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Abstract

Background: In order to fully characterize the genome of an individual, the reconstruction of the two distinct

copies of each chromosome, called haplotypes, is essential. The computational problem of inferring the full haplotype

of a cell starting from read sequencing data is known as haplotype assembly, and consists in assigning all

heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chromosomes. Indeed, the

knowledge of complete haplotypes is generally more informative than analyzing single SNPs and plays a fundamental

role in many medical applications.

Results: To reconstruct the two haplotypes, we addressed the weighted Minimum Error Correction (wMEC) problem,

which is a successful approach for haplotype assembly. This NP-hard problem consists in computing the two

haplotypes that partition the sequencing reads into two disjoint sub-sets, with the least number of corrections to the

SNP values. To this aim, we propose here GenHap, a novel computational method for haplotype assembly based on

Genetic Algorithms, yielding optimal solutions by means of a global search process. In order to evaluate the

effectiveness of our approach, we run GenHap on two synthetic (yet realistic) datasets, based on the Roche/454 and

PacBio RS II sequencing technologies. We compared the performance of GenHap against HapCol, an efficient

state-of-the-art algorithm for haplotype phasing. Our results show that GenHap always obtains high accuracy

solutions (in terms of haplotype error rate), and is up to 4× faster than HapCol in the case of Roche/454 instances and

up to 20× faster when compared on the PacBio RS II dataset. Finally, we assessed the performance of GenHap on two

different real datasets.

Conclusions: Future-generation sequencing technologies, producing longer reads with higher coverage, can highly

benefit from GenHap, thanks to its capability of efficiently solving large instances of the haplotype assembly problem.

Moreover, the optimization approach proposed in GenHap can be extended to the study of allele-specific genomic

features, such as expression, methylation and chromatin conformation, by exploiting multi-objective optimization

techniques. The source code and the full documentation are available at the following GitHub repository: https://

github.com/andrea-tango/GenHap.
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Background

Somatic human cells are diploids, that is, they contain

22 pairs of homologous chromosomes and a pair of sex

chromosomes, one copy inherited from each parent. In

order to fully characterize the genome of an individual,

the reconstruction of the two distinct copies of each chro-

mosome, called haplotypes, is essential [1]. The process

of inferring the full haplotype information related to a cell

is known as haplotyping, which consists in assigning all

heterozygous Single Nucleotide Polymorphisms (SNPs) to

exactly one of the two chromosome copies. SNPs are one

of the most studied genetic variations, since they play a

fundamental role in many medical applications, such as

drug-design or disease susceptibility studies, as well as in

characterizing the effects of SNPs on the expression of

phenotypic traits [2]. This information can be valuable

in several contexts, including linkage analysis, associa-

tion studies, population genetics and clinical genetics [3].

Obviously, the complete set of SNPs of an individual (i.e.,

his/her haplotypes) is generally more informative than

analyzing single SNPs, especially in the study of complex

disease susceptibility.

Since a direct experimental reconstruction of haplo-

types still requires huge sequencing efforts and is not

cost-effective [4], computational approaches are exten-

sively used to solve this problem. In particular, two classes

of methods exist for haplotype phasing [3]. The first class

consists of statistical methods that try to infer haplo-

types from genotypes sampled in a population. These

data, combined with datasets describing the frequency by

which the SNPs are usually correlated in different popu-

lations, can be used to reconstruct the haplotypes of an

individual. The second class of methods directly lever-

ages sequencing data: in this case, the main goal is to

partition the entire set of reads into two sub-sets, exploit-

ing the partial overlap among them in order to ultimately

reconstruct the corresponding two different haplotypes of

a diploid organism [5]. The effectiveness of these meth-

ods was limited by the length of the reads produced by

second-generation sequencing technologies, which might

be not long enough to span over a relevant number of

SNP positions. This results in the reconstruction of short

haplotype blocks [6, 7], since reads do not cover adja-

cent SNP positions adequately, hindering the possibility

of reconstructing the full haplotypes. However, in recent

years the development of new sequencing technologies

paved the way to the advent of the third-generation of

sequencing platforms, namely PacBio RS II (Pacific Bio-

sciences of California Inc., Menlo Park, CA, USA) [8, 9]

and Oxford Nanopore MinION (Oxford Nanopore Ltd.,

Oxford, United Kingdom) [10], which are able to produce

reads covering several hundreds of kilobases and spanning

different SNP loci at once. Unfortunately, the increased

length comes at the cost of a decreased accuracy with

respect to short and precise second-generation sequenc-

ing technologies, like NovaSeq (Illumina Inc., San Diego,

CA, USA) [11]; thus, in order to obtain reliable data, the

read coverage should be increased.

Among the computational methods for haplotype

assembly, the Minimum Error Correction (MEC) is one

of the most successful approaches. This problem con-

sists in computing the two haplotypes that partition the

sequencing reads into two disjoint sets with the least num-

ber of corrections to the SNP values [12]. Unfortunately,

MEC was proven to be NP-hard [13]. A weighted vari-

ant of MEC, named weighted MEC (wMEC), was then

proposed in [14]: the weights represent the confidence

for the presence of a sequencing error, while the correc-

tion process takes into account the weight associated with

each SNP value of a read. These error schemes gener-

ally regard phred-scaled error probabilities and are very

valuable for processing long reads generated by third-

generation sequencing technologies, as they are prone to

high sequencing error rates [5].

