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ABSTRACT

Sperm typing is an effective way to study recombina-

tion rate on a fine scale in regions of interest. There

are two strategies for the amplification of single mei-

otic recombinants: repulsion-phase allele-specific
PCR and whole genome amplification (WGA). The

former can selectively amplify single recombinant

molecules from a batch of sperm but is not scalable

for high-throughput operation. Currently, primer

extension pre-amplification is the only method used

in WGA of single sperm, whereas it has limited capa-

city to produce high-coverage products enough for

the analysis of local recombination rate in multiple
large regions. Here, we applied for the first time a

recently developed WGA method, multiple displace-

ment amplification (MDA), to amplify single sperm

DNA, and demonstrated its great potential for produ-

cinghigh-yield andhigh-coverageproducts. In a 50ml

reaction, 76 or 93% of loci can be amplified at least

2500- or 250-fold, respectively, from single sperm

DNA, and second-round MDA can further offer >200-
fold amplification. The MDA products are usable for a

variety of genetic applications, including sequencing

andmicrosatellite marker and single nucleotide poly-

morphism (SNP) analysis. The use of MDA in single

sperm amplification may open a new era for studies

on local recombination rates.

INTRODUCTION

A detailed knowledge of linkage disequilibrium (LD)
patterns across the human genome was widely considered a

prerequisite for comprehensive association testing (1). Recent
data have shown that LD in human populations is highly
structured into discrete blocks with limited haplotype diversity
(2–5). This LD structure was believed to result from the inter-
play between recombination hotspots (3,5,6) and the demo-
graphic history of human populations (7,8). Little is known
about the role of recombination in shaping LD patterns in
populations, although statistical approaches may provide some
clues (9–11). The answer to this question may lie in compar-
ison of population LD structure with the distribution of meiotic
crossovers. Sperm typing can identify the distribution of male
local meiotic recombination rate, which can at least partially
explain the LD pattern, as exemplified by Jeffreys et al. (3).

Two strategies have been taken for detecting highly local-
ized meiotic recombination hotspots in sperm. One is to
amplify single recombinant molecules using repulsion-phase
allele-specific PCR from a large batch of sperm DNA, fol-
lowed by localization of crossover sites (3,12–14). The other is
to scan thousands of single sperm cells to identify and localize
meiotic recombinants (15–17). The former is efficient for fine
mapping of crossover sites in a defined region of several kilo-
bases without laborious work on screening recombinants as
required in the latter. However, it can only be used in studies
on small regions of <10 kb and the workers have to be very
careful of possible contamination from artificial recombinants
resulting from template switching during PCR amplification
(18,19). For the second method, single sperm cells were first
pre-amplified by either multiple PCR or whole genome amp-
lification (WGA) to produce sufficient DNA for further mul-
tiple genotyping reactions to identify and localize meiotic
recombinants. Although multiple PCR has been more widely
used for single sperm analysis (20–22), WGA seems to be
more promising and preferred for fine mapping of meiotic
recombination sites because it can amplify many more marker
loci than multiple PCR. Primer extension pre-amplification
(PEP) was developed to amplify single sperm DNA on
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the whole genome level in 1992 (23) and first applied for
localization of recombination sites in 1994 (15). Recently,
Cullen et al. (16) used PEP to pre-amplify 20 031 single
sperm cells, followed by genotyping using 48 short tandem
repeat (STR) markers in a 3.3 Mb interval encompassing the
major histocompatibility complex (MHC). Unfortunately,
their study did not achieve high enough density to allow com-
parison with the LD map, owing to insufficient PEP products
and low marker density.

Recently, multiple displacement amplification (MDA),
using F29 DNA polymerase and random exonuclease-
resistant hexamer primers, has been demonstrated to be
very efficient for balanced amplification and generation of
long DNA products (>10 kb) from a small amount of DNA,
or directly from whole blood (24). The high processivity and
fidelity of F29 DNA polymerase provides an advantage to
MDA in terms of yield, accuracy and coverage over the other
PCR-based WGA methods (24,25). Amplification of single
lymphocytes or blastomeres using MDA has been successfully
carried out (26,27). Up to 92% coverage was estimated from
100 PCRs by detecting 20 different loci in five single lympho-
cytes, although at heterozygous loci, a high rate of allele
dropout (31%) was observed (26).

