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Abstract

The face of hepatitis C virus (HCV) therapy is changing dramatically. Direct-acting antiviral

agents (DAAs) specifically targeting HCV proteins have been developed and entered clini-

cal practice in 2011. However, despite high sustained viral response (SVR) rates of more

than 90%, a fraction of patients do not eliminate the virus and in these cases treatment fail-

ure has been associated with the selection of drug resistance mutations (RAMs). RAMs

may be prevalent prior to the start of treatment, or can be selected under therapy, and fur-

thermore they can persist after cessation of treatment. Additionally, certain DAAs have

been approved only for distinct HCV genotypes and may even have subtype specificity.

Thus, sequence analysis before start of therapy is instrumental for managing DAA-based

treatment strategies. We have created the interpretation system geno2pheno[HCV]

(g2p[HCV]) to analyse HCV sequence data with respect to viral subtype and to predict drug

resistance. Extensive reviewing and weighting of literature related to HCV drug resistance

was performed to create a comprehensive list of drug resistance rules for inhibitors of the

HCV protease in non-structural protein 3 (NS3-protease: Boceprevir, Paritaprevir, Simepre-

vir, Asunaprevir, Grazoprevir and Telaprevir), the NS5A replicase factor (Daclatasvir,

Ledipasvir, Elbasvir and Ombitasvir), and the NS5B RNA-dependent RNA polymerase

(Dasabuvir and Sofosbuvir). Upon submission of up to eight sequences, g2p[HCV] aligns the

input sequences, identifies the genomic region(s), predicts the HCV geno- and subtypes,

and generates for each DAA a drug resistance prediction report. g2p[HCV] offers easy-to-

use and fast subtype and resistance analysis of HCV sequences, is continuously updated

and freely accessible under http://hcv.geno2pheno.org/index.php. The system was partially

validated with respect to the NS3-protease inhibitors Boceprevir, Telaprevir and Simeprevir
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by using data generated with recombinant, phenotypic cell culture assays obtained from

patients’ virus variants.

1. Introduction

Infection with hepatitis C virus (HCV) is a major health problem worldwide. It is estimated
that 130 to 150 million individuals are chronically infected with this virus [1]. Epidemiological
studies have shown that persistent infection with HCV leads to a significantly increased risk
of developing severe liver diseases, most notably liver cirrhosis and hepatocellular carcinoma
(HCC) [2]. The incidence of HCC in HCV infected individuals is 15 to 20 fold higher than in
HCV-negative individuals and, as a consequence, more than 350,000 people die from hepatitis
C-related liver diseases each year [3].

HCV is an enveloped RNA virus with a positive-sense single stranded genome and belongs
to the family Flaviviridae [4]. HCV infections are highly dynamic processes that are main-
tained by rapid production of new virions and continuous cell-to-cell spread. Model-based
approaches suggest a virion production rate of 1012 virions/day [5,6]. Moreover, genome
amplification by the HCV NS5B RNA-dependent RNA polymerase (RdRp) is characterized by
a high error rate (~ 10−3 errors per round of replication [7,8]), due to the lack of a proof-read-
ing mechanism. These two properties result in the high genomic variability of HCV that is
reflected in the existence of seven distinct genotypes (1 to 7) with a pairwise nucleotide diver-
gence (percentage of non-homologous genomic sites) of at least 30% and at least 67 distinct
subtypes (e.g. 1a, 1b,. . .) with a pair-wise nucleotide divergence of at least 20% [9,10].

The face of HCV therapy has changed dramatically since 2011. Novel direct-acting antiviral
agents (DAAs), designed to inhibit distinct steps in the HCV replication cycle have been
approved in the EU and the US. Currently, three classes of DAAs are available: inhibitors of
the NS3 protease, the NS5A replicase factor and the NS5B RdRp. The amino-terminal domain
of NS3 associates with NS4A to form the NS3-4A serine-type protease complex that catalyzes
the cleavage of the HCV polyprotein. NS5A plays multiple roles in the HCV replication cycle
such as induction of the membranous replication factory, acting as a cofactor for HCV RNA
replication, and supporting the assembly of infectious virus particles. The RdRp in NS5B is
responsible for viral RNA amplification. DAAs lay the foundation for all-oral, interferon-free
treatment regimens [11,12]. However, the specific DAA eligibility, resistance prevalence and
efficacy of treatment depend on the HCV geno- and subtypes [13–18]. Treatment failure with
DAAs has been associated with the selection of resistance-associated variants (RAVs) that
become majoritary during therapy either by de novo generation or a consequence of selection
from variants present at baseline [19–21]. Indeed, resistance mutations for different DAAs are
detected in therapy-naïve patients [16,21,22]. In addition, resistance mutations in NS3 were
shown to persist for months after cessation of therapy and even for years in case of NS5A resis-
tant variants [20,21,23–25], thus reducing the success rate with subsequent treatments and also
increasing the risk to spread new infections with DAA-resistant HCV variants [11]. The num-
ber of treatment failures and drug resistant variants is expected to increase within the next
years through selection pressure imposed by DAA-based therapy [11]. The characterization
of these variants and their impact on first-line and re-treatment strategies remains a great
challenge.

