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1. Introduction

In the real world, Optimal control problems are
concerned with the effective allocation of limited
resources, with the main objective of achieving
the set goals. A classic example will be how a
firm can use the limited budgets or labour hours
of its employees with an overall objective of min-
imizing costs and maximizing revenue.

Fractional optimal control problems (FOCPs) are
an extension of the optimal control problems
[1–3]. In an optimal control problem, the restric-
tions are presented as integer order differential
equations. On the other hand, in a FOCP, the
restrictions are in the form of fractional differen-
tial equations.

Thus, optimal control problems are subsets of
FOCPs. Imposing specific conditions on an
FOCP yields the optimal control problem. As in
the fractional and integer order derivatives sce-
nario, there is a general consensus that models

formulated from FOCPs capture real world phe-
nomenon more effectively that the models con-
structed from Optimal control problems. How-
ever, one major drawback with FOCPs models
is that they are cumbersome to solve. Gener-
ally, we solve FOCPs either indirectly or directly.
Methods that solve indirectly convert the original
problem into a different state, for example into
a boundary value problem in Pontryagin’s maxi-
mum principle. Directly solving an optimal con-
trol problem involves approximating its solution
numerically.

Polynomials play a crucial role in most numerical
methods for approximating differential equations.
Some of them that we frequently make use of are,
Legendre polynomials [4, 5], Fibonacci polynomi-
als [6], Bernstein polynomials [7], Laguerre poly-
nomials [8], shifted Chebyshev polynomials [9]
and Genocchi polynomials [10].

The application of polynomials has also filtered
through to the numerical approximation of the
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FOPCs. In [11], the authors make of the Le-
gendre orthonormal polynomials to numerically
solve FOCPs, they apply the Legendre-Gauss
quadratic formula and the Lagrange multiplier
method to convert the problem to a system of
equations. Agrawal makes use of the fractional
integration by parts, variational calculus and
the Lagrange multiplier to create Euler-Lagrange
equations in a quadratic numerical scheme that
approximates the solutions of FOCPs [12].

Sweilam and Al-Ajami apply the Legendre poly-
nomials as they use two different approaches to
approximate the solutions of FOCPs [13]. In the
first approach, they approximate the necessary
optimality conditions associated with the Hamil-
tonian. Then, in the second approach, they em-
ploy the trapezoidal rule and the Rayleigh-Ritz
to formulate a system of equations.

Rabiei, Ordokhani and Babolian applied the
Bernoulli polynomials together with the Newton
iterative method to approximate the solutions of
one and two dimensional systems of FOCPs [14].
The same authors used the Boubaker polynomials
to approximate FOCPs [15].

This research seeks to make a contribution to-
wards the direct solution of FOCPs. In essence,
we approximate the solution of the FOCPs
through the use of Gennochi polynomials.

We divide our work into sections that address dif-
ferent aspects of the research. Section two deals
with definitions and theorems that lay the nec-
essary mathematical foundation. Section three
presents our main results, we concisely describe
our suggested numerical scheme. We substantiate
our proposed scheme by giving practical examples
in section four. Detailed explanations that cover
our research findings are provided in the last sec-
tion.

2. Mathematical framework

This section of the paper lays some mathematical
background for the next section. We give some
definitions and theorems that will be applied in
section three.

Definition 1. The Genocchi polynomial, Pq(t),
of degree q is defined as,

Pq(t) =

q∑
d=0

(
q

d

)
gq−dt

d, (1)

gq = 2(1 − 2q)βq, gq and βq are Genocchi and
Bernoulli numbers respectively.

The Genocchi polynomials exhibit some of the fol-
lowing properties,

(i)
∫ 1
0 Pq(t)Pa(t)dt =

2(−1)qq!a!

(a+ q)!
ga+q, q, a ⩾ 1.

(ii) P ′
q(t) = qPq−1(t), q ⩾ 1.

(iii) P(d)
q (t) =

0 q ≤ d,

d!

(
q

d

)
gq−d, q > d.

(iv) Pq(1) + Pq(0) = 0, q > 1.

Definition 2. The Caputo fractional derivative
of order γ acting on x(t) is defined as,

Dγ
t x(t) ={

1
Γ(q−γ)

∫ t
0

x(τ)
(t−τ)1+γ−q dτ, q − 1 < γ < q

x(q)(t), γ = q.

Theorem 1. Let f(t) ∈ L2[0, 1],
P(t) = [P1(t),P2(t), · · · ,PN (t)]T and C =
[c1, c2, · · · , cN ]T , then we can approximate f(t) in
the form,

f(t) ≈
N∑
b=0

χbPb(t) = CTP(t), (2)

with C = ⟨P(t),P(t)⟩−1⟨f(t),P(t)⟩,
where ⟨., .⟩ denotes an inner product over the de-
fined interval.

