. In 1975, it was
discovered that young individuals with diabetes have autosomal dominant inheritance,
and in the 1990s the first MODY (maturity-onset diabetes of the young) genes were iden-
tified [12–14]. However, studies of T2D were not successful by applying linkage-based
approaches using multigenerational pedigrees and/or large numbers of affected sib-pairs.
The next step to identify genetic variants for T2D was to use a candidate gene approach,
most often these were case–control association studies [15]. These studies were usually
small in size and very often reported conflicting results.

The first success in the application of a candidate gene approach in T2D studies was
our study where we investigated the PPARG gene in 1998 [16]. PPARγ1 and PPARγ2 have
effects on energy balance and body mass index (BMI), and we hypothesized that PPARγ
may constitute a predisposing factor for obesity and insulin resistance. Further evidence
for the significance of the PPARG gene came from the drug treatment of patients with
T2D because troglitazone, a PPARγ agonist, lowered blood glucose concentrations [17].
We found that Pro12Ala substitution in PPARγ2 was significantly associated with lower
BMI and insulin concentration and improved insulin sensitivity among middle-aged Finns
(Figure 2). We also found that the Pro allele of PPARγ2 was significantly associated with an
increased risk of T2D among Japanese Americans [16]. In another study, we demonstrated
that Pro12Ala knock-in mice on chow diet were leaner and had improved insulin sensitivity
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and plasma lipid profiles [18]. Our results suggest that Pro12Ala of PPARG is an important
modulator of metabolic control.
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Figure 2. Body mass index and fasting insulin were significantly decreased and insulin sensitivity
was increased (* p < 0.05) in the carriers of the Ala12 allele of PPARG2.

Altshuler et al. [19] performed a meta-analysis of 16 separate studies including over
3000 participants, and showed that the Pro allele of PPARG was significantly associated
with the risk of T2D. This study is unique because it demonstrated for the first time that
meta-analysis is needed to increase the sample size to obtain statistically significant and
reliable results. It also showed that linkage analysis is not suitable for discovering the
impact of common-risk alleles. Therefore, the genetic dissection of polygenic diseases needs
association studies performed on large population samples.

In 1998, Hani et al. published the first genetic variant identified by the candidate
gene approach associated with impaired insulin secretion [20]. They identified an amino
acid substitution of Glu23Lys in the KCNJ11 gene in three Caucasian cohorts and showed
that this variant was associated with the risk of T2D. The study by Gloyn et al., published
in 2003, included 854 patients with T2D and 1182 controls and reported an 18% increase
in the risk of T2D in the carriers of Glu23Lys of KCNJ11 [21]. Barroso et al. investigated
71 candidate genes for T2D in 2134 Caucasians and found 15 genetic variants potentially
important for the risk of T2D but were not able to confirm these findings in meta-analysis
of several cohorts [15]. However, this study made an important observation that genetic
variants were more often associated with decreased insulin secretion than with insulin
sensitivity [15].

In general, linkage analysis alone was not successful to identify genes for the risk
of T2D. Grant et al. identified the TCF7L2 locus in 2006 as a risk gene for T2D using the
combination of linkage analysis and genotyping microsatellite markers across the chromo-
some 10q region in a study that included 1185 individuals with T2D and 931 controls [22].
This finding was confirmed one year later in a French case–control cohort for the T allele
of a single-nucleotide variant (rs7903146) of TCF7L2 [23]. In a meta-analysis comprising
28 studies, this intronic variant of TCF7L2 increased the risk of T2D by 41%, which is the
most statistically significant single variant among all risk variants for T2D [24].