We have developed geno2pheno[HCV] (g2p[HCV]), a web-service that supports the analysis
of HCV sequence data with respect to geno- and subtypes and possible resistance against
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licensed DAAs. g2p[HCV] is a new member of the geno2pheno family, a set of web-based inter-
pretation tools for analyzing sequences of hepatitis B virus and human immunodeficiency
virus [26–28]. The subtyping algorithm of g2p[HCV] accounts for all geno- and subtypes recog-
nized by the International Committee for Taxonomy of Viruses [10]. The drug resistance
analysis is based on a comprehensive set of rules that were collected from clinical and in vitro

studies and were reviewed and carefully weighted by an expert panel. g2p[HCV] can be freely
accessed via an easy-to-use web interface and affords the export of the analysis in PDF format
to facilitate communication and storage of results. g2p[HCV] may be used by researchers and
may help physicians in developing personalized treatment schedules. To evaluate g2p[HCV], we
used a selected number of HCV variants from patients suffering from therapy failure and con-
ducted phenotypic assays to monitor drug sensitivity and replication fitness.

2. Materials and Methods

2.1. Geno2pheno[HCV] prediction tool

2.1.1. Reference sequence set. For subtyping, a reference alignment of 191 reference
sequences for seven genotypes including 82 assigned subtypes and 35 unassigned subtypes was
obtained in February 2015 from the International Committee for Taxonomy of Viruses [10].
From this reference alignment we extracted genomic regions relevant for drug resistance.
These include: the protease domain of NS3 (up to amino acid position 181 of NS3), the amphi-
pathic α-helix and the D1 domain of NS5A (up to amino acid position 213 of NS5A), and the
complete NS5B region. For each region and subtype we defined one sequence to be the default
reference sequence (e.g. H77 for 1a, HCV-J for 1b, etc.). The default reference is used for sub-
typing and for reporting genetic variants.

2.1.2. Query Sequence Processing. g2p only processes nucleotide sequences. Mixtures of
nucleotides at an individual position can be included if they are coded as indicated by the Inter-
national Union of Pure and Applied Chemistry (IUPAC) [http://www.bioinformatics.org/sms/
iupac.html]. A query sequence that is submitted as input to g2p is processed as follows: (1)
the genomic region is identified, (2) the geno- and subtypes are identified, (3) the nucleotide
sequence is translated into an amino acid sequence and a list of amino acid variants is
extracted, (4) the amino acid variants are subjected to the rule set to perform the drug resis-
tance analysis. We now describe these processing steps in more detail.

2.1.2.1. Identification of the genomic region: To identify all the genomic regions present
in the query sequence, g2p aligns the query sequence against the multiple sequence alignments
of the NS3, NS5A and NS5B regions. For each genetic region, the system computes the align-
ment length and alignment quality. Alignment length is the number of columns in the multiple
sequence alignment that do not contain any gaps. If the alignment length is less than 100, the
query sequence is found to be of poor quality and it is not analyzed any further. Otherwise, the
sequence similarity between the aligned query sequence and each reference sequence is com-
puted. Sequence similarity is defined as the number of aligned characters that match divided
by the alignment length. If sequence similarity is less than 65% the query sequence most likely
contains many sequencing errors and is not analyzed any further. To summarize, regions of
the query sequence are identified that correspond to NS3, NS5A and NS5B, and then all the
query regions that satisfy the quality checks are analyzed.

