

ICMC Proceedings 1994 131-137 Genetic Algorithms

GenJam: A Genetic Algorithm for Generating Jazz Solos
John A. Biles

Associate Professor
Information Technology Department

Rochester Institute of Technology
jab@cs.rit.edu

Abstract

This paper describes GenJam, a genetic algorithm-based model of a novice jazz musician
learning to improvise. GenJam maintains hierarchically related populations of melodic ideas
that are mapped to specific notes through scales suggested by the chord progression being
played. As GenJam plays its solos over the accompaniment of a standard rhythm section, a
human mentor gives real-time feedback, which is used to derive fitness values for the
individual measures and phrases. GenJam then applies various genetic operators to the
populations to breed improved generations of ideas.

1 Introduction

As with most problem-solving activities,
musical tasks like composition, arranging and
improvising involve a great deal of search.
Composers search for the right chords to fit a
melody or the right melody to fit a chord
progression; arrangers search for the right voicings
and counterpoint for constituent parts; improvisers
search for the right phrases to play over a particular
set of chord changes. Certainly, the notion of
“right” is individual, but a typical musician “knows
what she likes,” and this aesthetic sense guides the
search through the various problem spaces of
notes, chords, or voicings.

Genetic algorithms (GAs) provide a powerful
technique for searching large, often ill-behaved
problem spaces. A GA solves problems by
evolving a population of potential solutions to a
problem, using standard genetic operations like
crossover and mutation, until an acceptable
solution emerges. The minimal requirements for
using a GA are that the solutions must map to a
string of symbols (preferably bits), and that there
be some way of determining how good one
solution is at solving the problem, relative to the
other solutions in the population.

Given the power GAs possess for searching
strange problem spaces and their rather lax
requirements for use, it seems natural to apply GAs
to musical tasks. This paper describes one such
application, GenJam, which searches a large
melodic space for “good” material with which to
build jazz solos. GenJam’s metaphor is an
enthusiastic student musician who sits in at jam
sessions. When this student plays well, the other
musicians respond with “Yeah!” and other
classically cool jazz exhortations. When the
student plays poorly, the other musicians might

respond by “gonging him off,” as Jo Jones did to a
young Charlie Parker by sailing a cymbal at his
feet during a Kansas City jam session. GenJam
uses similar, though less dramatic, feedback to
guide its search through a melodic space.
2 Background

GAs [Holland, 1975; Goldberg, 1989; Koza,
1992] have been applied to music in the areas of
thematic bridging [Horner and Goldberg, 1991],
and FM parameter matching [Horner et al., 1993].
Both of these applications employ a “standard” GA
in that there is a population of potential solutions
that evolves until a single individual emerges
whose performance is acceptable. An individual in
these populations is represented by a chromosome-
like bit string, which maps to a sequence of
melodic transforms in thematic bridging and to a
set of FM parameter values in the other study.
Each individual also has a fitness, which is a
numeric indication of the success of that solution is
at solving the problem.

Horner et al. [1993] provide an excellent
introduction to GAs with a clear musical example.
For the uninitiated, a “simple” GA looks like:

Initialize the individuals in the population
While not finished evolving the population

Figure the fitness of each individual
Select better individuals to be parents
Breed new individuals
Build next generation with new
individuals

elihW

The initialization step is usually random, but
one may seed the initial population with
individuals that fit some criterion. The loop can be
controlled in a variety of ways. Searching can

ICMC Proceedings 1994 131-137 Genetic Algorithms

continue until 1) a maximum number of
generations has been bred; 2) an individual
emerges that meets some criterion for performance;
3) the population converges on a single individual;
or 4) you run out of computer time, memory,
patience, or funding.

The fitness for an individual is usually
determined algorithmically (as in mathematical
function optimization problems, where the function
being optimized is the fitness function). Some
GAs have employed human “fitness functions” to
generate images. Sims [1993] evolved images by
allowing the user to select favorites from a
population to serve as parents for the next
generation. Latham and Todd [Haggerty, 1991]
allowed the user to select a favorite image in a
small population to serve as a single parent. As we
shall see, human fitness functions in a musical
domain present some interesting problems.