Theorem 2. Suppose that
Ωr = span{P1(t),P2(t), · · · ,PN (t)} ⊂ H =
L2[0, 1], and s(t) ∈ Cq+1[0, 1]. If sq(t) is the best
approximation to s(t) out of Ωr, then an analyti-
cal expression for the error can be expressed as,

∥ s(t)− sq(t) ∥2≤
µ

(q + 1)!

1√
2q + 3

. (3)

Where µ = maxt∈[0,1] | s(q+1)(t) |.

Proof. We consider the Taylor series,

s1(t) = s(0) + s′(0)t+ s′′(0)
t2

2!
+ · · ·

+ s(q)(0)
tq

q!
. (4)

Since sq(t) is the best approximation of s(t) in Ωr,
we have,
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∥ s(t)− sq(t) ∥2 ≤ ∥ s(t)− s1(t) ∥2

=

(∫ 1

0
| s(τ)− s1(τ) |2 dτ

) 1
2

≤

(∫ 1

0

(
µ

τ q+1

(q + 1)!

)2

dτ

) 1
2

≤ µ

(q + 1)!

(∫ 1

0
τ2q+2dτ

) 1
2

=
µ

(q + 1)!

1√
2q + 3

.

Therefore, we have lim
q−→∞

∥ s(t) − sq(t) ∥2= 0.

This completes the proof. □

Theorem 3. Given P(t) = [P1(t),P2(t), · · · ,
PN (t)]T , then the N×N operational matrix of the
derivative D,

P ′(t) = DP(t), (5)

is given as,

D =



0 0 0 . . . 0 0 0
2 0 0 . . . 0 0 0
0 3 0 . . . 0 0 0
0 0 4 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . N − 1 0 0
0 0 0 . . . 0 N 0


. (6)

Corollary 1. The qth order derivative opera-
tional matrix is represented as,

P(q)(t) = DqP(t). (7)

Lemma 1. If f = 1, . . . , ⌈γ⌉−1, then the deriva-
tive of order γ acting on Genocchi polynomials is
given as,

DγPf (t) = 0, (8)

⌈γ⌉ denotes the ceiling of γ, this is the least inte-
ger that is greater than γ.

Theorem 4. The Caputo derivative of P(t) with
order γ can be approximated as,

DγP(t) ≃ ZγP(t), (9)

where Zγ is called the operational matrix of Ca-
puto derivative based on P(t).

Zγ =



0 0 . . . 0
...

... · · ·
...

0 0 · · · 0∑⌈γ⌉
d=⌈γ⌉Ω⌈γ⌉,1,d

∑⌈γ⌉
d=⌈γ⌉Ω⌈γ⌉,2,d . . .

∑⌈γ⌉
d=⌈γ⌉Ω⌈γ⌉,N,d

...
... . . .

...∑f
d=⌈γ⌉Ωf,1,d

∑f
d=⌈γ⌉Ωf,2,d . . .

∑f
d=⌈γ⌉Ωf,N,d

...
... . . .

...∑N
d=⌈γ⌉ΩN,1,d

∑N
d=⌈γ⌉ΩN,2,d . . .

∑N
d=⌈γ⌉ΩN,N,d


(10)

Proof.

DγPf (t) =

f∑
k=0

i!gf−d

(f − d)!d!
Dγtd

=

f∑
d=⌈γ⌉

f !gf−d

(f − d)!Γ(d+ 1− γ)
td−γ , (11)

The term td−γ is approximated in the form of a
product that consists of coefficients and Genocchi
polynomials,

td−γ =

N∑
b=1

χb,kPb(t), d = ⌈γ⌉, · · · , f (12)

Inserting (12) in (11) gives,

DγPf (t)

=
N∑
b=1

 f∑
d=⌈γ⌉

f !gf−d

(f − d)!Γ(d+ 1− γ)
χb,d


× Pf (t)

=
N∑
b=1

 f∑
d=⌈γ⌉

Ωf,b,d

Pb(t), (13)

where,

Ωf,b,d =
f !gf−d

(f − k)!Γ(d+ 1 + η)
χb,d. (14)

Eq. (13) can be evaluated into the form,

DγPf (t)

=

 f∑
d=⌈γ⌉

Ω⌈γ⌉,1,d

f∑
d=⌈γ⌉

Ω⌈γ⌉,2,d · · ·

f∑
d=⌈γ⌉

Ω⌈γ⌉,N,d

P(t), (15)

f = ⌈γ⌉, . . . , N.