2.3. Genome-Wide Common Variant Association Studies

Genome-wide association studies (GWAS) have been successful in identifying com-
mon variants that increase the risk of T2D. The first studies, published in 2007, included
thousands of participants and identified 10 genome loci exploiting single-nucleotide poly-
morphism microarrays [23,25–28]. Importantly, many of these studies identified the same
variants. These studies also showed that all common variants identified by GWAS increased
the risk of T2D < 40%, and most of them by only <15%.
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The next step in common variant GWAS studies was to share the data across the
studies to increase the statistical power. This made it possible to identify more variants
with small effects on the risk of T2D [29]. The Diabetes Genetics Replication and Meta-
analysis Consortium (DIAGRAM) increased sample size to above 10,000 for case–control
studies [30] and the second DIAGRAM up to 45,000 including participants of European
ancestry [31]. Collaboration of large consortia resulted in the development of a custom
genotyping array that made it possible to increase the sample size up to 150,000 in GWAS
studies [32].

GWAS studies have provided important information about the genetic architecture
of T2D. Voight et al. [33] and Ingelsson et al. [34] reported that the variants associated
with the risk of T2D were more often associated with decreased insulin secretion than
insulin sensitivity. Scott et al. [35] reported three pathological groups for T2D: impaired
insulin secretion/insulin processing, insulin resistance, and dyslipidemia. Lotta et al. [36]
generated a genetic risk score for a lipodystrophy-like subset of T2D. These studies were
instrumental to understand the heterogeneity of T2D.

A study of Mahajan et al. [37] included 74,124 cases of T2D and 824,006 controls of Eu-
ropean ancestry and identified 403 distinct association signals. This study also highlighted
potential for clinical translation given the fact that genome-wide chip heritability explained
18% of T2D risk. These authors also developed a polygenic risk score (PRS) and applied it
to the general UK population and estimated that the PRS predicts a lifetime T2D risk of
59.7% in individuals < 55 years of age.

Diabetes Meta-Analysis of Trans-Ethnic (DIAMANTE) association studies included
not only Europeans but also non-European populations. This T2D study, which included
228,499 T2D cases and 1,178,783 controls from five ancestral groups, is the largest GWAS
study published so far about the variants associated with T2D [38]. The authors reported
568 associations and 318 novel risk loci for T2D. They performed pathway and functional
enrichment analysis and found that the most significant gene set involved the AKT2
subnetwork, a gene associated with the risk of T2D. The authors also reported novel
findings on the complications of T2D. Their PRS was strongly associated with an increased
risk of T2D-related retinopathy [38].

GWAS studies have been highly successful and have so far reported >700 novel
T2D risk loci. These studies demonstrate that increased sample size and inclusion of
participants from diverse ancestral backgrounds substantially increase statistical power
to identify new association signals. Consequently, the effect size of novel risk variants for
T2D has decreased, indicating that these variants can be statistically significant but their
contribution to the understanding of the pathophysiology of T2D is limited [39].

Diabetes is defined by elevated concentrations of glycated hemoglobin A1c (HbA1c),
fasting glucose, or 2 h glucose. HbA1c measures average glycemia over the period of the last
2–3 months, whereas fasting and 2 h glucose levels change daily. Multiple GWAS studies
have been published on genetic variants associated with HbA1c since 2008 [40,41]. The most
recent Meta-Analyses of Glucose and Insulin-related Traits Consortium (MAGIC) included
>280,000 individuals of diverse ancestry without diabetes, and reported associations of
variants with glucose, insulin, and HbA1c [42]. In this study, 218 HbA1c-associated variants
were reported. The authors generated a PRS including all HbA1c-associated signals and
showed that it was strongly associated with an increased risk of T2D.

Several studies have reported significant associations of genetic variants with fasting
glucose [42–47], fasting insulin [42–45], fasting proinsulin [48], and insulin resistance [43].
The largest study on glycemic traits published by Chen and collaborators [42] included
281,416 individuals without diabetes (70% European ancestry, 30% non-European ancestry).
They identified a total of 242 loci (99 novel) for HbA1c, fasting 2 h glucose, and fasting
insulin. Walford et al. reported that BCL2 and FAM19A2 are novel insulin sensitivity
loci [49].
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2.4. Genome-Wide Rare Variants Association Studies

In 2013, we published the first study investigating the significance of low-frequency
variants (<5%) to the risk of T2D or T2D-related traits [50]. Our study included 8229 Finns
and used the Illumina exome array. We reported two low-frequency variants associ-
ated with fasting proinsulin concentrations (SGSM2, MADD), and three novel variants
(TBC1D30, KNK1, PAM) associated with proinsulin or insulinogenic index. Our study
provided proof of the principle that exome genotyping array identifies low-frequency
functional variants that contribute to complex traits. In 2014, Steinthorsdotter et al. [51]
published a genome sequencing study in Icelanders and found three more T2D-associated
low-frequency variants (CCND2, PAM, PDX1). During the following years, rare vari-
ants associated with T2D or T2D-related traits in MTNR1B, HNF1, and G6PC2 [52,53]
were published.