The selection step in the algorithm reflects the
evolutionary principle that the fitter individuals in a
population tend to survive and mate. Selection in
GAs usually involves a random process, biased by
the fitness values, so that fitter individuals are more
likely, but not guaranteed, to reproduce.

Breeding new individuals is done by
combining the parent strings, usually with some
form of crossover and mutation. These operations
typically occur at the symbol (bit) level and mirror
crossover and mutation in chromosomes of natural
organisms. However, natural genetics have been
more of an inspiration than a constraint, and many
clever domain-specific operators have been
invented.

In building the next generation, some old
individuals, usually the fittest from the past, may
survive intact, creating a generation gap between
them and the new children. The size of this gap,
along with the population size, helps control the
speed of the search. A large population with no
generation gap will cover the most ground but
might lose a promising individual. A small
population with a large gap will not lose its best
individuals, but it will sample the solution space
much more slowly.

The most important aspect of designing a GA
is the representation of individual solutions. To
mirror natural genetics, an individual is represented
by a string of symbols. If those symbols are bits,
the representation more closely resembles the
genes and chromosomes in natural organisms, but
many GA applications use non-binary
representations. In this paper, however, we will
focus only on bit strings.

An individual bit string (genotype) in a
population must somehow map to a potential
solution (phenotype). A clever representation that
efficiently represents alternative solutions, perhaps
by excluding clearly unacceptable solutions, will
lead to a more efficient search. However, if a

representation “cleverly” excludes the best
solution, its efficiency is irrelevant. We can easily
calculate the size of the solution space by
computing the number of different solutions that
can be represented by the bit string. This is simply
2n, where n is the number of bits in the string. The
more bits in the string, the more potential solutions,
and the larger the search space (each added bit
doubles the size). GA designers walk a thin line
between too large a search space on one side and
inadequately sampled solutions on the other.

We turn now to a brief discussion of
computational jazz improvisation systems. Most
such systems reported in the literature [Fry, 1984;
Levitt, 1981; Giomi and Ligabue, 1991; Ames and
Domino, 1992] use knowledge based techniques to
derive an “improvised” solo from a given harmonic
progression in a constrained rhythmic style. These
systems process an abstract progression (set of
chord changes) before generating a solo, and
usually take the intermediate step of building a
sequence of scales from which melodic material
will be drawn. This activity mirrors what most
“trained” improvisers do when they prepare a tune
for improvisation [Haerle, 1989].

The interactive jazz system being developed at
McGill University [Penneycook et al., 1993] holds
truer to jazz’s aural tradition in that it listens to a
rhythm section in real time in order to determine
what the rhythm section is playing. The
philosophy is to give the system as little a priori
knowledge as possible about jazz harmony and
rhythm.

Metamuse [Iverson and Hartley, 1990] also
avoids providing explicit a priori musical
knowledge. It uses autocatalytic set theory to
assimilate music fed to it and regenerate new
pieces in a similar style. While Metamuse uses
string representations, it is not, strictly speaking, a
GA.

3 Design of GenJam

GenJam was developed in a Macintosh/Think
C environment on top of the CMU MIDI Toolkit
[Dannenberg, 1993]. Figure 1 shows GenJam’s
system architecture and provides a visual overview
of its operation. To improvise on a tune, GenJam
reads a progression file, which provides it with the
tempo and rhythmic style (swing or even eighth
notes), the number of solo choruses it should take,
and the chord progression. It also reads MIDI
sequences for piano, bass and drums, which have
been pre-generated using Band-in-a-Box [Gannon,
1991].

ICMC Proceedings 1994 131-137 Genetic Algorithms

Figure 1. GenJam System Architecture

GenJam improvises on the tune by building
choruses of MIDI events decoded from members of
the measure and phrase populations. Since, as we
shall see, a phrase is implemented as a sequence of
four measures, these two populations form a
mutually dependent hierarchy of melodic
structures.

While listening to a solo, the mentor can type
one or more ‘g’s if a portion is judged to be good,
or one or more ‘b’s if a portion is judged to be bad.
The fitness for a given measure or phrase is
accumulated by incrementing counters for the
currently playing measure and phrase every time a
‘g’ is typed, and decrementing them every time a
‘b’ is typed. The modified fitness values are
written back to the population files after the solo
terminates.

