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Abstract 

This paper describes GenJam, a genetic algorithm-based model of a novice jazz musician 
learning to improvise.  GenJam maintains hierarchically related populations of melodic ideas 
that are mapped to specific notes through scales suggested by the chord progression being 
played.  As GenJam plays its solos over the accompaniment of a standard rhythm section, a 
human mentor gives real-time feedback, which is used to derive fitness values for the 
individual measures and phrases.  GenJam then applies various genetic operators to the 
populations to breed improved generations of ideas. 
 

1  Introduction 

As with most problem-solving activities, 
musical tasks like composition, arranging and 
improvising involve a great deal of search.  
Composers search for the right chords to fit a 
melody or the right melody to fit a chord 
progression;  arrangers search for the right voicings 
and counterpoint for constituent parts; improvisers 
search for the right phrases to play over a particular 
set of chord changes.  Certainly, the notion of 
“right” is individual, but a typical musician “knows 
what she likes,” and this aesthetic sense guides the 
search through the various problem spaces of 
notes, chords, or voicings. 

Genetic algorithms (GAs) provide a powerful 
technique for searching large, often ill-behaved 
problem spaces.  A GA solves problems by 
evolving a population of potential solutions to a 
problem, using standard genetic operations like 
crossover and mutation, until an acceptable 
solution emerges.  The minimal requirements for 
using a GA are that the solutions must map to a 
string of symbols (preferably bits), and that there 
be some way of determining how good one 
solution is at solving the problem, relative to the 
other solutions in the population. 

Given the power GAs possess for searching 
strange problem spaces and their rather lax 
requirements for use, it seems natural to apply GAs 
to musical tasks.  This paper describes one such 
application, GenJam, which searches a large 
melodic space for “good” material with which to 
build jazz solos.  GenJam’s metaphor is an 
enthusiastic student musician who sits in at jam 
sessions.  When this student plays well, the other 
musicians respond with “Yeah!” and other 
classically cool jazz exhortations.  When the 
student plays poorly, the other musicians might 

respond by “gonging him off,” as Jo Jones did to a 
young Charlie Parker by sailing a cymbal at his 
feet during a Kansas City jam session.  GenJam 
uses similar, though less dramatic, feedback to 
guide its search through a melodic space. 
2  Background 

GAs [Holland, 1975; Goldberg, 1989; Koza, 
1992] have been applied to music in the areas of 
thematic bridging [Horner and Goldberg, 1991], 
and FM parameter matching [Horner et al., 1993].  
Both of these applications employ a “standard” GA 
in that there is a population of potential solutions 
that evolves until a single individual emerges 
whose performance is acceptable.  An individual in 
these populations is represented by a chromosome-
like bit string, which maps to a sequence of 
melodic transforms in thematic bridging and to a 
set of FM parameter values in the other study.  
Each individual also has a fitness, which is a 
numeric indication of the success of that solution is 
at solving the problem. 

Horner et al. [1993] provide an excellent 
introduction to GAs with a clear musical example.  
For the uninitiated, a “simple” GA looks like: 

Initialize the individuals in the population 
While not finished evolving the population 

Figure the fitness of each individual 
Select better individuals to be parents 
Breed new individuals 
Build next generation with new 
individuals 

elihW 

The initialization step is usually random, but 
one may seed the initial population with 
individuals that fit some criterion.  The loop can be 
controlled in a variety of ways.  Searching can 
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continue until 1) a maximum number of 
generations has been bred; 2) an individual 
emerges that meets some criterion for performance; 
3) the population converges on a single individual; 
or 4) you run out of computer time, memory, 
patience, or funding. 

The fitness for an individual is usually 
determined algorithmically (as in mathematical 
function optimization problems, where the function 
being optimized is the fitness function).  Some 
GAs have employed human “fitness functions” to 
generate images.  Sims [1993] evolved images by 
allowing the user to select favorites from a 
population to serve as parents for the next 
generation.  Latham and Todd [Haggerty, 1991] 
allowed the user to select a favorite image in a 
small population to serve as a single parent.  As we 
shall see, human fitness functions in a musical 
domain present some interesting problems. 