The first loss-of-function variant protective of T2D was published by Flannick et al. in
2014 [54]. They sequenced or genotyped ~150,000 participants from five ancestry groups
and identified several rare loss-of-function variants in SLC30A8 encoding an islet zinc
transporter. The Trp325Arg variant of this gene was protective against T2D (65%).

Interestingly, a partial loss-of-function rare AKT2 variant Pro50Thr [55] was almost
entirely specific to Finns (frequency 1.1%). This gene regulates insulin signaling and insulin
sensitivity and increases the risk of T2D. We measured the whole-body and tissue-specific
insulin sensitivity with positron emission tomography in 20 carriers and 25 matched
controls [56]. We found a 39% decrease in whole-body glucose uptake and a 56% increase in
the rate of liver glucose production. Glucose uptake was significantly reduced in multiple
tissues, including liver, skeletal muscle, brown adipose tissue, and bone marrow. We also
found that glucose uptake was increased significantly in all seven tested brain regions. Our
study demonstrates that the Pro50Thr variant of AKT2 has effects on insulin-mediated
glucose uptake in multiple insulin-sensitive tissues. Our study shows that rare variants can
provide significant information about gene function and reveal novel information about
glucose metabolism.

2.5. Polygenic Risk Scores for Type 2 Diabetes

GWAS studies have made it possible to generate PRSs which estimate an individual’s
lifetime genetic risk for different diseases [57]. Earlier onset of the disease may be caused
by increased genetic risk. Therefore, PRSs have the potential to improve the likelihood of
preventing chronic diseases [58]. Several studies on coronary artery disease have reported
that disease-prediction algorithms perform better when PRSs are added to models having
clinical risk factors [59]. However, the contribution of PRS is substantially less in prediction
models for T2D. The area under the receiver operating characteristics (ROC) curve (AUC)
is a measure of a prediction accuracy of a PRS [60].

The first studies using PRSs to increase the prediction of the risk of T2D beyond
clinical risk factors included 16–18 genetic variants which were significantly associated
with T2D [61–63]. All these studies showed that PRS increased the risk prediction of T2D
only marginally. Vassy et al. [64] included 62 genetic variants in their PRS, which improved
T2D prediction compared with previous studies. Our study on 8749 Finnish men included
a PRS with 76 genetic variants [65]. When we added this PRS into a prediction model
consisting of clinical and laboratory risk factors for T2D (age, BMI, smoking status, physical
activity, HDL cholesterol, triacylglycerol, and systolic blood pressure), we found that our
PRS improved the prediction of T2D only slightly (AUC increased from 0.711 to 0.719).

Previous studies have been too small to realize the full potential of PRSs in T2D risk
prediction since they may miss a large proportion of cases (>50%) by targeting only high-
risk individuals. A 10-fold increase in sample size (about 220,000) in a GWAS study by
Chatterjee et al. [66] substantially increased the performance of PRSs. Thus, PRSs based on
genetics can help in the estimation of disease risk and in planning of clinical applications.
Recommendations have been published to improve reporting standards for PRSs in risk
prediction studies [67].
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3. Precise Type 2 Diabetes Medicine
3.1. Genetics

Precision medicine requires that prevention and treatment strategies account for
individual variability. Current guidelines advocate a personalized approach for diabetes
treatment [68]. Application of this concept has been improved by recent developments in
genetics of the human genome sequence, powerful methods for characterizing patients
(proteomics, metabolomics, cellular assays), and computational tools to analyze large
databases [69].