GenJam runs in one of three modes: learning,
breeding or demo. Learning mode is intended to
build up fitness values and uses no genetic
operators. Phrases are selected at random, ignoring
fitness, and presented for feedback. Demo mode is
intended to be a “performance.” Phrases are
selected with a tournament selection process that
considers both the phrase fitness and constituent
measure fitnesses, and feedback is ignored. In
breeding mode the genetic operators are applied,
and half of each population is replaced by new
offspring before a solo is presented for feedback.
The rest of this section details GenJam’s
representations, genetic operators and fitness
procedure.

3.1 Chromosome Representation

As alluded to above, the design of a string
representation is critical to a GA’s success.
GenJam uses a cooperating, two-level, position-
based, binary representation scheme. The rest of
this subsection will try to explain what that means.

Two major differences exist between GenJam
and the simple GA described above. One is that
GenJam uses two populations, one of measures and
one of phrases. An individual in the measure
population maps to a sequence of MIDI events, as
will be detailed below. An individual in the phrase

population maps to indices of measures in the
measure population.

The other major difference is that GenJam
uses the entire populations of measures and phrases
to build a solo, not just a single “best” measure or
phrase. In this way GenJam more closely
resembles a classifier system [Goldberg, 1989] or
the “musical strata” of Horner [1993b]. It is
important to note that GenJam is not trying to
evolve the perfect solo on a specific tune; it tries to
evolve a workable collection of melodic ideas that
it can apply to any tune.

Figure 2. Example Phrase and its Measures
Figure 2 shows a “composed” example phrase,

which maps to a rather unhip rendition of the first
four bars of Sonny Rollins’s Tenor Madness,
transposed to C. In both populations, the single
number to the left of the heavy line in each
individual is the fitness value, and the remaining
numbers represent the chromosome.

The example focuses on phrase number 23 and
its constituent measures. Phrase 23 has a fitness of
-12, which means that it has not been particularly
well received by the mentor. Its chromosome is
the concatenation of four numbers, each of which
is a pointer (array index) into the measure
population. The current population sizes for
GenJam are 48 phrases and 64 measures. The
number 64 is not arbitrary because in order to get
maximum efficiency from the phrase
representation, the size of the measure population
should be a power of two. The reason for this is
illustrated in Figure 3.

Figure 3. Phrase 23 Chromosome at the Bit Level

It is important that any possible configuration
of bits map to a legitimate structure, and it is

MeasurePop

PhrasePop

PianoSeq

BassSeq

DrumSeq Progression

Mentor

GenJam

Solo ‘g’,‘b’

57 11 3857

57

23

 9 7 0 5 7 8 7 511

7 8 7 7 15 15 15 038

Phrase
Population

Measure
Population

-12

22 9 7 0 5 7 15 15 0

-4

6

111001 111001 001011 10011023

ICMC Proceedings 1994 131-137 Genetic Algorithms

preferable to isolate specific pointers in specific bit
substrings, to make the mappings easier. In this
case 64 different measure indices require exactly
six bits, and the resulting chromosome of four
measure pointers requires 24 bits.

Individuals in the measure population are
made up of a fitness value and a chromosome that
is interpreted as a series of eight events, one for
each eighth note duration of a 4/4 measure. There
are three types of events: a new note, a rest, and a
hold. A new-note event causes a MIDI note-off
followed by a note-on. A rest causes a note-off
only. A hold causes nothing to happen, which has
the effect of holding a note already turned on or
lengthening a rest. A hold at the beginning of a
measure holds whatever ended the previous
measure, so rhythmic structures can flow across
measure boundaries. If swing rhythm is selected, a
62% swing is used (events on the beat last 62% of
the length of a quarter note, while those occurring
off the beat last the other 38%). If even rhythm is
selected, all events have the same duration, which
is appropriate for Latin tunes.

There are 14 different new note events
(encoded as 1-14 in Figure 2), one rest (encoded as
0), and one hold (encoded as 15), which adds up to
16 possible events that can occur at each eighth-
note position in a measure. An event, then, can be
represented in 4 bits and a 4/4 measure in 32 bits,
yielding a melodic space of something less than 232
different measures (a rest following a rest and a
hold following a rest will sound the same).