In this paper, we demonstrate that MDA can be utilized to
produce high-coverage and high-yield WGA products from
single sperm cells, and the resulting MDA products can be
used for a variety of genetic applications, including sequen-
cing and microsatellite marker (STR) and single nucleotide
polymorphism (SNP) analysis. It was estimated that 76% of
the genomic sequence can be amplified at least 2500-fold, or
93% at least 250-fold. We also showed that the second-round
MDA can further give an averaged 236-fold amplification.
MDA can therefore be quite useful for amplifying single
sperm DNA for a large amount of genotyping reactions and
this may open a new avenue for single sperm analysis.

MATERIALS AND METHODS

Sperm sample and genomic DNA preparation

Fertile men considering vasectomy were approached for
consent to enter the study. Once informed consent was
obtained, a blood sample and semen sample (by masturbation)
were collected. The blood sample (10 ml) was collected
into tubes with acid citrate dextrose (ACD) and centrifuged
at 3300 g at room temperature for 10 min. The intermediate
layer where white blood cells were concentrated was collected
and resuspended in phosphate-buffered saline (PBS) for
further processing for DNA analysis. Genomic DNA was
extracted from white blood cells using the standard phenol–
chloroform method. DNA concentration was determined using
a Hoefer DyNA Quant 200 Fluorometer.

Sperm lysis

Sperm cells were counted with a hemacytometer, diluted to a
concentration of either 0.8 or 3 cells/3 ml with PBS and 16
aliquots were prepared of each dilution. Three microliter of
diluted sperm cells were dispensed into 200 ml PCR tubes and
frozen at �80�C overnight. An aliquot of 3.5 ml of freshly
prepared lysis solution (0.1 M DTT, 0.4 M KOH and 10 mM

EDTA) was then added, mixed well by gentle vortex and
incubated for 10 min on ice for eight aliquots of the dilution
of 3 cells/3 ml, or at 65�C for the other aliquots. Lysis was
stopped by adding 3.5 ml of neutralizing buffer (buffer B in
REPLI-g kit, Qiagen Inc.). The dilution of 3 cells/3 ml was
picked to test whether 65�C incubation could lyse sperm cells
better or not, and the dilution of 0.8 cells/3 ml was used to
obtain aliquots containing single sperm cells. Aliquots named
after S01, S02. . .S16 below were prepared from the dilution of
0.8 cells/3 ml

Multiple displacement amplification

WGA was achieved using REPLI-g� kit according to the
manufacturer’s manual (Qiagen Inc.). All samples were pre-
amplified by MDA. A PBS blank was included as a negative
control. A reaction in a total volume of 50 ml was performed
at 30�C overnight and then terminated at 65�C for 10 min.
Amplified DNA products were then stored at �20�C. Dilu-
tions of 5- or 50-fold (referred as 1/5C0 and 1/50C0, respect-
ively, below) were used for further sequencing, the coverage
test and microsatellite and SNP genotyping analysis. One
microliter of a 10-fold diluted S16 MDA product was used
as template for the second-round MDA.

PCR and sequencing analysis

In order to determine the aliquots that were successfully pre-
amplified by MDA, three genes—TOP1, P53 and CYP1A2—
were selected for PCR testing using 1 ml of 1/5C0 MDA prod-
uct. Primers used are listed in set A of Table 1. A 20 ml mixture
was prepared for each reaction and included 1· HotStarTaq
buffer, 2.5 mM Mg2+, 0.2 mM dNTP, 0.3 mM of each primer,
1 U HotStarTaq polymerase (Qiagen Inc.) and 1 ml template
DNA. The cycling program was 95�C for 15 min; 40 cycles of
94�C for 15 s, 56�C for 30 s, 72�C for 1 min; 72�C for 2 min.
Amplified fragments representative of the three genes (TOP1,
P53 and CYP1A2) were 1080, 643 and 550 bp in length,
respectively. PCR products were checked on 1.5% agarose
gels. For the aliquots of the 0.8 cells/3 ml dilution, those
MDA products in which at least one of the three genes got
amplified were selected for further analyses.