The selection step in the algorithm reflects the 
evolutionary principle that the fitter individuals in a 
population tend to survive and mate.  Selection in 
GAs usually involves a random process, biased by 
the fitness values, so that fitter individuals are more 
likely, but not guaranteed, to reproduce. 

Breeding new individuals is done by 
combining the parent strings, usually with some 
form of crossover and mutation.  These operations 
typically occur at the symbol (bit) level and mirror 
crossover and mutation in chromosomes of natural 
organisms.  However, natural genetics have been 
more of an inspiration than a constraint, and many 
clever domain-specific operators have been 
invented. 

In building the next generation, some old 
individuals, usually the fittest from the past, may 
survive intact, creating a generation gap between 
them and the new children.  The size of this gap, 
along with the population size, helps control the 
speed of the search.  A large population with no 
generation gap will cover the most ground but 
might lose a promising individual.  A small 
population with a large gap will not lose its best 
individuals, but it will sample the solution space 
much more slowly. 

The most important aspect of designing a GA 
is the representation of individual solutions.  To 
mirror natural genetics, an individual is represented 
by a string of symbols.  If those symbols are bits, 
the representation more closely resembles the 
genes and chromosomes in natural organisms, but 
many GA applications use non-binary 
representations.  In this paper, however, we will 
focus only on bit strings. 

An individual bit string (genotype) in a 
population must somehow map to a potential 
solution (phenotype).  A clever representation that 
efficiently represents alternative solutions, perhaps 
by excluding clearly unacceptable solutions, will 
lead to a more efficient search.  However, if a 

representation “cleverly” excludes the best 
solution, its efficiency is irrelevant.  We can easily 
calculate the size of the solution space by 
computing the number of different solutions that 
can be represented by the bit string.  This is simply 
2n, where n is the number of bits in the string.  The 
more bits in the string, the more potential solutions, 
and the larger the search space (each added bit 
doubles the size).  GA designers walk a thin line 
between too large a search space on one side and 
inadequately sampled solutions on the other. 

We turn now to a brief discussion of 
computational jazz improvisation systems.  Most 
such systems reported in the literature [Fry, 1984; 
Levitt, 1981; Giomi and Ligabue, 1991; Ames and 
Domino, 1992] use knowledge based techniques to 
derive an “improvised” solo from a given harmonic 
progression in a constrained rhythmic style.  These 
systems process an abstract progression (set of 
chord changes) before generating a solo, and 
usually take the intermediate step of building a 
sequence of scales from which melodic material 
will be drawn.  This activity mirrors what most 
“trained” improvisers do when they prepare a tune 
for improvisation [Haerle, 1989]. 

The interactive jazz system being developed at 
McGill University [Penneycook et al., 1993] holds 
truer to jazz’s aural tradition in that it listens to a 
rhythm section in real time in order to determine 
what the rhythm section is playing.  The 
philosophy is to give the system as little a priori 
knowledge as possible about jazz harmony and 
rhythm. 

Metamuse [Iverson and Hartley, 1990] also 
avoids providing explicit a priori musical 
knowledge.  It uses autocatalytic set theory to 
assimilate music fed to it and regenerate new 
pieces in a similar style.  While Metamuse uses 
string representations, it is not, strictly speaking, a 
GA. 

