

GenGraph: A Multi-Grammar and Multi-Perspective
Business Modeling Tool – Overview of Conceptualization

and Implementation

Peter Fettke, Peter Loos, Kai Pastor

Johannes Gutenberg-Universität Mainz
ISYM – Information Systems & Management

Lehrstuhl Wirtschaftsinformatik und Betriebswirtschaftslehre
D-55099 Mainz, Germany

E-Mail: {fettke|loos|pastor}@isym.bwl.uni-mainz.de

Abstract: Within the information systems field, modeling of business systems re-
sults in complex information models which demand appropriate tool support. This
paper discusses the motivation and development of a generic editor for information
modeling. Our approach enables the user to configure the concepts of the utilized
modeling grammars. So, this approach does not implement a specific set of model-
ing grammars. Instead it is based on a flexible meta-model which uses typed graph
descriptions and allows multi-perspective modeling of business systems. Further-
more, we introduce the concepts of modules and links as means to deal with com-
plex business models. Shortcomings and problems with graph-based descriptions
of modeling grammars are discussed.

1 Introduction

1.1 Starting Point

Within the information systems field, information modeling is an important instrument
to analyze, design, implement, and deploy business information systems [WW02;
My98]. Information models enable or at least ease the management of complex business
systems [Be95; SH92]. However, there is a large variety of existing modeling grammars,
methods, and techniques which specify which concepts are to be applied to the universe
of discourse and how to represent these concepts and their instances graphically.

79

At first, we have to clarify the terminological confusion in the modeling literature. For
example, the term “model” is often used for different purposes. To avoid confusion, we
use the following definitions: A grammar “provides a set of constructs and rules that
show how to combine the constructs to model real-world domains” [WW02, p. 364]. In
the remainder of this paper, we always refer to analysis grammars, e. g. the entity-
relationship modeling grammar (ERM) or the Unified Modeling Language (UML). And
while modeling method “provides procedures by which a grammar can be used”
[WW02, p. 364], scripts are the product of the modeling process. “Each script is a state-
ment in the language generated by the grammar” [WW02, p. 364]. A script is a represen-
tation of a real-world domain using a particular grammar. We use the term model for a
set of scripts representing different aspects of a particular real-world domain. The visual
respectively graphical representation of a script is called a diagram.

1.2 Problem

Different grammars are needed to describe different aspects of an information system.
For example, known reference business models use several modeling grammars [FL03].
Frequently addressed aspects are data, functions, organization, and processes [Sc98].
These aspects describe different views of the same system. Furthermore, it is useful to
model business systems from different perspectives [Fr02; RG02]. For instance, business
models can be used for software development or business reengineering. These applica-
tion areas have different modeling requirements [Be02]. Nevertheless such models from
different perspectives should be smoothly integrated. In order to build well-structured,
consistent scripts, the grammars which are used to describe various views of one system
should be specified by a single integrated meta-model [SR98].

Most modeling tools offered by commercial software providers support a fixed set of
modeling grammars. The level of integration of different grammars as well as the integ-
rity of a set of scripts modeling a particular domain varies. The majority of tools lack
sophisticated features for customizing existing grammars, for defining new grammars
and for smoothly integrating custom grammars with predefined ones. Customization of
modeling grammars is important for information systems research when investigating
improved or even new modeling methods. Source code for commercial tools is usually
not available. However this is a prerequisite for some efforts to provide better modeling
tools.

All-purpose schema-drawing tools can be used to create diagrams in any language with-
out being strictly directed by a grammar. Since these tools do not know the concept of a
grammar, they provide little support to ensure the construction of syntactically valid
scripts. Graphics tools do not offer means to maintain structure, overview and correct-
ness in large complex models. Some tools (e.g. Microsoft Visio) have powerful pro-
gramming interfaces which may be utilized to implement missing grammar and analysis
features. However it is questionable if adding features which we regard as fundamental
to an otherwise incomplete tool is the right way to tackle the problems with existing
modeling software.