2.1.2.2. Geno- and subtypes prediction: it is carried out individually for each query region
and is based on homology. The geno- and subtypes of the query region are determined by the
geno- and subtypes of the reference sequence with which the query sequence has the highest
sequence similarity (proportion of matching characters). For subtype 1a sequences, also the
clade classification is provided [16,29]. Sequence similarities against all reference sequences are
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displayed in the results page. This method was validated with 177 sequences (see Materials and
Methods, section Subtyping validation).

2.1.2.3. The query region is translated into the corresponding amino acid sequence:

Depending on the settings (flag 3 selection) in the input page (use H77 or use the most similar
reference sequence), all substitutions with respect to the corresponding reference are extracted.
Nucleotide ambiguities of the query sequence are processed accordingly and might result in
several possible amino acids present at a single position (denoted by, e.g. I170IV). Note that for
the amino acid positions we always refer to the sequence H77 as a numbering reference (Gen-
Bank Accession number AF011751). At the end of this step, for each query region, the system
generates a list of amino acid substitutions.

2.1.2.4. Rule set: An extensive literature survey was performed in order to obtain a compre-
hensive summary of the knowledge on drug resistance to NS3 inhibitors (Asunaprevir, Boce-
previr, Grazoprevir, Paritaprevir, Simeprevir, and Telaprevir), NS5A inhibitors (Daclatasvir,
Elbasvir, Ledipasvir, and Ombitasvir), and NS5B inhibitors (Dasabuvir and Sofosbuvir)
[20,30–73]. The final rule set was selected by a panel of experts. Each rule is represented by a
Boolean expression (see next paragraph) and is associated with a list of geno- and subtypes to
which the rule applies, a summarizing drug resistance prediction (see Table 1), and references
to the relevant literature and the levels of evidence. The levels of evidence were established
similarly to the classification system used by the European HIV Drug Resistance Guidelines:
I = based on at least one prospective randomized study using surrogate markers e.g. viral load;
II = based on at least one retrospective study; III = expert opinion based on scientific evidence
derived from other clinical and in vitro observations.

Each resistance rule is either a simple rule like pos1AA1 (e.g. 155K) or one of the following
compound rules:

1. pos1AA1 or pos1AA2 or . . . or pos1AAn (e.g. 168A or 168H or 168T or 168Y)

2. pos1AA1 and pos2AA2 and . . . and posnAAn (e.g. 28M and 31F)

where AAi indicates the amino-acid observed in the query at position posi.
2.1.3. Applying resistance rules to the query sequence. For the major geno- and subtypes

of HCV (1a, 1b, 2a, 2b, 3a, 4a and 4d), the procedure for determining drug resistance is as fol-
lows. Flag 4 in the input page allows for the selection of resistance rule set. The default option
enables the specific resistance rules that are applicable for the geno- and subtypes and region of
the query. If the option “ignore subgenotype for drug resistance prediction” is selected, then all
resistance rules applicable to the region of the query will be used.

Table 1. Description of the summarizing drug resistance prediction.

Rank Resistance prediction Description

1 resistant The provided sequence contains at least one of the so far known
resistance-associated mutations for this drug class (see “Rules”-tab).

2 possibly resistant The provided sequence contains at least one mutation related to
resistance but whose specific fold change/therapy failure association
has not been determined yet (see “Rules”-tab).

3 substitution on scored
position

The provided sequence contains mutation(s) in (an) amino acid residue
(s) related to resistance but whose specific fold change/therapy failure
association has not been determined yet (see “Rules”-tab).

4 susceptible The provided sequence contains none of the so far known resistance-
associated mutations for this drug class (see “Rules”-tab).

5 not licensed for
genotype

The drug is not licensed for the predicted genotype.

doi:10.1371/journal.pone.0155869.t001
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The application of each rule in the list to the amino acid substitutions present in the query
results in one of the following cases. The cases are listed in increasing order of susceptibility to
the drug corresponding to the rule.

1. The rule applies fully. All amino acid substitutions required by the rule are present in the
query. The associated drug resistance prediction is either “possibly resistant” or “resistant”.
This is determined by the corresponding entry in the rules table.

2. The rule applies partially. This occurs when the resistance rule is a complex rule of type 2
and only some of the variants are present in the query. The associated drug prediction is
“rule applies partially”.

3. There is a substitution at a resistance conferring position but the observed substitution is
not known to confer resistance. The associated drug prediction is “substitution on scored
position”.