A total of 12 genes, including TOP1, P53, CYP1A1,
PIK3CA, C6orf195, DKKL1, SHH, ADCYAP1, MSH2,
PTEN, PMS2 and CAT, were examined to estimate amplifi-
cation coverage. Almost all genes are located on different
chromosomes, except for SHH and PMS2, which are both
on chromosome 7 (PMS2 on the p arm and SHH on the q
arm). The standard PCR method described above was used to
amply 12 sequences of length 162–351 bp, one for each gene,
from 1 ml of 1/50C0 MDA product. Primers used to amplify
these fragments are listed in set B of Table 1. Five microliter
PCR products were then loaded on 1.5% agarose gels and
checked for the presence of target fragments. For those sam-
ples in which some primers did not work, the 1/5C0 MDA
products were submitted to PCR again with the failed primers.
To assess the fidelity of WGA from single cells, we used
another four pairs of primers (set C in Table 1) to amplify
four DNA fragments (two in TOP1 and two in CYP1A1) with
a total length of �3.3 kb, and these fragments were then
sequenced using ABI Big Dye Terminator V3 kit and
ABI3100 capillary sequencer (AppliedBiosystems, Foster
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City, CA). PCRs were prepared and performed as described
above. These four fragments were selected because they
include five SNPs: rs6129731, rs2235362, rs6102287,
rs1048943 and rs17861120, which are heterozygous in the
studied sample, so the sequencing data can also provide hap-
lotype information and help check whether the MDA products
does come from single sperm cells or not.

Quantification of gene copy number

We quantified the copy number for nine genes with the abso-
lute quantification program of SDS2.0 software using an
ABI7900 machine. These nine genes were same as those
used in MDA coverage analysis, except for three genes,
DKKL1, SHH and MSH2, which were excluded owing to
bad standard curves. Primers for quantification were same
as those used for coverage analysis. Human genomic DNA
from Promega (Catalog no. G1521) was serially diluted as
input DNA for the construction of standard curves. Each reac-
tion was duplicated three times. A 20 ml mixture was prepared
for each reaction and included 0.05· SYBR (Molecular
Probes, Eugene, OR), 1· HotStarTaq buffer, 2.5 mM Mg2+,
0.2 mM dNTP, 0.3 mM of each primer, 1 U HotStarTaq poly-
merase (Qiagen Inc.) and 1 ml of 1/50C0 MDA products. The
cycling program was 95�C for 15 min; 40 cycles of 94�C for
15 s, 56�C for 30 s, 72�C for 30 s. We determined the total
number of gene copies amplified and their standard devia-
tions in a 50 ml reaction by multiplying those in 1 ml of
1/50C0 MDA products by 2500. For those samples in which
real-time PCR did not work, 0, 250 and 2500 were assigned to
those samples with no amplification or amplified in 1/5C0 or
1/50C0 MDA products in the coverage test, respectively.

STR and SNP genotyping

In order to test whether the WGA products from single cells
were useful for STR and SNP genotyping analysis, five STR
markers (D11S902, D11S937, D11S987, D7S486 and
D10S547) were typed using the ABI 3100 sequencer and
seven SNPs (rs4575595, rs11868324, rs4267385, rs5369,
rs1800541, rs1535721 and rs1323690) were examined with

Taqman Assay-on-demand kits (AppliedBiosystems). The
S01 sample was not included owing to accidental loss. All
these markers were heterozygous in the sampled individual.
One microliter of 1/5C0 MDA products were added as tem-
plates in the reactions. Five microsatellite sites were separately
amplified in a 6 ml reaction containing 1· HotStarTaq buffer,
2.5 mM Mg2+, 0.2 mM dNTP, 0.3 U HotStarTaq polymerase
(Qiagen Inc.), 0.06 ml of fluorescence-labeled primer mixture
from ABI PRISM	 Linkage Mapping Sets V2.5 and 1 ml of
template DNA. The cycling program was 95�C for 15 min; 10
cycles of 94�C for 15 s, 55�C for 15 s, 72�C for 30 s; 28 cycles
of 89�C for 15 s, 55�C for 15 s, 72�C for 30 s; 72�C for 1 min.
The PCR products for D11S987, D11S937 and D7S486 or for
D10S547 and D11S902 were mixed for subsequent gel load-
ing. Data for STR markers were collected with the 3100 Data
Collection V1.1 software and analyzed with GeneMapper�
V3.0. PCR for Taqman SNP typing was performed in a 5 ml
reaction containing 2.5 ml 2· Taqman universal PCR master
mixture, 0.125 ml 40· assay mixture and 1 ml template DNA.
The cycling program was 95�C for 10 min; 45 cycles of 92�C
for 15 s, 60�C for 1 min. Genotypes were determined by allelic
discrimination program in SDS 2.1 software.