80

1.3 Approach

To address the problems, we designed and implemented a prototype software tool named
GenGraph. This tool can be used for flexible enterprise modeling because it is not lim-
ited to a specific, predefined set of modeling grammars. Instead, it is possible to config-
ure GenGraph for a wide range of different grammars by describing their concepts and
combination rules. So it is possible to customize GenGraph for grammars such as ERM,
EPC, UML, Petri-Nets, or other desirable grammars (e. g., this tool can also be config-
ured with grammars representing problems from business application domains like bill
of materials management and recipe management [LS94]). We call this feature multi-
grammar support. To specify the concepts of a grammar, we use (typed) graphs as a
meta-model. A special tool named GenGraph-Configurator supports the definition and
modification of meta-models by specifying properties and restrictions of graph elements
in a meta-model. With GenGraph, models can be created according to such definitions.
Furthermore, GenGraph implements the concept of views, provides modules to structure
large models, and has links to support navigation in complex models. Both meta-models
and models are stored in a database (see Figure 1).

GenGraph GenGraph-
ConfiguratorDatabase

Models,
Meta-Models Meta-Models

Visual Modeling Meta-Model Definition

Figure 1: Overview of GenGraph

Once defined, meta-models can be reused for any number of modeling activities. Thus
configuration is not a prerequisite for every single modeling project. If a generic model-
ing-tool is distributed together with meta-models for widely-used languages, it can be
used without additional setup costs in comparison to non-generic products. Meta-models
can be provided by third parties, too. Generic modeling tools help to provide tool support
for new methods and languages without reinventing the wheel.

1.4 Structure

The following section discusses related work. Section 3 introduces the concept of mod-
els in GenGraph. Section 4 presents the structure of the meta-models that are used to
describe modeling grammars. Section 5 illustrates these explanations by an example.
Section 6 presents the design and implementation of GenGraph. Limitations of our ap-
proach are discussed in Section 7. The last section summarizes our findings and presents
directions for further research.

81

2 Related Work

2.1 Business Modeling Tools

Business modeling tools support analysis and design of enterprise information systems.
One of the best-known dedicated business modeling tool with over 14,000 licenses
worldwide [GR00, p. 79] is the ARIS-toolset by German IDS Scheer AG. Originating
from academic research, it is a commercial product today. However it does not provide
mechanisms to customize and extend modeling grammars for domain-specific require-
ments [Da00].

A generic model editor based on the so-called E3-Method has been developed at Univer-
sity of Technology Dresden (Germany) [An03b]. The E3-Method engineering approach
is described in [Gr03] (submitted PhD thesis). Because Greiffenberg’s activity is parallel
to our work, we were not able to take the results of his approach into consideration. For
the moment, both approaches look similar and should be compared in detail in the future.

2.2 CASE Tools and Meta-CASE

Apart from business modeling tools in a narrower sense, related work can be found in
CASE tools research. CASE tools are dedicated to the analysis and construction of soft-
ware systems. Software is the core of the automated part of enterprise information sys-
tems.

State-of-the-art commercial CASE tools provide support for modeling using one or more
grammars as well as powerful functions for deriving (parts of) an implementation from
visual models. Such tools use normally different, integrated, but fixed grammars. How-
ever, most tools have some disadvantages for the purpose of designing enterprise infor-
mation systems. All-purpose CASE tools do not provide sufficient support (in terms of
modeling grammars) for modeling all relevant aspects of enterprise information systems.
Modeling languages provided by CASE tools are focused on software engineering. For
instance, support of the UML for modeling the organizational aspect and the business
processes is missing or immature [LF01].

Customization and extension of modeling grammars for domain-specific requirements is
difficult or impossible to do with standard CASE tools. The idea of a generic graph edi-
tor promised to solve this problem. The realization of generic graph editors can be seen
as a major enabler for the development of meta-CASE-technology [Al91]. Meta-CASE
tools are to support the construction of CASE tools.

A prominent commercial Meta-CASE toolset is MetaEdit+ [Me03] which originates
from academic research by Smolander et al. [Sm91]. The MetaEdit project started with
aims similar to ours. But the present result of their work is a complete, fixed and rather
expensive commercial product, while we were looking for a tool to experiment with in a
less restricted way.