For rare geno- and subtypes there is not sufficient clinical or phenotypic-assay based evi-
dence to confidently make resistance predictions for any observed substitution. However it is
possible that a substitution in a rare geno- and subtype may be of clinical importance if it is
known to confer resistance in a closely related common subtype. In order to report such substi-
tutions in rare geno- and subtypes g2p first identifies the common geno- and subtypes that is
most similar to the query by homology. For instance if the query has been geno- and subtyped
as 4k, a rare geno- and subtypes, then the common geno- and subtypes will be 4d, the most
similar common geno- and subtypes. Subsequently it is checked which rules fully apply for the
common geno- and subtypes. The associated drug prediction is “resistance-associated muta-
tion (RAM) in related common geno- and subtypes”.

2.1.4. Validation of subtyping. 1684 non-recombinant full genome sequences annotated
with geno- and subtypes were downloaded from the Los Alamos HCV Sequence Database
[74]. All sequences that are contained in the genotyping reference set were removed. Addition-
ally, the sequences with the accession numbers AY878650, AY878651, KC197235, and
KC197240 were also excluded (due to likely incorrect geno- and subtypes annotations). From
the remaining set of sequences at most 20 sequences for each geno- and subtypes were ran-
domly selected. This resulted in a test set of 177 full genome sequences covering the following
33 subtypes: 1a, 1b, 1c, 2a, 2b, 2c, 2i, 2j, 2k, 2m, 3a, 3b, 3i, 4a, 4d, 4f, 4l, 4m, 4n, 4o, 4r, 5a, 6a,
6b, 6e, 6f, 6i, 6l, 6m, 6n, 6o, 6t, and 6v.

We tested our homology-based subtyping approach for different lengths of the query
sequence (50, 100, 200, 300, 500, 700, and 900 base-pairs) constructed at randomly selected
genomic positions to see which length of the input sequence would allow for accurate subtyp-
ing. We further expanded the test set by introducing random nucleotide mutations to the
sequences at different error rates: 0%, 10%, 20%, or 30% of the sequence positions. An error
rate of x% means that nucleotides at x% of randomly selected positions were substituted with
an arbitrary other nucleic acid.

2.2. Phenotypic resistance determination

For validation of the g2p predictions we used 11 samples from 11 patients included in the
PEPSI Study The samples displayed different patterns of resistance-associated mutations
(RAMs). Phenotypic resistance assays to the protease inhibitors boceprevir (BOC), telaprevir
(TVR) and simeprevir (SMV) was conducted by using a method described elsewhere [75]. In
brief, HCV RNA was isolated from the blood samples using the Magna Pure Systems (Roche)
according to the manufacturer’s protocol. RT-PCR (One Step RT-PCR Kit, Qiagen, Hilden,
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Germany) was performed as previously described [76], but with HCV subtype-specific primers.
NS3/protease amplicons were purified and inserted into the subgenomic HCV replicon
pFKi341-PiLucNS3-3'_ET [77] that was modified to contain ClaI and AscI restriction sites
[75]. These were used to insert NS3-specific amplicons obtained with patient sera. Insert
sequences were checked by sequencing (GenBank Accession Numbers: KP409203-KP409213).
Then, Replicon-encoding plasmid vectors were used for in vitro transcription and replicon
RNAs were transfected into Huh7-Lunet cells by electroporation [78]. Different concentrations
of the drugs were added to the transfected cells and replication was determined by luciferase
assay [78]. All measurements were performed in triplicate. IC50 values were calculated using
the GraphPad Prism software package by applying non-linear regression fit curves. The mean
IC50 value was then normalized to the IC50 values of the corresponding reference construct and
expressed as mean fold-change IC50 value.

2.2.1. Ethics statement. All patients enrolled in the PEPSI Study gave their written con-
sent allowing the use of their blood samples for scientific purposes. The PEPSI Study has been
approved by the ethics committee of the Medical Council North Rhine (Ärztekammer Nord-
rhein, Germany), No. 2012048.

3. Results and Discussion

3.1. Geno2pheno[HCV] web interface

The web-service geno2pheno[HCV] (http://hcv.geno2pheno.org/index.php) was created to pre-
dict clinically relevant phenotypes based on viral sequence data. The web interface provides
several pages, namely the input, results, rules, reference, contact and team pages (Fig 1).