The major advantage to thinking in terms of
note-off followed by note-on, rather than the
reverse, is that note durations can be represented in
half a bit per event (two bit permutations out of 16
for each four-bit event). This efficiently unifies
pitch and rhythmic structures in a single
representation, as opposed to the more typical
approach of treating pitch and rhythmic sequences
separately [Ames and Domino, 1992; Giomi and
Ligabue, 1991; Fry, 1984].

Two obvious disadvantages to GenJam’s
scheme are that notes occur only in eighth note
multiples, and there are only 14 pitches to choose
from at any one time. These certainly would be a
noticeable limitation on most human improvisers,
but allowing greater rhythmic and chromatic
diversity would increase the string lengths needed
for measures, thereby exploding the size of the
space searched by the measure population.

One other thing to note about Figure 2 is that it
is perfectly permissible to repeat a measure in a
phrase. When this happens, the listener tends to
respond with, “Wow! Thematic development!” In
this example, as we shall see in the next section,
the chord progression will lead to different scales
being used for the two measures, which will result
in a slight difference in the actual pitches played.

3.2 Chord/Scale Maps

The 14 new-note events are mapped to actual
MIDI pitches through scales suggested by the
chord progression being played. As was shown in
Figure 1, a progression file is read and processed
before the solo is generated. This results in a note
map for each half measure of a chorus of the tune
(maximum harmonic tempo of two chords per
measure). Each note map is an array of 14 MIDI
pitches, roughly in the two octaves ascending from
middle C.

A given chord is mapped to a scale strictly
vertically; that is, the window through which the
progression is viewed is only one chord wide.
Table 1 summarizes the types of chords currently
recognized and the scale mappings for each chord
type, using a chord root of C for the examples.

Chord Scale Notes
Cmaj7 Major (avoid 4th) C D E G A B
C7 Mixolydian (~ 4th) C D E G A Bb
Cm7 Minor (avoid 6th) C D Eb F G Bb
Cm7b5 Locrian (~ 2nd) C Eb F Gb Ab Bb
Cdim W/H Diminished C D Eb F F# G# A B
C+ Lydian Augmented C D E F# G# A B
C7+ Whole Tone C D E F# G# A#
C7#11 Lydian Dominant C D E F# G A Bb
C7#9 Altered Scale C Db Eb E F# G# Bb
C7b9 H/W Diminished C Db Eb E F# G A Bb
Cm7b9 Phrygian C Db Eb F G A Bb
Cmaj7
#11

Lydian C D E F# G A B

Table 1. Chord/Scale Mappings

These mappings are a synthesis of several
sources in the jazz education literature [Russell,
1959; Hearle, 1980 and 1989; Sabatella, 1992;
Coker, 1964]. While this collection of chords is
not exhaustive, and the scale choices are certainly
debatable, they provide a rich enough set to handle
many jazz tunes in a variety of styles.

After a scale is selected, it is extended to 14
tones, beginning at or above middle C. For
example, a C7 chord would indicate a C
mixolydian scale without the somewhat
controversial 4th (C D E G A Bb), and the resulting
note map would be (C3 D E G A Bb C4 D E G A
Bb C5 D). An F7 chord would indicate an F
mixolydian scale (F G A C D Eb), and the resulting
note map would be (C3 D Eb F G A C4 D Eb F G
A C5 D). If the example in Figure 2 is played
against the first four bars of a typical blues
progression (C7 F7 C7 C7), the repeated measure
57 maps to two different sets of pitches: E C A C
in the C7 measure, and Eb C G C in the F7
measure.

ICMC Proceedings 1994 131-137 Genetic Algorithms

The results of using these note maps is that
GenJam can develop ideas to fit different harmonic
contexts and will not play a “wrong” note. That is
not to say that all of its notes are “right,” however,
which brings us to the role of the mentor in
providing fitness values for the phrases and
measures.

3.3 The Fitness Bottleneck

The only really firm requirement for using a
GA is a method for determining fitnesses of the
individuals in a population. At the very least, a
method must exist for determining which of two
arbitrary individuals is “better.” If a population
can be ranked unambiguously, or if an interval or
ratio scale can be developed for fitness, then
greater sophistication may be used in the genetic
operators, particularly selection and replacement.