3  Design of GenJam 

GenJam was developed in a Macintosh/Think 
C environment on top of the CMU MIDI Toolkit 
[Dannenberg, 1993].  Figure 1 shows GenJam’s 
system architecture and provides a visual overview 
of its operation.  To improvise on a tune, GenJam 
reads a progression file, which provides it with the 
tempo and rhythmic style (swing or even eighth 
notes), the number of solo choruses it should take, 
and the chord progression.  It also reads MIDI 
sequences for piano, bass and drums, which have 
been pre-generated using Band-in-a-Box [Gannon, 
1991]. 
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Figure 1.  GenJam System Architecture 
 

GenJam improvises on the tune by building 
choruses of MIDI events decoded from members of 
the measure and phrase populations.  Since, as we 
shall see, a phrase is implemented as a sequence of 
four measures, these two populations form a 
mutually dependent hierarchy of melodic 
structures. 

While listening to a solo, the mentor can type 
one or more ‘g’s if a portion is judged to be good, 
or one or more ‘b’s if a portion is judged to be bad.   
The fitness for a given measure or phrase is 
accumulated by incrementing counters for the 
currently playing measure and phrase every time a 
‘g’ is typed, and decrementing them every time a 
‘b’ is typed.  The modified fitness values are 
written back to the population files after the solo 
terminates. 

GenJam runs in one of three modes: learning, 
breeding or demo.  Learning mode is intended to 
build up fitness values and uses no genetic 
operators.  Phrases are selected at random, ignoring 
fitness, and presented for feedback.  Demo mode is 
intended to be a “performance.”  Phrases are 
selected with a tournament selection process that 
considers both the phrase fitness and constituent 
measure fitnesses, and feedback is ignored.  In 
breeding mode the genetic operators are applied, 
and half of each population is replaced by new 
offspring before a solo is presented for feedback.  
The rest of this section details GenJam’s 
representations, genetic operators and fitness 
procedure. 

3.1  Chromosome Representation 

As alluded to above, the design of a string 
representation is critical to a GA’s success.  
GenJam uses a cooperating, two-level, position-
based, binary representation scheme.  The rest of 
this subsection will try to explain what that means. 

Two major differences exist between GenJam 
and the simple GA described above.  One is that 
GenJam uses two populations, one of measures and 
one of phrases.  An individual in the measure 
population maps to a sequence of MIDI events, as 
will be detailed below.  An individual in the phrase 

population maps to indices of measures in the 
measure population. 

The other major difference is that GenJam 
uses the entire populations of measures and phrases 
to build a solo, not just a single “best” measure or 
phrase.  In this way GenJam more closely 
resembles a classifier system [Goldberg, 1989] or 
the “musical strata” of Horner [1993b].  It is 
important to note that GenJam is not trying to 
evolve the perfect solo on a specific tune;  it tries to 
evolve a workable collection of melodic ideas that 
it can apply to any tune. 

 

 
 

Figure 2.  Example Phrase and its Measures 
Figure 2 shows a “composed” example phrase, 

which maps to a rather unhip rendition of the first 
four bars of Sonny Rollins’s Tenor Madness, 
transposed to C.  In both populations, the single 
number to the left of the heavy line in each 
individual is the fitness value, and the remaining 
numbers represent the chromosome. 

The example focuses on phrase number 23 and 
its constituent measures.  Phrase 23 has a fitness of 
-12, which means that it has not been particularly 
well received by the mentor.  Its chromosome is 
the concatenation of four numbers, each of which 
is a pointer (array index) into the measure 
population.  The current population sizes for 
GenJam are 48 phrases and 64 measures.  The 
number 64 is not arbitrary because in order to get 
maximum efficiency from the phrase 
representation, the size of the measure population 
should be a power of two.  The reason for this is 
illustrated in Figure 3. 

 
Figure 3.  Phrase 23  Chromosome at the Bit Level 

It is important that any possible configuration 
of bits map to a legitimate structure, and it is 
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preferable to isolate specific pointers in specific bit 
substrings, to make the mappings easier.  In this 
case 64 different measure indices require exactly 
six bits, and the resulting chromosome of four 
measure pointers requires 24 bits. 