3.1.1. Input page. In the input page a user can enter (1) a sequence identifier that is dis-
played throughout the data analysis, (2) up to eight query sequences in FASTA format, (3) the
H77 flag that specifies whether the list of amino acid substitutions should be listed with respect
to H77 or with respect to the subtype specific reference, (4) the subtype flag which determines
whether only the rules specific for the subtype inferred from the input sequence should be used
or whether all rules should be used, (5) the alignment width used for the graphical representa-
tion of the alignment, (6) the CSV flag which allows the user to download the results as a CSV
file, and (7) the action menu which allows the user to load a set of sample sequences or start
the analysis.

3.1.2. Results page. Upon pressing the action button “Align and Predict” in the input
page, g2p[HCV] performs the analysis and automatically switches to the result page. The result
page offers one subpage for each query sequence with labels ranging from “1” up to “8”. Each
of these so-called sequence pages further contains three subpages, the alignment subpage, the
prediction subpage, and the subtype subpage.

The alignment sub-page provides visual representation of the nucleotide and amino acid
sequence alignments of the NS3, NS5A, and NS5B regions of the query to the respective refer-
ence sequence. The alignment contains visual markers for RAMs to indicate mutations with
respect to the selected reference sequence.

The prediction subpage contains the following three tables: (1) sequence information, (2)
drug resistance prediction, and (3) detailed mutation information.

3.1.2.1. The sequence information table: it contains the sequence identifier (extracted
from the FASTA header and combined with the identifier provided at the input page), the pre-
dicted subtype (in parentheses we provide the sequence similarity at the nucleotide level to the
closest reference sequence) and the clade classification for subtype 1a sequences, the amino
acid positions covered by the query, (in parentheses we indicate whether there are positions rel-
evant to drug resistance that are not covered by the query), the list of amino acid substitutions
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with respect to the selected reference, and the GenBank accession number of the selected
reference.

3.1.2.2. The drug resistance table: it contains the summary result of the drug resistance
prediction. It has one row for each drug associated with the genomic region(s) identified in the
query sequence. Each row contains the overall resistance prediction (see Table 1 for a detailed
description) and the list of amino acid substitutions relevant for the prediction (so called scored
mutations). The overall resistance prediction is shown in the right column as a colored square:
green for “substitution on scored position” and “susceptible”, yellow for “possibly resistant”
and red for “resistant”. The drug overall resistance prediction is the worst prediction among
the resistance predictions corresponding to all scored mutations for that drug. For example if
there are three scored mutations for a drug with the resistance predictions “resistant”, “possibly
resistant” and “substitution on scored position” then the overall resistance prediction is “resis-
tant”. If no scored mutations are found for a drug then the overall resistance prediction is “sus-
ceptible”. If the drug is not licensed for the subtype of the query then, instead of a resistance
prediction, the message “drug not licensed for subtype” is displayed, and no color is provided
for the overall resistance.

3.1.2.3. The detailed mutation information table: it contains one row for each scored
mutation and lists its resistance prediction.

The genotype sub-page contains the list of sequence similarities of the query sequence with
respect to all reference sequences. The list is sorted in the order of decreasing sequence similarity

Fig 1. Multiple snapshots of the geno2pheno[HCV] web interface. (A) The input page that allows the uploading of the sequence data and the
configuration of the analysis. (B) The prediction sub-page that summarizes the subtype and drug resistance analysis. (C) The alignment sub-page (D)
The drug resistance rule set as reference. (E) The PDF output to facilitate communication and storage of results.

doi:10.1371/journal.pone.0155869.g001
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and may be helpful in assessing the reliability of the subtyping result. The genotype subpage also
includes a “Download PDF” button to get a full report PDF that can be filled in for medical
records.

3.1.3. Rules page. The complete set of rules used for the drug resistance predictions is pro-
vided in the rules page. Each row corresponds to a rule associated with drug resistance. The
entries of each row are (1) drug for which the rule is applicable, (2) target HCV protein, (3) the
resistance rule provided as a Boolean expression, (4) the list of geno- and subtypes for which
the rule is applicable, (5) the resistance prediction, (6) a list of scientific references from which
this rule was derived and, (7) the evidence level qualifying the amount of clinical and pheno-
typic evidence that supports this rule.