The unspoken assumption is that this fitness
method is algorithmic. If a suitable algorithm can
be found, then fitness becomes just another routine
in the program, and while it may be
computationally expensive, it is at worst a
performance bottleneck that leads to days or weeks
of computation rather than minutes or hours.
Thousands of generations still can be generated
with enough patience.

However, what if no suitable algorithm exists
for generating fitness, even in the minimal case of
deciding which of two individuals is better? After
initially considering a neural network trained to
respond as I do to pieces of music, I decided to put
off the search for an algorithm that implements “I
know what I like,” and use myself as a fitness
function.

As indicated above, this approach has been
used successfully in evolving images [Sims, 1993;
Haggerty, 1991], but the task for the human rater
was made easier by the presentation of several
images concurrently. Raters could easily compare
images by looking from one to another in whatever
order they chose. The presentation of several
musical samples, on the other hand, cannot be
made concurrently, Charles Ives not withstanding.
Furthermore, the presentation of a single image is
essentially instantaneous, while a piece of music
must be played from start to finish at the proper
tempo.

The human who serves as GenJam’s mentor,
then, is a very narrow bottleneck and is, in fact, the
limiting factor on population sizes, number of
generations, and size of any generation gap. This
is because the mentor must listen carefully to every
measure of every phrase to provide their fitnesses.

A typical solo will be three choruses of a 32-
bar form, which is about the upper limit for quality
feedback from the mentor. This works out to 24
four-bar phrases, which, not coincidentally, is half

the size of the phrase population. In breeding
mode, GenJam replaces half of both populations
(50% generation gap) and then plays the new
phrases first in its solo. This leads to the phrase
population size of 48 phrases -- the mentor has to
listen to all the new phrases, but 24 is the practical
limit, so 24 must be half the population size.
Feedback for the measures is not a problem
because each measure is sampled an average of
three times in the phrase population (48 phrases * 4
measures per phrase / 64 measures).

Clearly, the mentor is a critical resource, and
GenJam’s design reflects the need to minimize the
amount of listening required and to make the
mentor’s interface as simple as possible. While
listening to GenJam play a solo, the mentor can
type ‘g’ (for good) or ‘b’ (for bad) whenever so
moved. Each time a ‘g’ is typed, the fitnesses for
the currently playing measure and phrase are both
incremented. When a ‘b’ is typed, both fitnesses
are decremented. Fitnesses have a floor of -30 and
a ceiling of +30, to guard against successful
established individuals overwhelming new ones,
and to make it easier for the mentor to thin out a
nice lick that becomes overused. The mentor can
control the magnitude of the feedback from neutral
(no typing) to intense (rapid keystrokes).

To allow time for the mentor to react,
empirically derived delays have been built into the
feedback mechanisms so that the feedback window
for measures is shifted two beats late and the
window for phrases one measure late. This means
that when a ‘g’ or ‘b’ is typed during the playing of
beats three or four of a measure, the counter for
that measure is incremented or decremented.
Feedback typed during beats one or two will affect
the previous measure. Similarly, feedback
occurring in the first measure of a phrase applies to
the previous phrase, while feedback in measures
two, three and four affect the current phrase.

3.4 Genetic Operators

Both the fitness bottleneck and the cooperative
nature of the two populations heavily influenced
GenJam’s genetic operators. GenJam applies all its
operators only in breeding mode, but selection is
also used in demo mode. This section details
GenJam’s initialization, selection, crossover,
mutation, and replacement operators.

The measure and phrase chromosomes are
initialized by generating random bit strings of the
appropriate length. Fitness values are initialized to
zero. For phrases the strings are uniformly
random. For measures the strings are interpreted as
the eight four-bit events (0 - 15), with 0 denoting a
rest, 15 a hold, and 1-14 new notes. Rests and
holds each occur with probability 5/24, and each
new note occurs with probability 1/24. This

ICMC Proceedings 1994 131-137 Genetic Algorithms

proportion of rests and holds was derived
empirically and seeds the initial population with
some modicum of “rhythm.” The encoding of rest
and hold as mutual logical complements protects
the population from artificially converging on high
or low notes when a crossover point occurs within
a rest in one parent and a hold in the other.