Individuals in the measure population are 
made up of a fitness value and a chromosome that 
is interpreted as a series of eight events, one for 
each eighth note duration of a 4/4 measure.  There 
are three types of events: a new note, a rest, and a 
hold.  A new-note event causes a MIDI note-off 
followed by a note-on.  A rest causes a note-off 
only.  A hold causes nothing to happen, which has 
the effect of holding a note already turned on or 
lengthening a rest.  A hold at the beginning of a 
measure holds whatever ended the previous 
measure, so rhythmic structures can flow across 
measure boundaries.  If swing rhythm is selected, a 
62% swing is used (events on the beat last 62% of 
the length of a quarter note, while those occurring 
off the beat last the other 38%).  If even rhythm is 
selected, all events have the same duration, which 
is appropriate for Latin tunes. 

There are 14 different new note events 
(encoded as 1-14 in Figure 2), one rest (encoded as 
0), and one hold (encoded as 15), which adds up to 
16 possible events that can occur at each eighth-
note position in a measure.  An event, then, can be 
represented in 4 bits and a 4/4 measure in 32 bits, 
yielding a melodic space of something less than 232 
different measures (a rest following a rest and a 
hold following a rest will sound the same). 

The major advantage to thinking in terms of 
note-off followed by note-on, rather than the 
reverse, is that note durations can be represented in 
half a bit per event (two bit permutations out of 16 
for each four-bit event).  This efficiently unifies 
pitch and rhythmic structures in a single 
representation, as opposed to the more typical 
approach of treating pitch and rhythmic sequences 
separately [Ames and Domino, 1992; Giomi and 
Ligabue, 1991; Fry, 1984]. 

Two obvious disadvantages to GenJam’s 
scheme are that notes occur only in eighth note 
multiples, and there are only 14 pitches to choose 
from at any one time.  These certainly would be a 
noticeable limitation on most human improvisers, 
but allowing greater rhythmic and chromatic 
diversity would increase the string lengths needed 
for measures, thereby exploding the size of the 
space searched by the measure population. 

One other thing to note about Figure 2 is that it 
is perfectly permissible to repeat a measure in a 
phrase.  When this happens, the listener tends to 
respond with, “Wow!  Thematic development!”  In 
this example, as we shall see in the next section, 
the chord progression will lead to different scales 
being used for the two measures, which will result 
in a slight difference in the actual pitches played. 

3.2  Chord/Scale Maps 

The 14 new-note events are mapped to actual 
MIDI pitches through scales suggested by the 
chord progression being played.  As was shown in 
Figure 1, a progression file is read and processed 
before the solo is generated.  This results in a note 
map for each half measure of a chorus of the tune 
(maximum harmonic tempo of two chords per 
measure).  Each note map is an array of 14 MIDI 
pitches, roughly in the two octaves ascending from 
middle C. 

A given chord is mapped to a scale strictly 
vertically;  that is, the window through which the 
progression is viewed is only one chord wide.  
Table 1 summarizes the types of chords currently 
recognized and the scale mappings for each chord 
type, using a chord root of C for the examples. 

 
Chord Scale Notes 
Cmaj7 Major (avoid 4th) C D E G A B 
C7 Mixolydian (~ 4th) C D E G A Bb 
Cm7 Minor (avoid 6th) C D Eb F G Bb 
Cm7b5 Locrian (~ 2nd) C Eb F Gb Ab Bb 
Cdim W/H Diminished C D Eb F F# G# A B 
C+ Lydian Augmented C D E F# G# A B 
C7+ Whole Tone C D E F# G# A# 
C7#11 Lydian Dominant C D E F# G A Bb 
C7#9 Altered Scale C Db Eb E F# G# Bb 
C7b9 H/W Diminished C Db Eb E F# G A Bb 
Cm7b9 Phrygian C Db Eb F G A Bb 
Cmaj7 
#11 

Lydian C D E F# G A B 

Table 1.  Chord/Scale Mappings 

These mappings are a synthesis of several 
sources in the jazz education literature [Russell, 
1959;  Hearle, 1980 and 1989;  Sabatella, 1992;  
Coker, 1964].  While this collection of chords is 
not exhaustive, and the scale choices are certainly 
debatable, they provide a rich enough set to handle 
many jazz tunes in a variety of styles. 