RESULTS

Successful amplification of whole genomic DNA in cells by
MDA depends on efficient release of DNA from chromo-
somes. DNA molecules are packed very densely in the sper-
matozoon nucleus and a much tougher method is needed to
isolate DNA from sperm cells than from other tissue cells (28).
The manual for the REPLI-g kit suggests incubation on ice
during alkaline lysis of blood or tissue culture cells. Here, we
showed that incubation at 65�C could provide much better
genome amplification fromminute sperm cells than incubation
on ice (Figure 1). Eight aliquots from the dilution of 3 cells/3 ml
were subject for alkaline lysis on ice and another eight aliquots
were lysed at 65�C. All three genes tested (TOP1, P53 and
CYP1A2) were shown to undergo amplification successfully
in seven out of eight aliquots if incubated at 65�C during

Table 1. Primers for PCR in this study

Fragments Forward primers Reverse primers

Set A TOP1 50-CCCCTAGATTGATGCCAAGA-30 50-ACTTTAGCCCGGACTAGCAA-30

P53 50-CTCATCTTGGGCCTGTGTTA-30 50-ACCGCTTCTTGTCCTGCTT-30

CYP1A2 50-CAGAATGCCCTCAACACCTT-30 50-TCACACAGCTGGTCTGAGGT-30

Set B TOP1 50-TGACTCATCTCTTATGGTTGCAG-30 50-CAACCCACTGCTGAATGATG-30

P53 50-GCCTCTTGCTTCTCTTTTCC-30 50-ACCGCTTCTTGTCCTGCTT-30

CYP1A1 50-ATTTCCAGCTGCTGTCACAT-30 50-CTGGTCTCCAGCTGCCTTTA-30

PIK3CA 50-TTTGCTCCAAACTGACCAAAC-30 50-ACTCCAAAGCCTCTTGCTCA-30

C6orf195 50-TGATAGGCATTTCTTTTGAAACTGG-30 50-ACAGGGAAGCAAAGCACTTC-30

DKKL1 50-CATCTGCAAAGTGGGCTGAATAGG-30 50-CCGTGGCAGCTTAATGATCC-30

SHH 50-TCTCGGAACTCAATGCCCTGTC-30 50-GGTCCAGGAAAGTGAGGAAG-30

ADCYAP1 50-CAAGTGCTGTTCAACTCAGGGA-30 50-GGCGATGCTAGTAGTCTGGACC-30

MSH2 50-TCCATTGGTGTTGTGGGTGT-30 50-TCAGTTTCCCCATGTCTCCA-30

PTEN 50-TGAAGACCATAACCCACCACAG-30 50-CTAGGGCCTCTTGTGCCTTT-30

PMS2 50-CTGGATGCTGGTGCCACTAA-30 50-GCCTGGCACACCGTAAGAA-30

CAT 50-TACCAGCTCCAGTGGTCAGG-30 50-CCCATCCTGTCAGATTTTAGTACTTT-30

Set C TOP1 (1) 50-GCATGAATCTCAGCTCTTTCCA-30 50-GATGGGTTAGGCCCTCTTAAA-30

TOP1 (2) 50-GATGACTTGGGCTCTCCCTTT-30 50-GGGGAAACAGCATTGATCCTA-30

CYP1A1 (1) 50-CTGCAGCCAGATCAGTGTCTA-30 50-GACACAGTGATTGGCAGGTC-30

CYP1A1 (2) 50-TTTTGCGTATTTATGTTGCAGA-30 50-AGGCTCTGCTTTGATTGAGG-30
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alkaline lysis. In contrast, of the eight aliquots lysed on
ice, only two have all three genes amplified, one aliquot
has two and three have just one amplified. Moreover, many
fragments showed much fainter bands than those amplified
from MDA products of aliquots lysed at 65�C, indicating a
lower efficiency of MDA in those samples lysed on ice. We
thus selected incubation at 65�C for alkaline lysis of 16 ali-
quots (S01–S16) from the dilution of 0.8 cells/3 ml, which were
selected for detailed analysis of efficiency of genome ampli-
fication of single sperm cell by MDA.