Several assembly approaches have been already pro-

posed in literature. Due to the NP-hardness of the MEC

problem, some methods exploit heuristic strategies. Two

noteworthy approaches are ReFHap [15], which is based

on a heuristic algorithm for the Max-Cut problem on

graphs, and ProbHap [16], which generalizes theMEC for-

mulation by means of a probabilistic framework. In [12],

Wang et al. proposed a meta-heuristic approach based on

Genetic Algorithms (GAs) to address an extended version

of the MEC problem, called MEC with Genotype Infor-

mation (MEC/GI), which also considers genotyping data

during the SNP correction process. A similar work was

presented in [17], where GAs are used to solve the MEC

problem by using a fitness function based on a major-

ity rule that takes into account the allele frequencies. The

results shown in [17] are limited to a coverage up to 10×

and a haplotype length equal to 700. More recently, an

evolutionary approach called Probabilistic Evolutionary

Algorithm with Toggling for Haplotyping (PEATH) was

proposed in [18]. PEATH is based on the Estimation of

Distribution Algorithm (EDA), which uses the promising

individuals to build probabilistic models that are sam-

pled to explore the search space. This meta-heuristic deals

with noisy sequencing reads, reconstructing the haplo-

types under the all-heterozygous assumption. These algo-

rithms present some limitations, as in the case of ReFHap

[15], ProbHap [16] and PEATH [18], which assume that

the columns in the input matrix correspond to heterozy-

gous sites [19]. However, this all-heterozygous assumption

might be incorrect for some columns, and these algo-

rithms can only deal with limited reads coverages. For

example, ProbHap [16] can handle long reads coverage

values up to 20×, which is not appropriate for higher

coverage short-read datasets; on the other hand, it works
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better with very long reads at a relatively shallow coverage

(≤ 12×).

More recently, a tool based on a dynamic programming

approach, called WhatsHap, was presented [5]. What-

sHap is based on a fixed parameter tractable algorithm

[20, 21], and leverages the long-range information of long

reads; however, it can deal only with datasets of limited

coverage up to ∼ 20×. A parallel version of WhatsHap

has been recently proposed in [22], showing the capa-

bility to deal with higher coverages up to ∼ 25×. An

alternative approach, called HapCol [23], uses the uni-

form distribution of sequencing errors characterizing long

reads. In particular, HapCol exploits a new formulation

of the wMEC problem, where the maximum number of

corrections is bounded in every column and is computed

from the expected error rate. HapCol can only deal with

instances of relatively small coverages up to ∼ 25 − 30×.

To sum up, even though high-throughput DNA

sequencing technologies are paving the way for valuable

advances in clinical practice, analyzing such an amount

of data still represents a challenging task. This applies

especially to clinical settings, where accuracy and time

constraints are critical [24].

In order to tackle the computational complexity of the

haplotyping problem, in this work we propose GenHap,

a novel computational method for haplotype assembly

based on Genetic Algorithms (GAs). GenHap can effi-

ciently solve large instances of the wMEC problem, yield-

ing optimal solutions by means of a global search process,

without any a priori hypothesis about the sequencing

error distribution in reads. The computational complex-

ity of the problem is overcome by relying on a divide-

et-impera approach, which provides faster and more

accurate solutions compared with the state-of-the-art

haplotyping tools.

The paper is structured as follows. In the next section,

we briefly introduce the haplotyping problem, and

describe in detail the GenHap methodology along with its

implementation. Then, we show the computational per-

formance of GenHap, extensively comparing it against

HapCol. We finally provide some conclusive remarks and

future improvements of this work.

Methods

Problem formulation

Given n positions on two homologous sequences belong-

ing to a diploid organism and m reads obtained after a

sequencing experiment, we can reduce each read to a frag-

ment vector f ∈ {0, 1,−}n, where 0 denotes a position

that is equal to the reference sequence, 1 denotes a SNP

with respect to the reference sequence, and − indicates

a position that is not covered by the read. We define a

haplotype as a vector h ∈ {0, 1}n, that is, the combina-

tion of SNPs and wild-type positions belonging to one of

the two chromosomes. Given the two haplotypes h1 and

h2—which refer to the first and second copy of the chro-

mosome, respectively—a position j (with j ∈ {1, . . . , n}) is

said to be heterozygous if and only if h1j �= h2j , otherwise

j is homozygous.

LetM be the “fragment matrix”, that is, them×nmatrix

containing all fragments. Two distinct fragments f and

g are said to be in conflict if there is a position j (with

j ∈ {1, . . . , n}) such that fj �= gj and fj, gj �= −, other-

wise they are in agreement. M is conflict-free if there are

two different haplotypes h1 and h2 such that each rowMi

(with i ∈ {1, . . . ,m}) is in agreement with either h1 or

h2. The overall haplotype assembly process is outlined in

Fig. 1.

We can extend the heterozygous and homozygous def-

inition at the column level as follows: a column c of M

is homozygous if all its values are either in {0,−} or in

{1,−}, on the contrary c is heterozygous because its values

are in {0, 1,−}, meaning that both a SNP and a wild-

type exist in that position. Finally, we can detect the case

where two distinct fragments are in conflict, and measure

their diversity by defining a distance D(·, ·) that calculates

the number of different values between two fragments.