82

Sapia/Blaschka/Höfling present GraMMi which is a generic graphical modeling tool
based on a standard (IRDS) repository management system [Sa00]. GraMMi uses typed
graphs as model formalism. Layered graph grammars define model types. There is no
special configuration program or language; model types are entered “directly” using the
repository administration tools. This work addresses the domain of data warehous-
ing.Ledeczi et al. describe a Generic Modeling Environment (GME) which allows the
creation of domain-specific modeling and program synthesis environments [Le01]. GME
is a quite advanced tool with various programming interfaces. It uses a meta-modeling
approach which is based on the Unified Modeling Language. Static constraints may be
specified using the Object Constraint Language (OCL). Meta-modeling is done with an
accordingly customized GME. Specific needs of business modeling are not focused in
that work.

3 Models in GenGraph

Basically, models in GenGraph are typed graphs, consisting of vertices and edges. (From
here, we will use the term elements when we do not have to distinguish between vertices
and edges.) Elements may have a number of properties (e.g. “Name” as string). 3.1
Views

A view presents elements graphically according to a certain modeling grammar. The use
of views is to support multi-perspective modeling. The user determines the arrangement
of elements in a view by direct manipulation. He/she may add new elements to a view
either by choosing elements which already exist in the model, or by newly creating them.
All manipulations to a view are restricted by the content of the meta-model. Thus the
risk of creating syntactically invalid models is reduced. An element may be reused in
any number of views in the same model. It might have different graphical representa-
tions in views of different aspects.

3.2 Modules

The construct of modules is introduced in order to structure complex models. Modules
are similar to folders in file systems, but they have additional properties. They may con-
tain vertices, edges and views. In GenGraph, a module is a special vertex. This construc-
tion has two advantages. First, it allows to build a hierarchy of modules. Second, if the
modeling grammar has an explicit module concept (e.g. packages in the UML), the user
can create special views displaying the relationships of modules apart from the obvious
hierarchical “containment” relationship. Pushing abstraction one step further, a model
can now be regarded as a special module which does not have a parent module. In con-
trast to ordinary modules, models need special treatment with regard to administration of
existing models in a database and association with a grammar.

83

Modules are to support understandability and maintainability of scripts. Therefore we
favor loose coupling of modules. Coupling of modules arises from accessing (i.e. reus-
ing) elements of a module MA in a (view of) module MB. In GenGraph, it is not allowed
to reuse elements of a module MB in views of module MA, except if you state explicitly
that module MA shall include module MB. In GenGraph views, vertices belonging to
another module are annotated with an ‘i’ (for inclusion).

Figure 2 shows a part of the GenGraph class diagram illustrating major relationships of
modules, models, views and elements.

ModuleElement

View

Edge

Vertex

Module

Model

0..1

*

includer

*
included

*

Figure 2: Class diagram of the module concept

3.3 Links

Another concept in GenGraph is the link. Links may be used to connect vertices (as
anchor) with views (as target). Links are useful for different purposes. For example, a
link can connect an activity vertex to a view which refines that activity. Like in hypertext
documents, links in GenGraph are a powerful mean to navigate in a complex model. In
GenGraph views, vertices that do have at least one link are annotated with a small arrow.

4 Describing Meta-Models

GenGraph enables the user to customize the modeling grammar to be used. This is done
by specifying their meta-model. The meta-model defines the types of vertices, edges,
properties, views, modules and links (i.e. the concepts), the elements’ valid usage and
graphical representation within views (i.e. the representation) and the vertex types which
may legally be connected by an edge of a certain type (i.e. restrictions). Generally, there
are type objects for every object which may occur in a model.

84

GenGraph uses a dedicated tool named Configurator for entering meta-model descrip-
tions. (Using GenGraph with a special meta-modeling customization was considered as
well, but some conceptual and practical problems need further analysis.) The tool has to
support creating new definitions from scratch, modifying existing meta-models and
defining new model types based on existing definitions of modeling grammars. Each
configuration task may need a different order of activities. Therefore the GenGraph
Configurator does not prescribe a particular order of steps although dependencies do
exist. Figure 3 depicts the user interface of the Configurator.

Figure 3: Sample Configurator session. This mask is used for defining the graphical representation
of a vertex type in different view types.