Genocchi polynomials as a tool for solving a class of fractional optimal control problems 163

Applying Lemma 1 and Eq. (15) completes the
proof. □

Lemma 2. If H denotes a Hilbert space and η is
an arbitrary element of H, let V = {τ1, τ2, . . . , τn}
be a closed subspace of Hilbert space whose τ0 is
the unique best approximation to η out of V . Then

∥η − τ0∥2 =
Gram(η, τ1, τ2, . . . , τq)

Gram(τ1, τ2, . . . , τq)
, (16)

with,

Gram(η, τ1, τ2, . . . , τq) =

⟨η, η⟩ ⟨η, τ1⟩ . . . ⟨η, τq⟩
⟨τ1, η⟩ ⟨τ1, τ1⟩ . . . ⟨τ1, τq⟩

...
...

...
⟨τq, η⟩ ⟨τq, τ1⟩ . . . ⟨τq, τq⟩

(17)

Proof. Kreyszig, 1978 [16].

Lemma 3. If sN is an approximation of s ∈
L2[0, 1], then [17],

s(t) ≃ sN (t) =
N∑
q=1

sqPq(t), (18)

we define,

LN (s) =

∫ 1

0
[s(t)− sN (t)]2dt, (19)

such that,

lim
N−→∞

LN (s) = 0 (20)

Theorem 5. The fractional differentiation ma-
trix has an error that is bounded as,

∥ W γ
q ∥≤|

f∑
d=⌈γ⌉

f !gf−d

(f − d)!Γ(d+ 1− γ)
|

×
(
Gram(td−γ ,P1(t), . . . ,PN (t))

Gram(P1(t), . . . ,PN (t))

) 1
2

(21)

W γ = DγP(t)− ZγP(t), (22)

W γ is composed of individual elements that are
represented as,

W γ = [W γ
q ]N×1, q = 1, · · · , N. (23)

Proof. Taking into consideration both Eq. (12)
and Lemma 2 yields,

∥ td−γ −
N∑
b=1

χb,dPb(t) ∥

=

(
Gram(td−γ ,P1(t), . . . ,PN (t))

Gram(P1(t), . . . ,PN (t))

) 1
2

.

(24)

Therefore, we have

∥ W γ
q ∥=∥ DγP(t)− ZγP(t) ∥

≤ |
f∑

d=⌈γ⌉

f !gf−d

(f − d)!Γ(k + 1− γ)
|

× ∥ td−γ −
N∑
b=1

χb,dPb(t) ∥

≤ |
f∑

d=⌈γ⌉

f !gf−d

(f − d)!Γ(d+ 1− γ)
|

×
(
Gram(xd−γ ,P1(t), . . . ,PN (t))

Gram(P1(t), . . . ,PN (t))

) 1
2

.

(25)

□

3. Methodology

This section constitutes the main results of this
research, we discuss the algorithm of our numeri-
cal technique.
We attempt to approximate the solution of the
problem,

min K =

∫ 1

0
L(t,m(t), r(t))dt, (26)

with the system dynamics,

Aṁ(t) +BDγ
t m(t) = f(t,m(t), r(t)),

0 < γ ≤ 1, (27)

and the initial condition,

m(0) = m0, (28)

A,B ̸= m0 denote fixed real numbers, m(t) and
r(t) are state and control variables respectively.
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We express both the state and control variables
as a product of coefficients to be computed and
Genocchi polynomials,

m(t) ≃ MTP(t), (29)

r(t) ≃ RTP(t). (30)

MT and RT are expressed as,

MT = [m0, · · · ,mN ], (31)

RT = [r0, · · · , rN ]. (32)

Introducing the derivative operator (9) in (29)
means,

Dγm(t) = XTZγP(t). (33)

Substituting (29) and (30) in (26) gives,

min K ≃
∫ 1

0
L(t,MTP(t), RTP(t))dt. (34)

Substituting (29) and (30) in (27), thereafter ap-
plying (5) and (33), we get,

AMTDP(t) +BMTZγP(t) (35)

= f(t,MTP(t), RTP(t)), 0 < γ ≤ 1.

Substituting (29) in the initial condition (28)
gives us,

MTP(0) = m0. (36)

We note that (36) is an equation with unknowns
in MT .