Selection and replacement in GenJam are
merged in a modified tournament selection process.
Four individuals are chosen at random, without
regard to fitness, to form a family. Of the four
individuals in a family, the two with the highest
fitness are used as parents, and the two worst are
replaced by the two offspring of the parents’
mating. In each generation, half of the measure
population is thus replaced, and newly created
children cannot participate in later families in the
same generation.

To insure that the 32 new measures will be
heard quickly by the mentor, they are each
randomly assigned to one of the first eight new
phrases. Each of these “maternity” phrases
replaces the loser of a four-phrase tournament,
based on phrase fitness. The remaining 16 new
phrases are bred in families as described above.

GenJam performs a standard single-point
crossover at a random location in the 32-bit
measure strings (or 24-bit phrase strings). One of
the resulting two children is kept intact, while the
other child is mutated by one of several mutation
operators, which operate at the event level for
measures and the index level for phrases.

In an effort to accelerate learning by creating
not just new, but better offspring, these “musically
meaningful mutation” operators violate
conventional GA wisdom that genetic operators
should be “dumb” with respect to the structures
they alter. Table 2 summarizes the six mutation
operators for measures, using measure 57 from
Figure 2 above as an example.

Mutation Operator Mutated Measure
None (Original Measure) 9 7 0 5 7 15 15 0
Reverse 0 15 15 7 5 0 7 9
Rotate Right (e.g., 3) 15 15 0 9 7 0 5 7
Invert (15 - value) 6 8 15 10 8 0 0 15
Sort Notes Ascending 5 7 0 7 9 15 15 0
Sort Notes Descending 9 7 0 7 5 15 15 0
Transpose Notes (eg. +3) 12 10 0 8 10 15 15 0

Table 2. Musically Meaningful Measure Mutations

The rotation operator rotates events a random
number of event positions to the right (1 to 7). The
inversion operator has the effect of turning rests
into holds, holds into rests, and reflecting pitches
roughly around C4. The sorting and transposition
operators preserve the rhythmic structure of a
measure in that rests and holds are not affected.

Transpositions are performed a random number of
steps (1 to 4) in the direction of the greater
minimum distance between a note and an upper or
lower bound (1 or 14). In other words
transpositions are done in the direction that “has
the most room.” If a note is transposed beyond the
allowed note range (1 - 14) it is reflected off that
bound back into the accepted range. For example,
12 transposed up 3 steps will become 13 (12-13,
13-14, 14-13).

The six mutation operators for phrases are
summarized in Table 3, which applies the operators
to our sample phrase from Figure 2. The reverse
and rotate operators are the same as those used on
measures. The genetic repair operator replaces the
index of the measure with the worst fitness (in this
case measure 38) with a random measure index (in
this case 29).

Mutation Operator Mutated Phrase
None (Original Phrase) 57 57 11 38
Reverse 38 11 57 57
Rotate Right (e.g., 3) 57 11 38 57
Genetic Repair 57 57 11 29
Super Phrase 41 16 57 62
Lick Thinner 31 57 11 38
Orphan Phrase 17 59 43 22

Table 3. Musically Meaningful Phrase Mutations

The super phrase operator generates a
completely new phrase by selecting the indices of
the winners of four independent three-measure
tournaments, where the winners are determined by
greatest fitness. This phrase will bear no
relationship to its parents, which is mutation in the
extreme. Notice, by the way, that measure 57
apparently won a tournament to stay in this phrase.

The last two operators tend to combat the
convergence problem, the tendency of GA
machinery to converge on slight variations of a
“super” individual. In GAs that search for a single
best individual, convergence is seldom a real
problem, but in GenJam, convergence translates to
“the lick that ate my solo.” The lick thinner
substitutes a random measure for the measure in
the phrase that occurs most frequently in the phrase
population as a whole. This tends to thin out
overly successful measures.

The orphan phrase operator generates a
completely new phrase by selecting the winners of
four independent three-measure tournaments where
the winners are the least frequently occurring
measures in the phrase population. This tends to
repopulate “orphan” measures that don’t appear in
any phrase and insure that diversity is maintained.