After a scale is selected, it is extended to 14 
tones, beginning at or above middle C.  For 
example, a C7 chord would indicate a C 
mixolydian scale without the somewhat 
controversial 4th (C D E G A Bb), and the resulting 
note map would be (C3 D E G A Bb C4 D E G A 
Bb C5 D).  An F7 chord would indicate an F 
mixolydian scale (F G A C D Eb), and the resulting 
note map would be (C3 D Eb F G A C4 D Eb F G 
A C5 D).  If the example in Figure 2 is played 
against the first four bars of a typical blues 
progression (C7 F7 C7 C7), the repeated measure 
57 maps to two different sets of pitches:  E C A C 
in the C7 measure, and Eb C G C in the F7 
measure. 
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The results of using these note maps is that 
GenJam can develop ideas to fit different harmonic 
contexts and will not play a “wrong” note.  That is 
not to say that all of its notes are “right,” however, 
which brings us to the role of the mentor in 
providing fitness values for the phrases and 
measures. 

3.3  The Fitness Bottleneck 

The only really firm requirement for using a 
GA is a method for determining fitnesses of the 
individuals in a population.  At the very least, a 
method must exist for determining which of two 
arbitrary individuals is “better.”  If a population 
can be ranked unambiguously, or if an interval or 
ratio scale can be developed for fitness, then 
greater sophistication may be used in the genetic 
operators, particularly selection and replacement. 

The unspoken assumption is that this fitness 
method is algorithmic.  If a suitable algorithm can 
be found, then fitness becomes just another routine 
in the program, and while it may be 
computationally expensive, it is at worst a 
performance bottleneck that leads to days or weeks 
of computation rather than minutes or hours.  
Thousands of generations still can be generated 
with enough patience. 

However, what if no suitable algorithm exists 
for generating fitness, even in the minimal case of 
deciding which of two individuals is better?  After 
initially considering a neural network trained to 
respond as I do to pieces of music, I decided to put 
off the search for an algorithm that implements “I 
know what I like,” and use myself as a fitness 
function. 

As indicated above, this approach has been 
used successfully in evolving images [Sims, 1993; 
Haggerty, 1991], but the task for the human rater 
was made easier by the presentation of several 
images concurrently.  Raters could easily compare 
images by looking from one to another in whatever 
order they chose.  The presentation of several 
musical samples, on the other hand, cannot be 
made concurrently, Charles Ives not withstanding.  
Furthermore, the presentation of a single image is 
essentially instantaneous, while a piece of music 
must be played from start to finish at the proper 
tempo.   

The human who serves as GenJam’s mentor, 
then, is a very narrow bottleneck and is, in fact, the 
limiting factor on population sizes, number of 
generations, and size of any generation gap.  This 
is because the mentor must listen carefully to every 
measure of every phrase to provide their fitnesses. 

A typical solo will be three choruses of a 32-
bar form, which is about the upper limit for quality 
feedback from the mentor.  This works out to 24 
four-bar phrases, which, not coincidentally, is half 

the size of the phrase population.  In breeding 
mode, GenJam replaces half of both populations 
(50% generation gap) and then plays the new 
phrases first in its solo.  This leads to the phrase 
population size of 48 phrases -- the mentor has to 
listen to all the new phrases, but 24 is the practical 
limit, so 24 must be half the population size.  
Feedback for the measures is not a problem 
because each measure is sampled an average of 
three times in the phrase population (48 phrases * 4 
measures per phrase / 64 measures). 