3.1.4. References, contact, and team page. The Reference page contains the full descrip-
tion of all references cited in the Rules page. The Contact page provides contact information
regarding g2p[HCV]. Please do not hesitate to let us know if you find our service useful or if you
run into any issues using our service. The Team page lists all the institutions and collaborators
instrumental in the creation, maintenance and updating of g2p[HCV].

3.2. Subtyping validation

A test set of 177 full genome HCV sequences of 33 different subtypes was compiled from the
Los Alamos HCV sequence database. The detailed results of the subtyping validation are pro-
vided in S1 and S2 Figs. In short, we found that subtyping results are reliable if the sequence
length is at least 300 base pairs (irrespective of genomic location). This resulted in 100% accu-
racy on our test set for the genomic regions encoding NS3 and NS5A independent of the error
rate. Thus, even after flipping 30% of the bases the correct genotype could always be inferred.
Subtyping accuracy for NS5B with a sequence length of at least 300 bases amounted to 97.1%
to 98.3% depending on the error rate. We also analyzed the sequence similarity to the closest
subtype which is provided as a quality criterion for the subtype predictions. For sequence
lengths of at least 300 and error rates of at most 10%, 4202 of 4248 (98.9%) predictions
exceeded a sequence similarity of 80%. Only 3 of the 4202 (0.07%) predictions that exceeded a
sequence similarity of 80% were incorrect. The true subtypes for the incorrect predictions are
6n, 6o, and 6n; and the predicted subtypes are 6o, 6a, and 6e, respectively. The remaining 3999
(99.93%) predictions were correct. On the other hand, 46 of 4248 predictions had a sequence
similarity that was less than 80%. Of these 22 (47%) predictions were correct and 24 (53%)
were incorrect. Thus, homology-based subtyping of at least 300 base-pairs long sequences was
found to be reliable on our test set for cases where the sequence similarity to the closest subtype
exceeded 80%.

3.2.1. Validation of predictions of drug resistance by using a phenotypic assay.

NS3-specific sequences were amplified from 11 patient sera and the amplicons were inserted
into a subgenomic HCV replicon of the isolate Con1 engineered to allow easy transfer of NS3
amplicons via unique restriction sites. In this way, for each patient sample an NS3-specific
library contained in a subgenomic replicon was generated and transfected into Huh7-Lunet
cells. Their resistance to the NS3 protease inhibitors BOC, TVR and SMV was determined (Fig
2) and is expressed as “Fold-Change” (FC; Table 2). These results were compared to the predic-
tions obtained with geno2pheno[HCV]. We found that phenotypic resistance determination
with the replicon system correlated well with the corresponding genotypic resistance prediction
by geno2pheno[HCV]. For clinical purposes it is important that samples detected to be highly
resistant (FC� 10) by phenotypic assays were also predicted as such by geno2pheno[HCV].

Geno2pheno[HCV] – HCVGenotyping and Drug Resistance Analysis

PLOS ONE | DOI:10.1371/journal.pone.0155869 May 19, 2016 8 / 16



3.3. Use cases

The first version of the geno2pheno[HCV] was made available for scientific use in March 2011
and has been regularly updated. The current g2p[HCV] version (Oct 21st, 2015) is based on a
rule set that incorporates state-of-the-art knowledge, is hand curated by the authors, and is reg-
ularly updated to account for novel developments. g2p[HCV] can be useful in a variety of scenar-
ios. In the following we describe two typical use cases.

3.3.1. Case 1: patient 15170. A virus from a treatment-naïve patient was subtyped as 1a.
Planned treatment for this patient was a combination therapy of Sofosbuvir plus Simeprevir.
Resistance analysis performed with g2p[HCV] revealed the presence of the Q80K mutation in
the NS3 region. The Q80K mutation has been associated to lower response and also led to

Fig 2. Examples of phenotypicmeasurements of PI susceptibility. The curves in green correspond to the susceptible controls (Hybrid /Con1), those
in red to the resistant construct 36A, and the black ones to the specific sample. A) Samples #10172 and 10304 are resistant to BOC; B) Samples #10172
and 10304 are susceptible to TVR.

doi:10.1371/journal.pone.0155869.g002
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SMV resistance in phenotypic assays [79–82]. In addition, SMV fold changes of resistance
up to 11 have been detected in vitro [37,38,50]. Due to this evidence another treatment
strategy was chosen and the patient was subjected to a 12-week treatment with Sofosbuvir plus
Ledipasvir, as the patient sequence did not show any resistance to these two drugs. The patient
achieved sustained virological response.