Namely, given f = (Mi1, . . . ,Min) and g = (Ml1, . . . ,Mln)

ofM (with i, l ∈ {1, . . . ,m}), we consider:

D(f, g) =

n
∑

j=1

d(fj, gj), (1)

where d(fj, gj) is defined as:

d(x, y) =

{

1, if x �= y, x �= −, and y �= −

0, otherwise
. (2)

Equation (1) defines the extended Hamming distance

between two ternary strings f and g [19], denoting the

total number of positions wherein both characters of f

and g belong to {0, 1} but they are different according to

Eq. (2).

If M is conflict-free, then it can be partitioned into two

disjoint matricesM1 andM2, each one containing a set of

conflict-free fragments. We can infer the two haplotypes

h1 and h2 fromM1 andM2, respectively, as follows:

hkj =

{

1, if N1j(Mk) ≥ N0j(Mk)

0, otherwise
, (3)

where j ∈ {1, . . . , n}, k ∈ {1, 2}, and N0j(Mk), N1j(Mk)

denote the number of 0s and 1s in the j-th column, respec-

tively. In such a way, N0(Mk) is the vector consisting of

the number of 0s of each column j using the reads of

the partition Mk , while N1(Mk) is the vector consisting

of the number of 1s of each column j represented by the

partitionMk .

In order to solve the wMEC problem,N0 andN1 are cal-

culated using them×nweight matrixW, representing the
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Fig. 1 Simplified workflow of the haplotype assembly process. Raw sequencing data are initially aligned, definingm reads. Every position of the two

chromosome copies is compared against a reference chromosome. The black solid points denote n heterozygous positions, along with the

corresponding nucleobases. The fragment matrixM is defined assigning 1 to SNP positions and 0 to wild-type positions. To reconstruct the two

haplotypes h1 and h2 characterized by the least number of corrections to the SNP values among the 2n candidate haplotypes, the wMEC problem

is solved by partitioning the matrixM into two disjoint matricesM1 andM2

weight associated with each position in each fragment. As

a matter of fact, W can be divided into the two disjoint

partitions W1 and W2, whose row indices correspond to

those in M1 and M2, respectively. We can extend Eq. (3)

taking into account the weights as follows:

hkj =

{

1, if N1j(Wk) ≥ N0j(Wk)

0, otherwise
, (4)

where j ∈ {1, . . . , n}, k ∈ {1, 2}, and N0j(Wk), N1j(Wk)

denote the sum of the weights associated with the 0 and 1

elements in the j-th column, respectively.

The distance D(·, ·) given in Eq. (1) can be used also to

evaluate the distance between a fragment and a haplotype,

by means of the following error function:

E(M1,M2,h1,h2) =

2
∑

k=1

∑

f∈Mk

D(f,hk). (5)

The best partitioning ofM can be obtained by minimizing

Eq. (5), inferring h1 and h2 with the least number of errors.

Equation (5) is used as fitness function in GenHap.

GenHap: haplotype assembly using GAs

GAs are population-based optimization strategies mim-

icking Darwinian processes [25–27]. In GAs, a population

P of randomly generated individuals undergoes a selec-

tion mechanism and is iteratively modified by means of

genetic operators (i.e., crossover and mutation). Among

the existing meta-heuristics for global optimization, GAs

are the most suitable technique in this context thanks

to the discrete structure of the candidate solutions. This

structure is well-suited to efficiently solve the intrinsic

combinatorial nature of the haplotype assembly problem.

In the most common formulation of GAs, each individ-

ual Cp (with p ∈ {1, . . . , |P|}) encodes a possible solution
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of the optimization problem as a fixed-length string of

characters taken from a finite alphabet. Based on a quality

measure (i.e., the fitness value), each individual is involved

in a selection process in which individuals characterized

by good fitness values have a higher probability to be

selected for the next iteration. Finally, the selected individ-

uals undergo crossover andmutation operators to possibly

improve offspring and to introduce new genetic material

in the population.

GenHap exploits a very simple and efficient structure

for individuals, which encodes as a binary string a parti-

tion of the fragment matrix M. In particular, each indi-

vidual Cp =[Cp1 ,Cp2 , . . . ,Cpm ] (with p ∈ {1, . . . , |P|}) is

encoded as a circular array of size m (i.e., the number of

reads). In order to obtain the two partitions M1 and M2,

Cp is evaluated as follows: if the i-th bit is equal to 0, then

the read i belongs to M1; otherwise, the read i belongs

to M2. Once the two partitions are computed, GenHap

infers the haplotypes h1 and h2 by applying Eq. (4). Finally,

Eq. (5) is exploited to calculate the number of errors made

by partitioningM as encoded by each individual of P. This

procedure is iterated until the maximum number of iter-

ations T is reached, the number of errors is equal to 0 or

the fitness value of the best individual does not improve

for θ = ⌈0.25 · T⌉ iterations.