Clearly, the mentor is a critical resource, and 
GenJam’s design reflects the need to minimize the 
amount of listening required and to make the 
mentor’s interface as simple as possible.  While 
listening to GenJam play a solo, the mentor can 
type ‘g’ (for good) or ‘b’ (for bad) whenever so 
moved.  Each time a ‘g’ is typed, the fitnesses for 
the currently playing measure and phrase are both 
incremented.  When a ‘b’ is typed, both fitnesses 
are decremented.  Fitnesses have a floor of -30 and 
a ceiling of +30, to guard against successful 
established individuals overwhelming new ones, 
and to make it easier for the mentor to thin out a 
nice lick that becomes overused.  The mentor can 
control the magnitude of the feedback from neutral 
(no typing) to intense (rapid keystrokes). 

To allow time for the mentor to react, 
empirically derived delays have been built into the 
feedback mechanisms so that the feedback window 
for measures is shifted two beats late and the 
window for phrases one measure late.  This means 
that when a ‘g’ or ‘b’ is typed during the playing of 
beats three or four of a measure, the counter for 
that measure is incremented or decremented.  
Feedback typed during beats one or two will affect 
the previous measure.  Similarly, feedback 
occurring in the first measure of a phrase applies to 
the previous phrase, while feedback in measures 
two, three and four affect the current phrase. 

3.4  Genetic Operators 

Both the fitness bottleneck and the cooperative 
nature of the two populations heavily influenced 
GenJam’s genetic operators.  GenJam applies all its 
operators only in breeding mode, but selection is 
also used in demo mode.  This section details 
GenJam’s initialization, selection, crossover, 
mutation, and replacement operators. 

The measure and phrase chromosomes are 
initialized by generating random bit strings of the 
appropriate length.  Fitness values are initialized to 
zero.  For phrases the strings are uniformly 
random.  For measures the strings are interpreted as 
the eight four-bit events (0 - 15), with 0 denoting a 
rest, 15 a hold, and 1-14 new notes.  Rests and 
holds each occur with probability 5/24, and each 
new note occurs with probability 1/24.  This 
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proportion of rests and holds was derived 
empirically and seeds the initial population with 
some modicum of “rhythm.”  The encoding of rest 
and hold as mutual logical complements protects 
the population from artificially converging on high 
or low notes when a crossover point occurs within 
a rest in one parent and a hold in the other. 

Selection and replacement in GenJam are 
merged in a modified tournament selection process.  
Four individuals are chosen at random, without 
regard to fitness, to form a family.  Of the four 
individuals in a family, the two with the highest 
fitness are used as parents, and the two worst are 
replaced by the two offspring of the parents’ 
mating.  In each generation, half of the measure 
population is thus replaced, and newly created 
children cannot participate in later families in the 
same generation. 

To insure that the 32 new measures will be 
heard quickly by the mentor, they are each 
randomly assigned to one of the first eight new 
phrases.  Each of these “maternity” phrases 
replaces the loser of a four-phrase tournament, 
based on phrase fitness.  The remaining 16 new 
phrases are bred in families as described above. 

GenJam performs a standard single-point 
crossover at a random location in the 32-bit 
measure strings (or 24-bit phrase strings).  One of 
the resulting two children is kept intact, while the 
other child is mutated by one of several mutation 
operators, which operate at the event level for 
measures and the index level for phrases. 

In an effort to accelerate learning by creating 
not just new, but better offspring, these “musically 
meaningful mutation” operators violate 
conventional GA wisdom that genetic operators 
should be “dumb” with respect to the structures 
they alter.  Table 2 summarizes the six mutation 
operators for measures, using measure 57 from 
Figure 2 above as an example. 