3.3.2. Case 2: patient 16083. A virus from a treatment naïve HCV was subtyped as 1a.
The patient was then planned for a combination therapy of Paritaprevir, Ombitasvir and Dasa-
buvir. Resistance analysis followed by interpretation with g2p[HCV] revealed the presence of the
Q80K mutation in the NS3 region and 444D+556G in the NS5B region. The mutations 444D
and 556G are described to confer resistance to Dasabuvir [64]. Consequently, the patient
started treatment of Sofosbuvir plus Ledipasvir. 12 weeks after starting treatment (last value
available), the viral load was still below the limit of detection.

3.4. Statistics of site usage

We tracked the number of unique queries per day that were submitted to g2p[HCV] since its
launch in March 2011. We found that geno2pheno[HCV] is a popular tool which received an
average of 4600 queries per month in 2015. See Fig 3 for the cumulative queries per quarter
fromMarch 2011 up till December 2015.

3.5. Conclusion

To our knowledge, we present the first and only freely available web-service that provides an
analysis of HCV sequence data with respect to subtype and simultaneously drug resistance.
The service can interprete baseline drug resistance mutations and can be helpful in optimizing
antiviral therapy.

We are committed to continuously updating g2p[HCV] when novel drugs or resistance pat-
terns are available. In addition, our access to phenotypic resistance determination assays will

Table 2. Phenotypic FC determinations.

Sample/Library RAMs BOC TVR SMV

g2p FC assay g2p FC assay g2p FC assay

Con1 132V S 1.0 S 1.0 S 1.0

Hybrid - S 1.0 S 1.0 S 1.3

36A 36A+132V R 2.4 R 7.5 PR 1.0

9712 36A+132L+170V R 1.5 PR 2.2 R 1.3

10172 36L R 6.3 PR 6.3 PR 2.0

10304 36M+155K+170V R 63.4 R 21.2 R 117.3

10615 80L S 1.3 S 1.0 S 1.2

11392 122G+174S S 0.3 PR 0.8 S 0.7

11429 132V S 0.7 S 0.9 S 0.5

11435 41H+117H+132V S 1.5 PR 1.0 S 0.4

11610 36M+80K+155K+174S R 31.8 R 25.9 R 5.5x107

12292 80K+132V+174S S 1.8 PR 1.4 R 2.2

12476 174S S 1.1 PR 2.8 S 2.0

12516 80K S 1.6 S 0.5 R 9.1

g2p: S = susceptible; PR = possibly resistant; R = resistant; FC assay: fold change calculated from the phenotypic resistance assay

doi:10.1371/journal.pone.0155869.t002
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permit us to further validate the system but also to test mutations in target genes whose role in
resistance is not clearly elucidated.

For the future, we also see high potential in the integration of additional host markers into
g2p[HCV] to further improve treatment recommendations. g2p[HCV] can freely be accessed at
http://hcv.geno2pheno.org/index.php.

Supporting Information

S1 Fig. Sequences subtyped against sequence length for each setting of genetic region and

error rate. Each panel plots the number of sequences that were subtyped correctly (pink) and

Fig 3. Cumulative number of queries per quarter that was submitted by users since the launch of the web-server g2p[HCV].

doi:10.1371/journal.pone.0155869.g003
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incorrectly (blue). For each genetic region, contiguous sequences of the specified length were
randomly sampled and x% (error rate) of sequence characters were substituted with another
nucleotide. The subtype for this sequence was given by subtype of the reference sequence that
was most similar (%matches) to the sequence. Results are shown for 100 sequences constructed
for each setting of error rate, sequence length and genetic region.
(TIF)

S2 Fig. Similarities between the sequences and the reference of the correct subtype. Each
panel shows the similarity between the query sequence and the reference of the correct subtype,
against sequence length for each setting of genetic region and error rate. Cases where the
sequence was subtyped correctly are shown in pink and the rest are shown in blue. For each
genetic region, contiguous sequences of the specified length were randomly sampled and x%
(error rate) of sequence characters were substituted with another nucleotide. The subtype for
this sequence was given by subtype of the reference sequence that was most similar (%matches)
to the sequence. Results are shown for 100 sequences constructed for each setting of error rate,
sequence length and genetic region.
(TIF)
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