Among the different selectionmechanisms employed by

GAs (e.g., roulette wheel [25], ranking [26], tournament

[27]), GenHap exploits the tournament selection to cre-

ate an intermediate population P′, starting from P. In each

tournament, κ individuals are randomly selected from P

and the individual characterized by the best fitness value is

added to P′. The size of the tournament κ is related to the

selection pressure: if κ is large, then the individuals char-

acterized by worse fitness values have a low probability to

be selected, therefore the variability of P′ might decrease.

Afterwards, the genetic operators (i.e., crossover and

mutation) are applied to the individuals belonging to P′

to obtain the offspring for the next iteration. GenHap

exploits a single-point crossover with mixing ratio equal

to 0.5. Crossover is applied with a given probability cr
and allows for the recombination of two parent individu-

als Cy,Cz ∈ P′ (for some y, z ∈ {1, . . . , |P|}), generating

two offspring that possibly have better characteristics with

respect to their parents.

In order to increase the variability of the individuals,

one or more elements of the offspring can be modified

by applying the mutation operator. GenHap makes use

of a classic mutation in which the elements Cpe (with

e ∈ {1, . . . ,m}) of the individual can be flipped (i.e.,

from 0 to 1 or vice-versa) with probability mr . Besides

this mutation operator, GenHap implements an additional

bit-flipping mutation in which a random number of con-

secutive elements of the individual is mutated according

to probability mr . This operator is applied if the fitness

value of the best individual does not improve for a given

number of iterations (2 in our tests).

Finally, to prevent the quality of the best solution from

decreasing during the optimization, GenHap exploits an

elitism strategy, so that the best individual from the cur-

rent population is copied into the next population without

undergoing the genetic operators.

Unlike the work in [12], GenHap solves the wMEC

problem instead of the unweighted MEC formulation, by

means of Eq. (4). Moreover, differently from the other

heuristic strategies, such as ReFHap [15] and ProbHap

[16], we did not assume the all-heterozygosity of the

phased positions [19]. Under this assumption, every col-

umn corresponds to heterozygous sites, implying that h1
must be the complement of h2. In addition, since the

required execution time as well as the problem difficulty

increase with the number of reads and SNPs, to efficiently

solve the wMEC problem we split the fragment matrix

M into � = ⌊m/γ ⌋ sub-matrices consisting of γ reads

(see Fig. 2). Following a divide-et-impera approach [28],

the computational complexity can be tackled by parti-

tioning the entire problem into smaller and manageable

sub-problems, each one solved by a GA that converges

to a solution characterized by two sub-haplotypes with

the least number of corrections to the SNP values. The

solutions to the sub-problems achieved by the � GA

instances are finally combined. This approach is feasible

thanks to the long reads with higher coverage produced

by the second- and third-generation sequencing technolo-

gies. As a matter of fact, highly overlapping reads allow us

to partition the problem into easier sub-problems, avoid-

ing the possibility of obtaining incorrect reconstructions

during the merging phase.

The parameter γ , used for the calculation of�, depends

on the coverage value and on the nature of the sequenc-

ing technology; its value must be set to avoid discrete

haplotype blocks that do not exist in the input matrix

M. Generally, the intervals where several independent

historical recombination events occurred separate dis-

crete blocks, revealing greater haplotype diversity for the

regions spanning the blocks [7].

GenHap firstly detects all the haplotype blocks inside

the fragment matrix M and then, in each block, it auto-

matically sets γ equal to the mean coverage of that block

to partition the reads. Notice that GenHap solves each

block sequentially and independently, obtaining a num-

ber of haplotype pairs equal to the number of detected

blocks. So doing, for each block GenHap proceeds by

executing� different GA optimizations, one for each sub-

problem, calculating 2 · � sub-haplotypes. The length

of the individuals is equal to γ , except for the last sub-

problem that could have a number of reads smaller than γ

(accordingly, the length of the individuals could be smaller

than γ ).
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Fig. 2 Scheme of the partition of the input matrix: the input matrixM ∈ {0, 1,−}m×n is split into sub-matrices consisting of γ reads, generating

� = ⌊m/γ ⌋ sub-problems that are solved independently by a GA instance. The last sub-matrix could have a number of reads lower than γ

Since the problem is divided into � sub-problems, two

sub-problems referring to contiguous parts of the two

chromosome copies might contain some overlapped posi-

tions that can be either homozygous or heterozygous.

However, the reads covering an overlapped positionmight

not be entirely included in the same sub-problem. For

this reason, during the GA-based optimizations, all the

phased positions are assumed to be heterozygous. If a

position j is homozygous (i.e., all the reads covering this

position have the same value, belonging to {0,−} or {1,−},

in both the sub-partitions and in every read covering it),

then only one of the two sub-haplotypes will have the

correct value. This specific value is correctly assigned

to the sub-haplotype covered by the highest number of

reads by following a majority rule. As soon as the two

sub-haplotypes are obtained, all the possible uncorrected

heterozygous sites are removed and the correct homozy-

gous values are assigned by checking the columns of the

two sub-partitions. Finally, once all sub-problems in� are

solved, GenHap recombines the sub-haplotypes to obtain

the two entire haplotypes h1 and h2 of the block under

analysis.