Diabetes is defined by elevated glucose levels, either in the fasting state or postpran-
dially. The most common type of diabetes is T2D, which accounts for about 80% of all
cases. Type 1 diabetes occurs in about 10% of cases, and latent autoimmune diabetes of
the adult (LADA) occurs in about 5% of cases [70]. MODY and other monogenic forms
of diabetes and secondary diabetes cover the rest of diabetes cases. T2D does not have
an accurate definition, and therefore it is a diagnosis of exclusion. Quite often studies on
T2D include patients with misdiagnosed forms of diabetes, especially LADA and type 1
diabetes. Therefore, it is important to identify and exclude other diabetes subtypes when
investigating the subgroups of T2D (Figure 3).

Figure 3. Identification of the subgroups of type 2 diabetes. Diabetes has several subtypes which need
to be excluded when analyzing the subgroups of type 2 diabetes. Neonatal diabetes, maturity onset
diabetes of the young (MODY), and type 1 diabetes are diagnosed at young age; latent autoimmune
diabetes in adults (LADA) and mitochondrial diabetes and deafness (MIDD) in middle or elderly age.
When all subtypes of diabetes have been excluded we have heterogeneous type 2 diabetes, and the
subgroups can be identified.

T2D itself is a heterogeneous disease with respect to clinical presentation, disease
course, and response to treatment. T2D has several subgroups which differ in pathophysi-
ology and risk of micro- and macrovascular complications. The first effort to identify T2D
subgroups was published by Li et al. [71]. Their aim was to identify T2D subgroups by
topological analysis of patient similarity based on electronic medical records and geno-
typing. They reported three subgroups of T2D for diabetic micro- and macrovascular
complications. Subtype 1 was characterized by retinopathy and diabetic nephropathy;
subtype 2 by cardiovascular diseases and cancer; and subtype 3 by neurological diseases,
cardiovascular diseases, and allergies [71]. These authors also performed an association
analysis of the T2D subgroups to find subtype-specific genetic markers and reported several
genetic variants for subgroups 1, 2, and 3. The limitation of this study is that they did
not focus on the pathophysiology of T2D or genetic variants associated with the risk of
this disease.

Ahlqvist et al. [72] proposed a new classification of T2D based on cluster analysis of
the following six clinical traits and laboratory tests: age, BMI, HbA1c, GAD antibodies,
HOMA2-B (a measure of insulin secretion), and HOMA-IR (a measure of insulin resistance).
The first cluster was severe autoimmune diabetes (SAID) defined by positive GAD anti-
bodies, including type 1 diabetes and LADA (6–8% of adult individuals), characterized
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by decreased insulin secretion, low/normal BMI, and poor metabolic control. The second
cluster, severe insulin-deficient diabetes (SIDD), had similar characteristics as SAID with
respect to impaired insulin secretion and poor glucose control but did not have positive
GAD antibodies (18–20%). The third cluster, severe insulin-resistant diabetes (SIRD), was
characterized by high insulin resistance as measured by HOMA2-IR, HOMA2-B, high BMI,
and low HbA1c. The fourth cluster, mild obesity-related diabetes (MOD), was characterized
by high BMI at a relatively young age (‘heathy obesity’) but not insulin resistance (20–25%),
and the fifth cluster, mild age-related diabetes (MARD), was characterized by the latest
onset of diabetes and low BMI.

A recent study by Aly et al. [73] investigated the significance of genetic variants in
the classification of T2D into subgroups originally identified by Ahlqvist et al. [72]. The
five subgroups of T2D differed with respect to diabetes-related traits and family history of
diabetes. SIRD was associated with PRSs for fasting insulin and diabetes. Three subgroups
of T2D, SAID, SIDD, and SIRD, had partially distinct pathophysiology. MOD-specific
LRMDA locus was found, and therefore it can be concluded that subclassification of T2D
may improve the power to detect diabetes loci.