We deduce the residual R(t) from (35) as,

R(t) = AMTDP(t) +BMTZγP(t)

−f(t,MTP(t), RTP(t)). (37)

We then create a system of N − 1 equations
through the application of the Tau method as,

∫ 1

0
R(t)Pb(t)dt = 0, b = 1, · · · , N − 1. (38)

The number of equations from (38) and one equa-
tion from (36) are not enough to match the num-
ber of unknowns in MT and RT . Thus addi-
tional equations are required, we will apply the

Lagrange multipliers method to come up with
more equations.

We state the Lagrange function as,

K∗(M,R, λ) =

1∫
0

L(t,MTP(t), RTP(t))dt

+
N∑
b=1

λb

1∫
0

R(t)P(t)dt, (39)

where λ = [λ1, · · · , λN ]T are Lagrange multipliers
to be determined. Imposing the extremum condi-
tions on (39) yields,

∂K∗

∂mb
= 0,

∂K∗

∂rb
= 0,

∂K∗

∂λb
= 0,

b = 1, . . . , N − 1. (40)

Combining (36), equations from (38) and equa-
tions from (40), we get the sufficient number of
equations that match the number of unknowns in
MT and RT . Thus, we are able to approximate
m(t) and r(t) in (29) and (30) respectively.

4. Illustrative examples

We support the concepts discussed in the previ-
ous section through the solution of problems and
some comparison with established solutions.

Example 1. Consider the following FOCP [11,
18]:

min K =
1

2

∫ 1

0
3m2(t) + r2(t)dt, (41)

subjected to the dynamical system,

1

4
ṁ(t) +

3

4
Dγm(t) = m(t)− r(t) (42)

m(0) = 1.

If γ = 1 the solution of (41) is,

m(t) = e2t(3 + e4)−1(3 + e4−4t)

r(t) = 3e2t(3 + e4)−1(e4−4t − 1) (43)

Figure 1 compares (43) with our approximate so-
lution, as γ approaches 1, our approximate solu-
tion agrees with (43).

Figure 2, Table 1 and Table 2 display absolute
errors under different conditions for Example 1.
We realise that as the value of N increases, then
accuracy of the proposed scheme improves.
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Figure 1. Exact and approximation
solutions of m(t) and r(t) for N = 5
in Example 1.
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Figure 2. Absolute errors of m(t)
and r(t) for N = 10 and γ = 1 for
Example 1.

Example 2. Suppose we have the FOCP [13],

min K =

∫ 1

0
(r(t)−m(t))2dt, (44)

subjected to the dynamical system and the initial
condition,

ṁ(t) +Dγm(t) = r(t)−m(t) + t3 +
6tγ+2

Γ(γ + 3)

m(0) = 0, (45)

for γ = 1,

m(t) = r(t) =
t4

4
(46)

Comparison of (46) with our approximate solu-
tion is depicted in Fig. 3. Fig. 4, Table 3 and
Table 4 demonstrate the behaviour of absolute
errors for Example 2 under different conditions.

As we increase the number of polynomials used
for approximation, the accuracy improves.
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Figure 3. Exact and approximation
solutions of m(t) and r(t) for N = 5
in Example 2.
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Table 1. The absolute errors of m(t) and r(t) for γ = 1 for Example 1.

m(t) r(t)
t N = 5 N = 8 N = 10 N = 5 N = 8 N = 10
0.1 1.09006× 10−4 9.57294× 10−8 2.39863× 10−10 2.66755× 10−3 2.06794× 10−16 7.17614× 10−9

0.2 7.93386× 10−5 7.4338× 10−9 3.53015× 10−10 3.68719× 10−3 2.9584× 10−6 2.04521× 10−9

0.3 1.74739× 10−4 1.3894× 10−7 2.8304× 10−10 4.50409× 10−4 3.37535× 10−7 6.10702× 10−9

0.4 1.03393× 10−4 1.43259× 10−8 1.18485× 10−10 2.58382× 10−3 2.63025× 10−6 9.10892× 10−9

0.5 4.98148× 10−5 1.44398× 10−7 3.95863× 10−10 3.31745× 10−3 2.17556× 10−7 3.87368× 10−10

0.6 1.59367× 10−4 5.32508× 10−9 1.39608× 10−10 1.52384× 10−3 2.64159× 10−6 8.25309× 10−9

0.7 1.42128× 10−4 1.37905× 10−7 2.71924× 10−10 1.56668× 10−3 8.12583× 10−8 7.24176× 10−9

0.8 8.67009× 10−6 1.38793× 10−8 3.45382× 10−10 3.62268× 10−3 2.86573× 10−6 1.20762× 10−9

0.9 1.15034× 10−4 9.10652× 10−8 2.48459× 10−10 1.52344× 10−3 2.2886× 10−6 6.15546× 10−9

1 5.31549× 10−6 2.62501× 10−12 3.58774× 10−12 8.3610× 10−3 8.96794× 10−6 3.51907× 10−8

Table 2. Absolute errors of K at γ = 1 for Example 1.