 
Mutation Operator Mutated Measure 
None (Original Measure) 9  7  0  5  7  15  15  0 
Reverse 0  15  15  7  5  0  7  9 
Rotate Right (e.g., 3) 15  15  0  9  7  0  5  7 
Invert (15 - value) 6  8  15  10  8  0  0  15 
Sort Notes Ascending 5  7  0  7  9  15  15  0 
Sort Notes Descending 9  7  0  7  5  15  15  0 
Transpose Notes (eg. +3) 12  10  0  8 10  15 15  0 

Table 2.  Musically Meaningful Measure Mutations 

The rotation operator rotates events a random 
number of event positions to the right (1 to 7).  The 
inversion operator has the effect of turning rests 
into holds, holds into rests, and reflecting pitches 
roughly around C4.  The sorting and transposition 
operators preserve the rhythmic structure of a 
measure in that rests and holds are not affected.  

Transpositions are performed a random number of 
steps (1 to 4) in the direction of the greater 
minimum distance between a note and an upper or 
lower bound (1 or 14).  In other words 
transpositions are done in the direction that “has 
the most room.”  If a note is transposed beyond the 
allowed note range (1 - 14) it is reflected off that 
bound back into the accepted range.  For example, 
12 transposed up 3 steps will become 13 (12-13, 
13-14, 14-13). 

The six mutation operators for phrases are 
summarized in Table 3, which applies the operators 
to our sample phrase from Figure 2.  The reverse 
and rotate operators are the same as those used on 
measures.  The genetic repair operator replaces the 
index of the measure with the worst fitness (in this 
case measure 38) with a random measure index (in 
this case 29). 

 
Mutation Operator Mutated Phrase 
None (Original Phrase)   57  57  11  38 
Reverse   38  11  57  57 
Rotate Right (e.g., 3)   57  11  38  57 
Genetic Repair   57  57  11  29 
Super Phrase   41  16  57  62 
Lick Thinner   31  57  11  38 
Orphan Phrase   17  59  43  22 

Table 3.  Musically Meaningful Phrase Mutations 

The super phrase operator generates a 
completely new phrase by selecting the indices of 
the winners of four independent three-measure 
tournaments, where the winners are determined by 
greatest fitness.  This phrase will bear no 
relationship to its parents, which is mutation in the 
extreme.  Notice, by the way, that measure 57 
apparently won a tournament to stay in this phrase. 

The last two operators tend to combat the 
convergence problem, the tendency of GA 
machinery to converge on slight variations of a 
“super” individual.  In GAs that search for a single 
best individual, convergence is seldom a real 
problem, but in GenJam, convergence translates to 
“the lick that ate my solo.”  The lick thinner 
substitutes a random measure for the measure in 
the phrase that occurs most frequently in the phrase 
population as a whole.  This tends to thin out 
overly successful measures. 

The orphan phrase operator generates a 
completely new phrase by selecting the winners of 
four independent three-measure tournaments where 
the winners are the least frequently occurring 
measures in the phrase population.  This tends to 
repopulate “orphan” measures that don’t appear in 
any phrase and insure that diversity is maintained. 

In demo mode, where only selection is applied 
and feedback is ignored, phrases are selected with 
another tournament selection scheme.  Three 
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phrases are selected at random, and a combined 
fitness value is used -- the sum of the phrase’s 
fitness and the average fitness of its constituent 
measures.  Once a phrase has been selected, its 
combined fitness is halved so that it is less likely to 
be selected again in the same solo.  The result is 
GenJam’s “greatest hits.” 

4  Training and Performance 

After sufficient training, GenJam’s playing can 
be characterized as competent with some nice 
moments.  About two dozen tunes have been 
prepared for GenJam, either as training tunes or 
“gig” tunes.  The best training tunes have tempos 
in the range 120 to 180 or so.  Faster tunes are too 
hard for the mentor to keep up with, and slower 
tunes need sixteenth notes to retain interest.  Of the 
tunes I have prepared, the most frequently used 
tunes for training are summarized in Table 4, with  
tempo in beats per minute and the column labeled 
“C” giving the number of choruses in the solo. 