5 Example

The entity-relationship diagram [Ch76] has three types of vertices, “Entity Type”, “Rela-
tionship Type” and “Attribute”, and two types of edges, “[Entity Type] takes part in
[Relation Type]” and “[Entity Type] has [Attribute]” (constructs of the grammar are
embraced with square brackets). Each vertex type has a property “Name” which is a
string. “Entity Type” is represented by a rectangle (see the Configurator example in
Figure 3). “Relationship Type” is drawn as a diamond. “Attribute” is displayed as an
ellipse. All are labeled with their name. The first type of edge is a connection only be-
tween an “Entity Type” and a “Relationship Type”. It is drawn as a straight line, labeled
with its properties “Role” and “Multiplicity”. The second type of edge is drawn as a
straight line, too, but has no attributes.

85

To be able to create a GenGraph model using the ER approach, we must define a model
type (e.g. “ERM”) based on a module type (e.g. “Module”) with an appropriate view
type (e.g. “ERD”). The view type is configured to display the elements as described
above.

After the meta-model has been specified, it can be applied for modeling. The user may
create a model of type “ERM”, add a view of type “ERD” and start adding elements to
the model. Figure 4 shows GenGraph when editing an ERD “Campaigns” in module
“CRM” of model “Requirements”. Entity type “Customer” has two annotations. The
letter ‘i’ indicates that this element is taken from another module which is included by
“CRM” explicitly (“Customer” is defined in the top-level module “Requirements”). The
small arrow indicates that this vertex is start of a link. The target of the link is a view
which refines entity type “customer” by showing its attributes.

The user interface of the modeling tool (Figure 4) shows a standard menu bar and status
line. The biggest part of the window is used by the diagram drawing component (“draw-
ing area”). On the left side, there is a navigation tree with folders for modules, views,
vertices and edges, and an editor for element properties. Concrete items on the naviga-
tion tree may be selected, edited or deleted.

Navigation tree showing
modules, views, vertices and
edges of the current model.

Property editor
for the selected
element.

The toolbar shows
types of vertices
and edges which
may be added to
the view.

'Customer' is from
another module (i)
and has links ().

The drawing area
shows vertices
and edges in a
user-defined
arrangement.

Figure 4: GenGraph showing an ER diagram

86

6 Design and Implementation

GenGraph’s architecture has three layers. The quite independent middle layer (core)
defines interfaces and classes for describing, accessing and manipulating models. The
upper layer realizes the user interface. It accesses services of the middle layer. The lower
layer deals with persistence. It implements interfaces which are defined in the middle
layer.

The design of the interfaces for model access in the core layer is the most critical part:
Every other layer depends on these interfaces. Changes to the core layer affect many
other components.

The communication between core and user interface follows the model-view-controller
(MVC) or observer pattern [Ga95]. Manipulations done by the user via controllers are
sent to the model which validates them. If the manipulation is legal, the actual change of
the model takes place, and an event is sent to registered model observers (usually views).
Finally the views will update the display, and the manipulation is complete. The MVC
pattern allows loose coupling between the user interface components: They do not need
to tell each other about model changes, they only must listen to the model. A change of a
“Name” property propagates to the navigation tree, to the drawing area and to any other
component which may even be unknown at development time.

The model interface can be used by further components. We implemented several test
cases as well as model-type-specific algorithms. Such algorithms can be understood as
plug-ins which implement method-specific extensions to GenGraph. For the ERM ex-
ample, a plug-in might generate a basic schema definition for a relational database if you
add the attributes to the model.

The implementation of GenGraph was done in Java (JDK 1.3). Initial platform was
Windows NT with Microsoft Access as database (via JDBC/ODBC). Meanwhile Gen-
Graph was tested for and adapted to Linux, PostgreSQL and MySQL.

7 Limitations

The configuration of graphical representations is restricted to defining the name of a
Java class which implements the shape and add-on functions (accessible from the con-
text menu). While this approach is powerful with regard to adding type-specific func-
tions like specialized property editors and extra constraints, it makes it impossible to add
new graphical shapes without programming. The solution to this problem might be tex-
tual descriptions of shapes, for example using the Scalable Vector Graphics (SVG) for-
mat [An03a].

87

Several problems arise from the direct mapping between elements in the model and
elements on the screen. In some modeling grammars, relationships between objects in
certain contexts do not map to graphical symbols but restrict the way these objects may
be arranged in a diagram. One example of this situation is the swim lane in UML dia-
grams. A semantic relationship of type “is-responsible-for” is shown by arranging activi-
ties in a column below the (name of the) actor that bears the responsibility. The ar-
rangement has relationship semantics; there is an “invisible” edge. This cannot be
configured in GenGraph thus far.