Intermediate phenotypes (body mass index, fasting insulin, lipid levels, etc.) have
been recently used to account for the observed clinical heterogeneity in the identification of
subgroups of T2D [74]. These “partitioned genetic risk scores” have the potential to identify
patients at high risk of T2D or rapid disease progression. They also help in stratifying
subtypes of different diseases and bridging the gap toward precision medicine.

The study by Udler et al. [75] was based primarily on germline genetic variants. This
study categorized 94 T2D genetic variants into subgroups representing disease mechanistic
pathways and investigated whether these clusters of variants have important effects on
47 diabetes-related metabolic traits. The investigators found five robust clusters of T2D.
The first two clusters were related to beta cell function in the pancreas. The three other
clusters were related to insulin resistance and are mediated by obesity, fat-distribution
(lipodystrophy) [76], and liver lipid metabolism. PRSs of top-weighted loci from the
five clusters were associated with increased risk of coronary artery disease, stroke, and
elevated systolic blood pressure. A recent study [77] reported that increased obesity
and lipodystrophy cluster were significantly associated with hypertension and elevated
blood pressure. The lipodystrophy and liver/lipid cluster included genetic variants of
GCKR, PNPLA3, and TM6SF2, and were significantly associated with coronary artery
disease. Additionally, the liver/lipid cluster was significantly associated with decreased
renal function.

Wagner et al. [78] investigated intermediate hyperglycemia as an indication of el-
evated risk of developing T2D. Their study included participants from a cohort of in-
dividuals at high risk of T2D. The measurements included oral glucose tolerance tests,
MRI-measurements of liver fat content and body fat distribution, and genetic risk. They
could identify six clusters of sub-phenotypes, and in three of these clusters the participants
had elevated glucose concentrations. However, in only two of these clusters were the
participants at high risk of developing T2D. Interestingly, the participants belonging to a
cluster having moderate risk of T2D had an increased risk of kidney disease and mortality.
This study suggests that there is pathophysiological heterogeneity among individuals in
the prediabetes stage.

A recent study by Wesolowska-Andersen et al. [79] included 726 participants of the
DIRECT study. They applied a soft-clustering method (archetype) to characterize newly
diagnosed patients with T2D and found four archetype profiles. One archetype was
characterized by obesity, dyslipidemia, insulin resistance, and impaired β-cell glucose
sensitivity, and these participants had the fastest disease progression. Similarly, another
recent study [78] demonstrated clinical heterogeneity in the conversion to T2D. However,
this study has limitations because it is small in size and the replication of the results
is missing.
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In summary, the first studies aiming to understand the heterogeneity of T2D have
been published. It is not surprising that impaired insulin secretion and insulin resistance or
their combination are important subgroups of T2D. Udler et al. [75] were the first to show
that the liver/lipids subgroup of T2D is its own entity. This observation is supported by
previous studies demonstrating that TM6SF2 is associated with T2D [32] and non-alcoholic
fatty liver disease (NAFLD) [80].

3.2. Phenotyping

The precision medicine approach requires a better understanding of both the genome
and the phenome. Development of phenotype measurements is important for tailor-
ing of individualized treatment to each patient. Phenotype characterization is especially
important for polygenic diseases, including T2D, because both genetic factors and envi-
ronmental/lifestyle factors determine the risk, whereas in monogenic diseases the risk is
determined almost entirely by the causal genetic variants.

There are obvious gaps in our understanding of gene–environmental/lifestyle interac-
tions related to the risk of T2D [81]. Recent studies have demonstrated that the classification
of patients with T2D into subgroups needs a combination of both genetic variants and de-
tailed phenotype. Decreased insulin secretion and insulin sensitivity [82] are the hallmarks
of the conversion to T2D and, therefore, the most reliable indices for measuring insulin
secretion and insulin sensitivity should be applied.

Several studies have been published about different laboratory measurements and
other biomarkers as risk factors for T2D. These association studies do not, however, prove
causality [83]. Mendelian Randomization (MR) studies could identify causal associations.
In this method, common genetic variants are applied as instruments to estimate the causal
effects of a risk factor on an outcome [84]. MR studies have confirmed that obesity [85] and
the waist/hip ratio [86] are causal for the risk of T2D.