 
Tune Form Tempo C 
Boplicity 32-bar AABA 130 3 
Stella by Starlight 32-bar AABA 160 3 
Well You Needn’t 32-bar AABA 174 3 
Bye Bye Blackbird 32-bar AABA 135 3 
Gentle Rain 40-bar ABABC 138 3 
Lady Bird 16-bar AB 150 4 
Bb Blues 12-bar Blues 135 6 

Table 4.  Tunes Used for Training 

The typical training procedure begins by 
running GenJam in learning mode for three or four 
solos, to sufficiently sample the populations and 
provide initial fitness values.  Then one can 
alternate breeding and learning runs until coherent 
solos begin to emerge.  The training tunes are 
cycled in a fairly random order, with Lady Bird 
and the Bb Blues being used in learning mode 
only, since they contain fewer than 24 phrases.  
Again, the constraint is that 24 new phrases will be 
generated in a breeding run, and all 24 need to be 
heard so that they can have some chance of 
accumulating non-zero fitnesses. 

The first few generations of a training session 
are quite numbing for the mentor.  Fitnesses are 
almost all negative, melodic intervals tend to be 
large, and the frequency of “nice moments” is very 
low.  Sooner or later, though, a few pleasant licks 
begin to emerge, and one or two solid phrases tend 
to appear by the fourth or fifth generation.  If a 
very pleasing measure appears too early, it can 
become overused in a generation or two and may 
require the mentor start punishing a previously 
rewarded lick to thin it out.  Typically, at around 
the tenth generation, a “golden” generation occurs 

where almost all the new phrases sound reasonable.  
At this point, the mentor’s standards can shift from 
rewarding anything that sounds musical to 
rewarding only what really sounds nice. 

A preliminary analysis of population statistics 
gathered over several training runs shows that 
pitch, interval, and note length distributions shift in 
expected directions.  The initial pitch distribution is 
uniform, as would be expected from the 
initialization procedure, but it gradually “humps 
up” to look more normal after several generations.  
Large intervals tend to be bred out fairly quickly, 
particularly when the note lengths are short.  After 
several generations the interval distribution is 
heavily skewed toward short intervals, and the 
average interval shrinks from around seven scale 
steps to around two.  Note and rest lengths also 
become skewed toward the short end as very long 
notes and silences are bred out. 

5  Extensions and Conclusions 

Several enhancements and extensions are 
under way to improve GenJam’s performance.  An 
overhaul of the chord/scale mapping procedure is 
being designed that will apply knowledge-based 
techniques to a wider window on the chord 
progression.  This hopefully will correct a few bad 
scale choices currently made in some progressions. 

An attempt will be made to train a neural 
network to serve as at least a preliminary fitness 
function for at least the measure population.  The 
strategy will be to extract statistical features 
correlating with measure fitness to form a feature 
vector, which will be the input layer to a quick-
prop-style neural network.  The output layer will be 
a single node containing the fitness value.  The 
training data will come from the populations that 
have been saved from the approximately two dozen 
controlled training runs conducted so far. 

Another experiment will seed GenJam’s initial 
population with measures and phrases taken from 
existing tunes or transcribed solos.  A similar 
exercise will be to merge populations generated in 
separate training sessions to hopefully get the best 
of both.  GenJam’s two levels also could be 
extended upward to section, chorus, and/or tune 
levels. 

To place GenJam in a larger context, I’ll 
conclude with a brief mention of the role GAs 
could play in algorithmic composition.  GenJam 
shows that GAs can be a useful tool for searching a 
constrained melodic space.  Other specific 
compositional tasks should be easy to find, for 
example, evolving a bass line or percussion 
sequence or chord progression or series of 
voicings.  These small tasks might even be done 
concurrently in a more comprehensive system.  
Evolutionary programming techniques [Koza, 
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1992], where individuals map to programs or 
program fragments, also promise to broaden the 
uses of GAs in music.  Finally, the fact that 
“Genetic Algorithms” is a special topic area at 
ICMC 94 indicates that others are discovering 
GAs.  It would seem that GenJam is not alone! 
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