In demo mode, where only selection is applied
and feedback is ignored, phrases are selected with
another tournament selection scheme. Three

ICMC Proceedings 1994 131-137 Genetic Algorithms

phrases are selected at random, and a combined
fitness value is used -- the sum of the phrase’s
fitness and the average fitness of its constituent
measures. Once a phrase has been selected, its
combined fitness is halved so that it is less likely to
be selected again in the same solo. The result is
GenJam’s “greatest hits.”

4 Training and Performance

After sufficient training, GenJam’s playing can
be characterized as competent with some nice
moments. About two dozen tunes have been
prepared for GenJam, either as training tunes or
“gig” tunes. The best training tunes have tempos
in the range 120 to 180 or so. Faster tunes are too
hard for the mentor to keep up with, and slower
tunes need sixteenth notes to retain interest. Of the
tunes I have prepared, the most frequently used
tunes for training are summarized in Table 4, with
tempo in beats per minute and the column labeled
“C” giving the number of choruses in the solo.

Tune Form Tempo C
Boplicity 32-bar AABA 130 3
Stella by Starlight 32-bar AABA 160 3
Well You Needn’t 32-bar AABA 174 3
Bye Bye Blackbird 32-bar AABA 135 3
Gentle Rain 40-bar ABABC 138 3
Lady Bird 16-bar AB 150 4
Bb Blues 12-bar Blues 135 6

Table 4. Tunes Used for Training

The typical training procedure begins by
running GenJam in learning mode for three or four
solos, to sufficiently sample the populations and
provide initial fitness values. Then one can
alternate breeding and learning runs until coherent
solos begin to emerge. The training tunes are
cycled in a fairly random order, with Lady Bird
and the Bb Blues being used in learning mode
only, since they contain fewer than 24 phrases.
Again, the constraint is that 24 new phrases will be
generated in a breeding run, and all 24 need to be
heard so that they can have some chance of
accumulating non-zero fitnesses.

The first few generations of a training session
are quite numbing for the mentor. Fitnesses are
almost all negative, melodic intervals tend to be
large, and the frequency of “nice moments” is very
low. Sooner or later, though, a few pleasant licks
begin to emerge, and one or two solid phrases tend
to appear by the fourth or fifth generation. If a
very pleasing measure appears too early, it can
become overused in a generation or two and may
require the mentor start punishing a previously
rewarded lick to thin it out. Typically, at around
the tenth generation, a “golden” generation occurs

where almost all the new phrases sound reasonable.
At this point, the mentor’s standards can shift from
rewarding anything that sounds musical to
rewarding only what really sounds nice.

A preliminary analysis of population statistics
gathered over several training runs shows that
pitch, interval, and note length distributions shift in
expected directions. The initial pitch distribution is
uniform, as would be expected from the
initialization procedure, but it gradually “humps
up” to look more normal after several generations.
Large intervals tend to be bred out fairly quickly,
particularly when the note lengths are short. After
several generations the interval distribution is
heavily skewed toward short intervals, and the
average interval shrinks from around seven scale
steps to around two. Note and rest lengths also
become skewed toward the short end as very long
notes and silences are bred out.

5 Extensions and Conclusions

Several enhancements and extensions are
under way to improve GenJam’s performance. An
overhaul of the chord/scale mapping procedure is
being designed that will apply knowledge-based
techniques to a wider window on the chord
progression. This hopefully will correct a few bad
scale choices currently made in some progressions.

An attempt will be made to train a neural
network to serve as at least a preliminary fitness
function for at least the measure population. The
strategy will be to extract statistical features
correlating with measure fitness to form a feature
vector, which will be the input layer to a quick-
prop-style neural network. The output layer will be
a single node containing the fitness value. The
training data will come from the populations that
have been saved from the approximately two dozen
controlled training runs conducted so far.

Another experiment will seed GenJam’s initial
population with measures and phrases taken from
existing tunes or transcribed solos. A similar
exercise will be to merge populations generated in
separate training sessions to hopefully get the best
of both. GenJam’s two levels also could be
extended upward to section, chorus, and/or tune
levels.