N N = 5 N = 8 N = 10
|K − KN | 3.33043× 10−7 1.37542× 10−10 1.79479× 10−12

Table 3. Absolute errors of J at N = 5 for different values of γ in Example 2.

γ = 0.5 γ = 0.7 γ = 0.9
t N = 5 N = 8 N = 5 N = 8 N = 5 N = 8
0.1 8.67932× 10−5 1.77534× 10−6 6.01988× 10−5 8.3122× 10−7 2.14671× 10−5 1.89079× 10−7

0.2 7.09407× 10−5 6.42261× 10−7 4.44603× 10−5 2.73675× 10−7 1.36285× 10−5 5.31956× 10−8

0.3 1.45414× 10−4 1.58479× 10−6 9.8158× 10−5 7.62797× 10−7 3.35696× 10−5 1.81782× 10−7

0.4 8.61693× 10−5 8.70422× 10−7 6.18471× 10−5 3.98654× 10−7 2.30861× 10−5 8.21489× 10−8

0.5 3.89408× 10−5 1.54044× 10−6 2.20596× 10−5 7.4929× 10−7 5.01391× 10−6 1.77558× 10−7

0.6 1.31492× 10−3 5.31372× 10−7 8.71043× 10−5 2.32235× 10−7 2.84443× 10−5 4.25814× 10−8

0.7 1.20904× 10−4 1.43896× 10−6 8.32356× 10−5 6.87549× 10−7 2.92973× 10−5 1.60014× 10−7

0.8 7.05935× 10−6 5.49734× 10−7 7.62429× 10−6 2.54608× 10−7 5.06112× 10−6 4.81956× 10−8

0.9 1.06771× 10−4 7.65855× 10−7 7.06895× 10−5 3.60429× 10−7 2.22565× 10−5 8.56972× 10−8

1 1.2497× 10−5 6.52598× 10−8 9.58809× 10−6 3.49445× 10−8 1.64419× 10−6 2.96755× 10−9

Table 4. Absolute errors of K at N = 5 for different values of γ in Example 2.

N γ = 0.5 γ = 0.7 γ = 0.9 γ = 1
|K − KN | 2.25994× 10−31 4.99374× 10−30 9.95394× 10−32 1.44241× 10−31
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(a) Absolute errors of m(t).
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Figure 4. Absolute errors of m(t)
and r(t) for N = 5 and γ = 1 for
Example 2.

Example 3. We intend to approximate the solu-
tion of the FOCP [14],

min K =

∫ 1

0
(m1(t)− 1− t

3
2 )2 + (m2(t)− 1

−t
5
2 )2 + (r(t)− 0.75π

1
2 + t

5
2 )2dt, (47)

restricted to the conditions,

ṁ1(t) +D0.5m1(t) = m2(t) + r(t) +
3

2

√
t, (48)

ṁ2(t) +D0.5m2(t) =
5

2
m1(t) +

15
√
π

16
t2 − 5

2
,

m1(0) = 0, m2(0) = 0,

whose exact solution is,

m1(t) = 1 + t
3
2 ,

m2(t) =
√
t5, (49)

r(t) =
15
√
π

4
t−

√
t5.

Graphical comparisons of our approximate solu-
tion and (49) is depicted in Fig. 5 and fig. 6.
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The absolute errors between (49) and the approx-
imate solution are displayed in Table 5 and Table
6. Generally, the accuracy of the approximate so-
lution improves with increasing N .
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(a) Exact and approximation solutions of m(t).
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(b) Exact and approximation solutions of r(t).

Figure 5. Exact and approximation
solutions of m1(t) and m2(t) for N =
5 in Example 3.
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Figure 6. Exact and approximation
solutions of r(t) for N = 5 in Exam-
ple 3.

5. Conclusion

We demonstrated how to apply the Genocchi
polynomials in the approximation of FOCPs. The
developed technique proved to give accurate and
consistent results for both the state and control
variables. Computed errors between our approxi-
mate solutions and the analytical solutions of spe-
cific problems were negligible, proving the accu-
racy of our suggested scheme. Even though the

main purpose of this research was on optimal con-
trol problems of fractional order, imposing appro-
priate conditions on our solutions to fit that of in-
teger order gave expected results, confirming the
reliability of our approach. In light of the results
emanating from this work, we are of the view that
it is a worthwhile adventure to pursue the use of
other polynomials in optimal control problems.
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