GenHap is also able to find and mask the ambiguous

positions by replacing the 0 or 1 value with aX symbol.We

highlight that an ambiguous position is a position covered

only by the reads belonging to one of the two haplotypes.
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Implementation

In order to efficiently solve the wMEC problem and tackle

its computational complexity, GenHap detects the haplo-

type blocks inside the matrix M and then, for each block,

it splits the portion of M into � sub-matrices consist-

ing of γ reads. So doing, the convergence speed of the

GA is increased thanks to the lower number of reads to

partition in each sub-problem with respect to the total

number of reads of the whole problem. As shown in Fig. 3,

the � sub-matrices are processed in parallel by means of

a divide-et-impera approach that exploits a Master-Slave

distributed programming paradigm [29, 30] to speed up

the overall execution of GenHap. This strategy allowed

us to distribute the computation in presence of multiple

cores. As a matter of fact, GenHap works by partition-

ing the initial set of reads into sub-sets and solving them

by executing different GA instances. This strategy can

be exploited in GenHap, as it solves the wMEC problem

working on the rows of the fragment matrix M; on the

contrary, HapCol works considering the columns of M,

which cannot be independently processed in parallel.

The functioning of our Master-Slave implementation

can be summarized as follows:

1 the Master allocates the resources and detects the

haplotype blocks inside the fragment matrix. For

each detected block, it partitions the portion of the

matrixM into � sub-matrices and offloads the data

onto the available � Slaves (in real scenarios,

� ≪ �). During this phase, each Slave generates the

initial population of the GA;

2 the σ -th Slave (with σ ∈ {1, . . . ,�}) executes the

assigned wMEC sub-task, running the GA for either

θ non-improving iterations or T maximum

iterations, independently of the other Slaves;

3 the process is iterated until all the wMEC sub-tasks

are terminated;

4 the Master recombines the sub-solutions received

from the Slaves, and returns the complete wMEC

solution for the block under analysis.

GenHap was entirely developed using the C++ pro-

gramming language exploiting the Message Passing Inter-

face (MPI) specifications to leverage multi-core Central

Processing Units (CPUs).

Results

In this section we first describe the synthetic and real

datasets used during the tests and present the results

obtained to identify the best GA setting. Then, we dis-

cuss the performance achieved by GenHap with respect

to HapCol [23], which was previously shown to be more

efficient than the other existingmethods for the haplotype

assembly problem, both in terms of memory consumption

and execution time.

The analyzed datasets

In order to test the performance of GenHap, we generated

two synthetic (yet realistic) datasets, each one consisting

of instances obtained from a specific sequencing technol-

ogy. In particular, we considered the Roche/454 genome

sequencer (Roche AG, Basel, Switzerland), representing

one of the next-generation sequencing (NGS) systems able

to produce long and precise reads, and the PacBio RS II

sequencer [9, 31], which is an emerging third-generation

sequencing technology. Note that the reads produced

Fig. 3 Scheme of the Master-Slave implementation of GenHap: the Master process orchestrates all the � Slaves sending one or more sub-partitions

to each Slave, which then solves the assigned wMEC sub-task
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by the Roche/454 sequencer are approximately 9-times

shorter than those generated by the PacBio RS II system.

In order to generate the datasets, we exploited the

General Error-Model based SIMulator (GemSIM) toolbox

[32]. GemSIM is a software able to generate in silico real-

istic sequencing data. It relies on empirical error models

and distributions learned from real NGS data, and sim-

ulates both single- and paired-end reads from a single

genome, collection of genomes, or set of related haplo-

types. GemSIM can in principle simulate data from any

sequencing technology producing output data encoded

in the FASTQ format [33], for raw reads, and Sequence

Alignment/Map (SAM), for aligned reads. In this work, we

exploited the error model for the Roche/454 sequencer,

already available in GemSIM, and defined an additional

error model for the PacBio RS II technology. The syn-

thetic reads were generated from the reference sequence

of the human chromosome 22 (UCSC Genome Browser,

GRCh37/hg19 Feb. 2009 assembly [34]), in which random

SNPs were inserted.

We exploited the GemHaps tool included in GemSIM

[32] to generate a haplotype file starting from a given

genome sequence, and specifying the number as well as

the frequency of SNPs in each haplotype, denoted by

#SNPs and fSNPs, respectively. Note that the SNP positions

were randomly determined. Then, the resulting haplo-

type file was processed by GemReads, together with an

error model file (generated by GemErr or supplied in

GemSIM), a FASTA genome file (or directory), and the

selected quality score offset. The resulting SAM file was

converted into the compressed Binary Alignment/Map

(BAM) format for a more efficient manipulation [35].

In order to store the SNPs, we exploited the Variant

Call Format (VCF) [36], which is the most used for-

mat that combines DNA polymorphism data, insertions

and deletions, as well as structural variants. Lastly, the

BAM and VCF files were processed to produce a What-

sHap Input Format (WIF) file [5], which is the input of

GenHap.

The two synthetic datasets are characterized by the follow-

ing features: i) #SNPs ∈ {500, 1000, 5000, 10000, 20000}

(equally distributed over the two haplotypes); ii) coverage

cov ∈ {∼ 30×, ∼ 60×}; iii) average fSNPs ∈ {100, 200},

which means one SNP every 100bp or 200bp [37, 38],

varying the portion of genome onto which the reads were

generated. Read lengths were set to 600bp and 5000bp for

the Roche/454 and the PacBio RS II sequencers, respec-

tively. The number of reads was automatically calculated

according to the value of cov and the sequencing tech-

nologies, by means of the following relationship:

#reads = cov ·
len(genome)

len(read)
, (6)

where len(genome) represents the length of the consid-

ered genome, which starts at a given position x and ends

at position y = x + fSNPs · #SNPs.