Some grammars use visual constructs where a line starts at some point of another line.
For example, in the UML class diagram, a binary association is drawn as a line. If a
binary association is an association class, there is a class symbol which is connected to
the association by a dashed line [OM01]. This cannot be realized in GenGraph. If the
binary association is to be represented as a line, it must be modeled as an edge in Gen-
Graph. But when associations are edges, nothing can be attached to them. The user of
GenGraph may choose to use an n-ary association when he wants to model an associa-
tion class. The n-ary association has to be modeled as a vertex because it is shown as a
diamond symbol. Therefore it is possible to draw a line between the n-ary association
and the association class. But this is a deviation from the style of binary associations as
defined by the UML.

GenGraph does not have a sophisticated concept of constraints. In GenGraph meta-
models, restrictions can be defined for the types of vertices which may be connected by a
certain type of edge, for the types of edges and vertices which may be added to a certain
type of view and for the types of views which exist in a model type. You cannot express
limitations to the multiplicity of edges. If you allow creating an edge of a given type
between vertices of certain types, the user may create any number of edges. In a UML
class diagram, the GenGraph user might connect several different association classes to
an n-ary association. This is obviously not correct. You also cannot express complex
restrictions which involve more than the type of one edge and its associated vertex types.
The concept of constraints in GenGraph is not sufficient to prevent the user from creat-
ing scripts which are syntactically invalid according to the underlying grammar.

8 Conclusions

We suggest a module concept which structures models similar to folders in a file system
but additionally promotes loose coupling between different structural units of a complex
model. We introduced a concept of links which helps to visualize relationships and to
navigate between different parts of a model.

88

We presented GenGraph, which is a generic graph editor for visual enterprise modeling.
GenGraph may be configured for different modeling grammars. Different views are
integrated by a single meta-model description for each type of model. A dedicated tool
supports definition and modification of model type definitions. GenGraph implements
the concepts of views to enables multi-perspective modeling. Furthermore, modules are
used to “componentize” large models and links allow an easy navigation between differ-
ent views and model aspects.

We identified several problems with a graph-based approach to describing modeling
grammars and with the GenGraph implementation. Thus future work will have to ad-
dress the means to describe modeling grammars. The concept of modules and links
needs deeper practical evaluation.

References

[Al91] Alderson, A.: Meta-CASE Technology. In: A. Endres; H. Weber (Eds.): Software De-
velopment Environments and CASE Technology. Berlin et al. 1991, pp. 81-91.

[An03a] Andersson, O. et al.: Scalable Vector Graphics (SVG) 1.1 Specification. W3C Recom-
mendation 14 January 2003. http://www.w3c.org/TR/SVG11/, visited on
2003-12-23.

[An03b] Anonymous: Generischer Modelleditor. http://wiseweb.wiwi.tu-dresden.de/gme/, visited
on 2003-12-23.

[Be02] Becker, J.; Delfmann, P.; Knackstedt, R.; Kuropka, D.: Konfigurative Referenzmodellie-
rung. In: J. Becker; R. Knackstedt (Eds.): Wissensmanagement mit Referenzmodellen.
Konzepte für die Anwendungssystem- und Organisationsgestaltung. Berlin et al. 2002,
pp. 25-144.

[Be95] Becker, J.: Strukturanalogien in Informationsmodellen - Ihre Definition, ihr Nutzen und
ihr Einfluß auf die Bildung der Grundsätze ordnungsmäßiger Modellierung (GoM). In:
W. König (Eds.): Wirtschaftsinformatik '95 - Wettbewerbsfähigkeit, Innovation, Wirt-
schaftlichkeit. Heidelberg 1995, pp. 133-150.

[Ch76] Chen, P. P.-S.: The Entity-Relationship Model - Toward a Unified View of Data. In:
ACM Transactions on Database Systems 1 (1976) 1, pp. 9-36.