Metabolomics has been applied to studies on T2D in several population studies in
recent years [87]. Potentially, new metabolites and pathways can characterize pathophysio-
logical alterations in T2D [88,89]. Unfortunately, these studies have often been too small,
and the number of metabolites determined in these studies has often been <200 compared
to the thousands of metabolites available [83].

Therefore, the potential of the metabolomics approach has not been fully determined.
Metabolomics combined with the MR approach could identify causal metabolites for
T2D that could considerably improve prediction models. Similarly, proteomics provides
valuable insights into how genetic and environmental/lifestyle factors are linked to clinical
outcomes. Population-scale analyses of proteomics are currently largely missing, but they
may reveal novel drug targets and biomarkers for metabolic diseases, including T2D [90].

4. Conclusions

During recent decades, our knowledge of the genetics of monogenic and polygenic
forms of diabetes has experienced tremendous advancements. Consequently, in monogenic
diabetes subtypes, MODY, and neonatal diabetes, the precision medicine approach of
tailoring treatment to the individual characteristics of each patient has been successfully
applied [91]. In contrast, in polygenic diabetes subtypes, and especially in T2D, the
identification of the subgroups is challenging and currently, implications for patient care
are largely missing. However, the PRSs predict the risk of T2D, and combined with
relevant phenotypes, they are likely to show the way for improving the understanding of
pathophysiology of the subgroups of T2D.
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56. Latva-Rasku, A.; Honka, M.J.; Stančáková, A.; Koistinen, H.A.; Kuusisto, J.; Guan, L.; Manning, A.K.; Stringham, H.; Gloyn, A.L.;
Lindgren, C.M.; et al. A partial loss-of-function variant in AKT2 is associated with reduced insulin-mediated glucose uptake in
multiple insulin-sensitive tissues: A genotype-based callback positron emission tomography study. Diabetes 2018, 67, 334–342.
[CrossRef] [PubMed]

57. Udler, M.S.; McCarthy, M.I.; Florez, J.C.; Mahajan, A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr
Rev. 2019, 40, 1500–1520. [CrossRef]

58. Adeyemo, A.; Balaconis, M.K.; Darnes, D.R.; Fatumo, S.; Moreno, P.G.; Hodonsky, C.H.; Inouye, M.; Kanai, M.; Kato, K.; Bartha,
M.; et al. Polygenic risk score task force of the international common disease alliance. Nat. Med. 2021, 27, 1876–1884.

59. Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang,
T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll.
Cardiol. 2018, 72, 1883–1893. [CrossRef]

60. Padilla-Martínez, F.; Collin, F.; Kwasniewski, M.; Kretowski, A. Systematic review of polygenic risk scores for type 1 and type 2
diabetes. Int. J. Mol. Sci. 2020, 21, 1703. [CrossRef]

61. Lyssenko, V.; Jonsson, A.; Almgren, P.; Pulizzi, N.; Isomaa, B.; Tuomi, T.; Berglund, G.; Altshuler, D.; Nilsson, P.; Groop, L.; et al.
Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med. 2008, 359, 2220–2232. [CrossRef]

62. Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.; D’Agostino,
R.B., Sr.; et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 2008, 359,
2208–2219. [CrossRef] [PubMed]

63. Lango, H.; Palmer, C.N.; Morris, A.D.; Zeggini, E.; Hattersley, A.T.; McCarthy, M.I.; Frayling, T.M.; Weedon, M.N.; UK Type 2
Diabetes Genetics Consortium. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2
diabetes risk. Diabetes 2008, 57, 3129–3135. [CrossRef] [PubMed]

64. Vassy, J.L.; Hivert, M.-F.; Porneala, B.; Dauriz, M.; Florez, J.C.; Dupuis, J.; Siscovick, D.S.; Fornage, M.; Rasmussen-Torvik, L.J.;
Bouchard, C.; et al. Polygenic type 2 diabetes prediction at the limit of common variant detection. Diabetes 2014, 63, 2172–2182.
[CrossRef] [PubMed]
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