In order to test the performance of GenHap on real

sequencing data, we exploited a WIF input file present in

[39], which was generated starting from high-quality SNP

calls and sequencing data made publicly available by the

Genome in a Bottle (GIAB) Consortium [40]. In partic-

ular, we exploited data produced by the PacBio technol-

ogy and limited to the chromosome 22 of the individual

NA12878. Moreover, we tested GenHap on an additional

real dataset available at [41]. As for the previous dataset,

we limited our analysis to chromosome 22. The available

BAM file–containing long reads with high-coverage pro-

duced with the PacBio RS II sequencing technology–and

the VCF file were processed to obtain a WIF input file as

described above.

GA setting analysis

As a first step, the performance of GenHap was evaluated

to determine the best settings for the haplotype assem-

bly problem. We considered different instances for two

sequencing technologies employed (i.e., Roche/454 and

PacBio RS II), and we varied the settings of GenHap used

throughout the optimization process, as follows:

• size of the population |P| ∈ {50, 100, 150, 200};
• crossover rate cr ∈ {0.8, 0.85, 0.9, 0.95};
• mutation ratemr ∈ {0.01, 0.05, 0.1, 0.15}.

In all tests, the size of the tournament is fixed to κ =

0.1 · |P| and the maximum number of iterations is T =

100. A total of 6 different instances (3 resembling the

Roche/454 sequencer and 3 the PacBio RS II sequencer)

were generated by considering #SNPs ∈ {500, 1000, 5000}

and fSNPs = 100.

We varied one setting at a time, leading to 64 different

settings tested and a total number of 64×6 = 384GenHap

executions. These tests highlighted that, for each value of

|P|, the best settings are:

1 |P| = 50, pc = 0.9, pm = 0.05;

2 |P| = 100, pc = 0.9, pm = 0.05;

3 |P| = 150, pc = 0.95, pm = 0.05;

4 |P| = 200, pc = 0.95, pm = 0.05.

Figure 4 shows the comparison of the performance

achieved by GenHap with the settings listed above, where

the Average Best Fitness (ABF) was computed by taking

into account, at each iteration, the fitness value of the

best individuals over the 6 optimization processes. Even

though all settings allowed GenHap to achieve almost

the same final ABF value, we observe that the conver-

gence speed increases with the size of the population.

On the other hand, also the running time of GenHap
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Fig. 4 Comparison of the ABF achieved by GenHap with the best

parameterizations found for each value of |P| tested here. The ABF

was computed over the results of the optimization of instances

characterized by #SNPs ∈ {500, 1000, 5000} and fSNPs = 100

increases with the size of the population. In particular,

the executions lasted on average 1.41 s, 2.33 s, 3.52 s,

4.95 s with |P| ∈ {50, 100, 150, 200}, respectively, run-

ning on one node of the Advanced Computing Center for

Research and Education (ACCRE) at Vanderbilt Univer-

sity, Nashville, TN, USA. The node is equipped with 2

Intel® Xeon® E5-2630 v3 (8 cores at 2.40 GHz) CPUs, 240

GB of RAM and CentOS 7.0 operating system. To perform

the tests we exploited all 8 physical cores of a single CPU.

Considering these preliminary results, we selected the

parameter settings |P| = 100, cr = 0.9, mr = 0.05, as

the best trade-off between convergence speed (in terms of

ABF) and running time.

Performance of GenHap

The performance achieved by GenHap was compared

with those obtained by HapCol [23], which was shown

to outperform the main available haplotyping approaches.

In particular, we exploited here a more recent version of

HapCol, capable of dealing with haplotype blocks [39].

The same computational platform used for the setting

analysis of GenHap was used to execute all the tests on the

two synthetic datasets described above.

We stress the fact that GenHap was compared against

HapCol only on the instances with cov ≃ 30×, since

HapCol is not capable of solving instances with higher

coverage values (i.e., the algorithm execution halts when a

column covered by more than 30 reads is found).

Considering the two sequencing technologies, we gen-

erated 15 different instances for each value of #SNPs and

fSNPs. The performance was then evaluated by computing

(i) the average haplotype error rate (HE), which represents

the percentage of SNPs erroneously assigned with respect

to the ground truth [42], and (ii) the average running time.