[Da00] Davis, R.: Business Process Modelling With ARIS: A Practical Guide. 2000.
[FL03] Fettke, P.; Loos, P.: Classification of reference models - a methodology and its applica-

tion. In: Information Systems and e-Business Management 1 (2003) 1, pp. 35-53.
[Fr02] Frank, U.: Multi-perspective Enterprise Modeling (MEMO) - Conceptual Framework

and Modeling Languages. Proceedings of the 35th Hawaii International Conference on
Systems Science (CD-ROM). Hawaii 2002

[Ga95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Reading, MA, et al. 1995.

[GR00] Green, P.; Rosemann, M.: Integrated Process Modeling: An Ontological Evaluation. In:
Information Systems 25 (2000) 2, pp. 73-87.

[Gr03] Greiffenberg, S.: Methodenentwicklung. Dissertation, Technische Universität Dresden,
Dresden 2003 (submitted on 2003-01-17).

[Le01] Ledeczi, A.; Maroti, M.; Bakay, A.; Karsai, G.; Garrett, J.; Thomason, C.; Nordstrom,
G.; Sprinkle, J.; Volgyesi, P.: The Generic Modeling Environment. IEEE International
Workshop on Intelligent Signal Processing, 24-25 May 2001. Budapest, Hungary 2001

89

http://www.w3c.org/TR/SVG11/
http://wiseweb.wiwi.tu-dresden.de/gme/

[LF01] Loos, P.; Fettke, P.: Towards an Integration of Business Process Modeling and Object-
Oriented Software Development. In: I. Ivan; I. G. Rosca (Eds.): Information Society -
The Proceedings of the Fifth International Symposium on Economic Informatics - IE
2001, Bucharest, May 9-12, 2001, Proceedings. Bucharest 2001, pp. 835-843.

[LS94] Loos, P.; Scheer, A.-W.: Graphical Recipe Management and Scheduling for Process
Industries. In: T. O. Boucher; M. A. Jafari; E. A. Elsayed (Eds.): Rutgers' Conference on
Computer Integrated Manufacturing in the Process Industries (Proceedings CIMPRO '94,
April 25-26, 1994). Piscataway 1994, pp. 426-440.

[Me03] MetaCase: Company website. http://www.metacase.com/, visited on 2003-12-23.
[My98] Mylopoulos, J.: Information Modeling in the Time of the Revolution. In: Information

Systems 23 (1998) 3/4, pp. 127-155.
[OM01] OMG: Unified Modeling Language Specification: Version 1.4. Needham 2001.
[RG02] Rosemann, M.; Green, P.: Integration Multi-Perspective Views into Ontological Analy-

sis. In: L. Applegate; R. Galliers; J. I. DeGross (Eds.): Twenty-Third International Con-
ference on Information Systems. Barcelona, Spain 2002, pp. 618-627.

[Sa00] Sapia, C.; Blaschka, M.; Höfling, G.: GraMMi: Using a Standard Repository Manage-
ment System to Build a Generic Graphical Modeling Tool. Proceedings of the 33rd Ha-
waii International Conference on Systems Science (CD-ROM). Hawaii 2000

[Sc98] Scheer, A.-W.: ARIS - Business Process Frameworks. 2. ed., Berlin et al. 1998.
[SH92] Scheer, A.-W.; Hars, A.: Extending Data Modeling to Cover the Whole Enterprise. In:

Communications of the ACM 35 (1992) 9, pp. 166-172.
[Sm91] Smolander, K.; Lyytinen, K.; Tahvanainen, V.-P.; Marttiin, P.: MetaEdit - A Flexible

Graphical Environment for Methodology Modeling. In: R. Anderson; J. A. Bubenko jr.;
A. Sølvberg (Eds.): Advanced Information Systems Engineering. Third International
Conference CAiSE '91, Trondheim, Norway, May 1991, Proceedings. Berlin et al. 1991,
pp. 168-193.

[SR98] Schuette, R.; Rotthowe, T.: The Guidelines of Modeling - An Approach to Enhance the
Quality in Information Models. In: T. W. Ling; S. Ram; M. L. Lee (Eds.): Conceptual
Modeling - ER '98 - 17th International Conference on Conceptual Modeling, Singapore,
November 16-19, 1998, Proceedings. Berlin et al. 1998, pp. 240-254.

[WW02] Wand, Y.; Weber, R.: Research Commentary: Information Systems and Conceptual
Modelling - A Research Agenda. In: Information Systems Research 13 (2002), pp. 363-
377.

90

http://www.metacase.com/