To place GenJam in a larger context, I’ll
conclude with a brief mention of the role GAs
could play in algorithmic composition. GenJam
shows that GAs can be a useful tool for searching a
constrained melodic space. Other specific
compositional tasks should be easy to find, for
example, evolving a bass line or percussion
sequence or chord progression or series of
voicings. These small tasks might even be done
concurrently in a more comprehensive system.
Evolutionary programming techniques [Koza,

ICMC Proceedings 1994 131-137 Genetic Algorithms

1992], where individuals map to programs or
program fragments, also promise to broaden the
uses of GAs in music. Finally, the fact that
“Genetic Algorithms” is a special topic area at
ICMC 94 indicates that others are discovering
GAs. It would seem that GenJam is not alone!

References

[Ames and Domino] Cybernetic Composer: An
Overview. In M Balaban, K. Ebcioglu and O.
Laske (Ed.), Understanding Music with AI,
AAAI Press, Cambridge, MA, 186-205, 1992.

[Coker, 1964] Jerry Coker. Improvising Jazz.
Prentice-Hall, Englewood Cliffs, NJ, 1964.

[Dannenberg, 1993] Roger B. Dannenberg. The
CMU MIDI Toolkit, Version 3. Carnegie
Mellon University, Pittsburgh, PA, 1993.

[Fry, 1984] C. Fry. Flavors Band: A Language
for Specifying Musical Style. Computer
Music Journal 8 (4) pp. 20-34, 1984.

[Gannon, 1991] Peter Gannon. Band-in-a-Box.
PG Music, Inc., Hamilton, Ontario, 1991.

[Giomi and Lagabue, 1991] Francesco Giomi and
Marco Ligabue. Computational Generation
and Study of Jazz. Interface 20, pp. 47-63,
1992.

[Goldberg, 1989] David Goldberg. Genetic
Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[Haerle, 1989] Dan Haerle. The Jazz Sound. Hal
Leonard, Milwaukee, WI, 1989.

[Haerle, 1980] Dan Haerle. The Jazz Language.
Studio 224, Miami, 1980.

[Haggerty, 1991] Michael Haggerty. Evolution by
Esthetics, an interview with William Latham
and Stephen Todd. IEEE Computer Graphics
and Applications 11, pp. 5-9, 1991.

[Holland, 1975] John H. Holland. Adaptation in
Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[Horner, et al., 1993a] Andrew Horner, Andrew
Assad and Norman Packard. Artificial Music:
The Evolution of Musical Strata. Leonardo 3,
pp. 81, 1993.

[Horner et al., 1993b] Andrew Horner, James
Beauchamp, and Lippold Haken. Machine
Tongues XVI: Genetic Algorithms and Their
Application to FM Matching Synthesis.
Computer Music Journal 17 (4) pp. 17-29,
1993.

[Horner and Goldberg, 1991] Genetic Algorithms
and Computer-Assisted Music Composition.
In Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan
Kauffman, San Mateo, CA, 1991.

[Iverson and Hartley, 1990] Eric Iverson and
Roger Hartley. Metabolizing Music. In

Proceedings of the 1990 International
Computer Music Conference, ICMA, San
Francisco, 1990.

[Koza, 1992] J. R. Koza. Genetic Programming.
MIT Press, Cambridge, MA, 1990.

[Levitt, 1981] David Levitt. A Melody
Description System for Jazz Improvisation.
Master’s thesis, MIT, Cambridge, MA, 1981.

[Penneycook et al., 1993] Bruce Penneycook, Dale
R. Stammen, and Debbie Reynolds. Toward a
Computer Model of a Jazz Improviser. In
Proceedings of the 1993 International
Computer Music Conference, ICMA, San
Francisco, 1993.

[Russell, 1959] George Russell. The Lydian
Chromatic Concept of Tonal Organization for
Improvisation. Concept Publishing, NY,
1959.

[Sabatella, 1992] Marc Sabatella. A Jazz
Improvisation Primer. USENET, 1992.

[Sims, 1993] Karl Sims. Interactive Evolution of
Equations for Procedural Models. The Visual
Computer 9 (8), pp. 466-476, 1993.