As shown in Table 1, in the instances generated using

the Roche/454 sequencing technology with fSNPs = 100,

both GenHap and HapCol reconstructed the two hap-

lotypes, achieving an average HE lower than 0.2% with

a negligible standard deviation in the case of #SNPs ∈

{500, 1000, 5000}. GenHap inferred the haplotypes char-

acterized by 10000 SNPs with an average HE lower than

2.5% and a standard deviation around 5%, while HapCol

obtained an average HE equal to 6.55% with a standard

deviation around 16%. For what concerns the running

time, GenHap outperformed HapCol in all tests except in

the case of #SNPs = 10000, as shown in Fig. 5, being

around 4× faster in reconstructing the haplotypes. In the

case of #SNPs = 10000, the running times are compa-

rable, but GenHap obtains a lower HE than HapCol. In

the instances generated using fSNPs = 200 and #SNPs ∈

{500, 1000}, both GenHap and HapCol reconstructed the

two haplotypes, achieving an average HE lower than 0.1%

with a negligible standard deviation. When #SNPs ∈

{5000, 10000} are taken into account, GenHap inferred the

haplotype pairs with an average HE lower than 3.65% and

a standard deviation lower than 3.5%. Notice that Hap-

Col was not able to complete the execution on all the 15

instances characterized by 10000 SNPs. As in the case of

instances with fSNPs = 100, GenHap is faster than HapCol

in all tests, except in the case of #SNPs = 5000.

Table 1 Comparison of GenHap and HapCol on the Roche/454 dataset with cov ≃ 30×

GenHap HapCol

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s] Avg HE Std dev HE Avg running time [s]

100 ∼ 30× 500 0.04 0.08 0.21 0.00 0.00 0.62

1000 0.09 0.08 0.36 0.00 0.00 1.20

5000 0.18 0.06 3.17 0.01 0.03 5.35

10000 2.50 5.52 10.33 6.55 16.38 10.23

200 ∼ 30× 500 0.09 0.14 0.34 0.00 0.00 0.50

1000 0.09 0.10 0.63 0.01 0.03 0.96

5000 3.61 3.43 6.07 0.38 0.78 4.90

10000 2.15 1.62 17.24 N/A N/A N/A

The performances were evaluated both in terms of HE and running time. The N/A symbol denotes that HapCol was not able to complete the execution on all the 15 instances



Tangherloni et al. BMC Bioinformatics 2019, 20(Suppl 4):172 Page 10 of 14

Fig. 5 Comparison of the average running time required by GenHap (blue bars) and HapCol (red bars) computed over 15 instances for each value of

#SNPs ∈ {500, 1000, 5000} obtained with the Roche/454 sequencing technology, cov ≃ 30× and fSNPs = 100. In the case of fSNPs = 200 and

#SNPs = 10000, HapCol was not able to complete the execution on all the 15 instances

For what concerns the PacBio RS II sequencing dataset,

since this technology is characterized by a higher error

rate with respect to the Roche/454 sequencer, both Gen-

Hap and HapCol reconstructed the two haplotypes with

higher HE values (see Table 2). Nonetheless, the average

HE value is lower than 2.5% with a standard deviation

lower than 1% in all cases. Figure 6 shows the running

time required by GenHap and HapCol to reconstruct the

haplotypes. As in the case of the Roche/454 dataset, the

running time increases with #SNPs, but GenHap always

outperforms HapCol, achieving up to 20× speed-up.

Table 3 lists the results obtained by GenHap on the

instances of the Roche/454 dataset characterized by cov ≃

60×, #SNPs ∈ {500, 1000, 5000, 10000} and fSNPs ∈

{100, 200}. In all tests with fSNPs = 100, GenHap was

always able to infer the two haplotypes with high accu-

racy, indeed the average HE values are always lower than

0.15%. In the instances generated with fSNPs = 200,

GenHap reconstructed the haplotype pairs with an aver-

age HE lower than 0.2%. This interesting result shows

that higher coverages can help during the reconstruction

phase, allowing GenHap to infer more precise haplotypes.

Regarding the PacBio RS II dataset, the achieved HE is

on average lower than 1.25% with a standard deviation ≤

0.4% (see Table 4). In particular, the average HE decreases

when the value of #SNPs or the coverage increase, thus

suggesting that higher cov values can considerably help

in achieving a correct reconstruction of the two haplo-

types. On the contrary, the running time increases at most

linearly with respect to the coverage (see Table 4).

Table 2 Comparison of GenHap and HapCol on the PacBio RS II dataset with cov ≃ 30×

GenHap HapCol

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s] Avg HE Std dev HE Avg running time [s]

100 ∼ 30× 500 2.04 0.59 0.11 2.42 0.78 2.24

1000 1.27 0.51 0.19 1.20 0.61 1.89

5000 1.06 0.19 0.94 0.60 0.17 9.04

10000 0.96 0.19 2.50 0.43 0.11 15.51

20000 1.02 0.14 8.49 0.41 0.11 31.13

200 ∼ 30× 500 2.09 0.52 0.14 1.73 0.42 0.95

1000 1.70 0.24 0.22 1.09 0.41 1.84

5000 1.05 0.18 1.39 0.54 0.11 7.10

10000 1.13 0.18 4.09 0.51 0.17 14.13

20000 1.02 0.13 13.86 0.33 0.05 27.55

The performances were evaluated both in terms of HE and running time
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Fig. 6 Comparison of the average running time required by GenHap (blue bars) and HapCol (red bars) computed over 15 instances for each

#SNPs ∈ {500, 1000, 5000, 10000, 20000} obtained with the PacBio RS II sequencing technology, cov ≃ 30×, fSNPs = 100 (top) and fSNPs = 200

(bottom)

As a first test on real sequencing data, we exploited a

WIF input file codifying the SNPs of the chromosome 22

generated from high-quality sequencing data made pub-

licly available by the GIAB Consortium. This instance

contains #SNPs ≃ 27000 and #reads ≃ 80000 with aver-

age and maximum coverages equal to 22 and 25, respec-

tively. In [39], in order to down-sample the instances to

the target maximum coverages of 30× allowed by HapCol,

the authors applied a greedy-based pruning strategy. This

procedure selects the reads characterized by high base-

calling quality. GenHap detected and inferred the 305

different haplotype blocks in less than 10 min, obtaining

approximately an 87% agreement with respect to the Hap-

Col solution. This agreement was calculated considering

every SNP of both haplotypes in each block.

Table 3 Results obtained by GenHap on the Roche/454 dataset

with cov ≃ 60×

GenHap

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s]

100 ∼ 60× 500 0.00 0.00 0.26

1000 0.05 0.05 0.54

5000 0.10 0.03 6.57

10000 0.15 0.03 21.13

200 ∼ 60× 500 0.00 0.00 0.37

1000 0.07 0.09 0.89

5000 1.13 1.72 11.17

10000 2.00 1.02 53.77

The performances were evaluated both in terms of HE and running time

We tested GenHap also on the chromosome 22

sequenced using the PacBio RS II technology (publicly

available at [41]). This instance contains #SNPs ≃ 28000

and #reads ≃ 140000 with average and maximum cov-

erages equal to 29 and 565, respectively. GenHap recon-

structed the two haplotypes in about 10 min. This result

shows that GenHap is capable of dealing with instances

characterized by high coverages, avoiding pruning pre-

processing steps.

Discussion and conclusions

In this paper we presented GenHap, a novel computa-

tional method based on GAs to solve the haplotyping

Table 4 Results obtained by GenHap on the PacBio RS II dataset

with cov ≃ 60×

GenHap

fSNPs cov #SNPs Avg HE Std dev HE Avg running time [s]

100 ∼ 60× 500 1.22 0.36 0.17

1000 0.88 0.21 0.33

5000 0.56 0.10 1.81

10000 0.62 0.10 5.34

20000 0.60 0.07 17.14

200 ∼ 60× 500 1.22 0.37 0.22

1000 0.79 0.27 0.36

5000 0.53 0.09 3.26

10000 0.45 0.08 8.01

20000 0.49 0.05 27.15

The performances were evaluated both in terms of HE and running time
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problem, which is one of the hot topics in Computa-

tional Biology and Bioinformatics. The performance of

GenHap was evaluated by considering synthetic (yet real-

istic) read datasets resembling the outputs produced by

the Roche/454 and PacBio RS II sequencers. The solu-

tions yielded by GenHap are accurate, independently of

the number, frequency and coverage of SNPs in the input

instances, and without any a priori hypothesis about the

sequencing error distribution in the reads.

In practice, our method was conceived to deal with

data characterized by high-coverage and long reads, pro-

duced by recent sequencing techniques. The read accu-

racy achieved by novel sequencing technologies, such as

PacBio RS II and Oxford Nanopore MinION, may be

useful for several practical applications. In the case of

SNP detection and haplotype phasing in human sam-

ples, besides read accuracy, a high-coverage is required to

reduce possible errors due to few reads that convey con-

flicting information [43]. In [44], the authors argued that

an average coverage higher than 30× is the de facto stan-

dard. As a matter of fact, the first human genome that was

sequenced using Illumina short-read technology showed

that, although almost all homozygous SNPs are detected

at a 15× average coverage, an average depth of 33× is

required to detect the same proportion of heterozygous

SNPs.

GenHap was implemented with a distributed strategy

that exploits a Master-Slave computing paradigm in order

to speed up the required computations. We showed that

GenHap is remarkably faster than HapCol [23], achiev-

ing approximately a 4× speed-up in the case of Roche/454

instances, and up to 20× speed-up in the case of the

PacBio RS II dataset. In order to keep the running time

constant when the number of SNPs increases, the num-

ber of available cores should increase proportionally with

#SNPs.

Differently from the other state-of-the-art algorithms,

GenHap was designed for taking into account datasets

produced by the third-generation sequencing technolo-

gies, characterized by longer reads and higher coverages

with respect to the previous generations. As a matter of

fact, the experimental findings show that GenHap works

better with the datasets produced by third-generation

sequencers. Although several approaches have been pro-

posed in literature to solve the haplotyping problem

[5, 23], GenHap can be easily adapted to exploit Hi-C

data characterized by very high-coverages (up to 90×),

in combination with other sequencing methods for long-

range haplotype phasing [45]. Moreover, GenHap can be

also extended to compute haplotypes in organisms with

different ploidity [46, 47]. Worthy of notice, GenHap

could be easily reformulated to consider a multi-objective

fitness function (e.g., by exploiting an approach simi-

lar to NSGA-III [48]). In this context, a possible future

extension of this work would consist in introducing other

objectives in the fitness function, such as the methyla-

tion patterns of the different chromosomes [49], or the

gene proximity in maps achieved through Chromosome

Conformation Capture (3C) experiments [50]. As a final

note, we would like to point out that there is currently a

paucity of up-to-date real benchmarks regarding the lat-

est sequencing technologies. Therefore, collecting a reli-

able set of human genome sequencing data acquired with

different technologies against the corresponding ground

truth can be beneficial for the development of future

methods.
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