All of the three genes tested (TOP1, P53 and CYP1A2) were
successfully amplified in 7 of 16 sperm aliquots at the 0.8 cells/
3 ml dilution (S01, S04, S05, S06, S14, S15 and S16). For
S08 and S13, only TOP1 and CYP1A2 genes were amplified
(Figure 2). For the others, no amplification was observed. A
total of 9 out of 16, or �56%, sperm aliquots were therefore
selected for further studies. This observation was consistent
with the expectation of cumulative Poisson distribution (55%)
with a mean of 0.8 for aliquots with at least one sperm, so

most aliquots containing sperm cell(s) should be amplified,
although we could not estimate the success rate. Two of them
(S06 and S14) may have contained more than one sperm based
on further sequencing and STR genotyping below.

Coverage

The coverage of the amplification can be estimated based on
the success rate of amplification of the 12 fragments (see
Materials and Methods) tested. Most of the 12 fragments
were successfully amplified in all nine sperm aliquots
(Figure 3). For those seven aliquots containing single sperm
cells (S01, S04, S05, S08, S13, S15 and S16), the success rate
ranges from 58 to 92% for 1/50C0 with an average of 76%. If
1/5C0 MDA products were used, the coverage increased to
93%. About 76% of the genes can therefore be amplified at
least 2500-fold or 93% of the genes can be amplified at least
250-fold in single sperm cell suspensions. The second-round
MDA product, S16MDA2, from sample S16, had almost the
same amplification pattern.

Yield

MDA yields for the nine aliquots containing sperm and the
S16MDA2 product were 13–35 mg (Table 2), and the yields for
other aliquots without sperm were 15–35 mg. It was clear that
background amplification in MDA was quite high, so total
DNA yield did not provide much information on MDA effi-
ciency, and thus a detailed quantitative analysis became neces-
sary. Here, we quantitated nine genes in MDA products of nine
sperm aliquots and the S16MDA2 (Table 2). Although the
specific fragment was amplified in S16 and S16MDA2
for P53, S15 for CYP1A1, S13 for C6orf195 and S13 for
ADCYAP1, another unspecific fragment was also observed
in each of these reactions. The unspecific amplification
makes it impossible to determine the accurate copy number.
We, therefore, considered these reactions as failed and estim-
ated the gene copy number based on PCR results in Figure 3.
The PIK3CA gene, which was not amplified from 1 ml of
1/50C0 S13 or S15 MDA product in the coverage test, was
estimated to have two or four copies. This inconsistency
occurred because the PCR condition for amplifying the
PIK3CA fragment in the coverage test was possibly not

Figure 1. PCR amplification of the three fragments of the TOP1, P53 and
CYP1A2 genes in MDA products of 16 sperm aliquots treated using two
different lysis methods. The fragments are 1080 bp in length for TOP1,
643 bp for P53 and 550 bp for CYP1A2. Eight aliquots from the dilution of
3 cells/3 ml were lysed on ice and the other eight were lysed at 65�C.

Figure 2. PCR amplification of the three fragments of the TOP1, P53 and
CYP1A2 genes inMDAproducts of S01–S16 samples. The fragments are 1080
bp in length for TOP1, 643 bp for P53 and 550 bp for CYP1A2. S01–S16
indicateMDAproducts from 16 sperm aliquots. S16MDA2 is the second-round
MDA product using 1 ml of 1/10C0 S16 MDA product as resource DNA.
BLANK here is the MDA product of the negative control, in which 3 ml
PBS buffer was added instead of sperm aliquot.

Figure 3. PCR amplification of 12 fragments using 1 ml of 1/5C0 or 1/50C0

MDA products as templates. The amplification result is indicated with a black
square for successful amplification in 1/50C0, a gray square for successful
amplification in 1/5C0 and a framed F for no amplification in both.
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optimized for several template molecules. Gene copy number
in these MDA products varied greatly across samples and gene
loci. In the 50 ml MDA products for seven single sperm cells
(S01, S04, S05, S08, S13, S15 and S16), �51% of fragments
could be amplified at least 250 000-fold. The human DNA
representative rate (R.R. in Table 2) in MDA products was
estimated as observed average copy number per nanogram
DNA (A.C.N./ng in Table 2) divided by 280. Here, 280 is
considered as the copy number of unique genes per nanogram
human genomic DNA (Qiagen Genomic DNA Handbook).
Some genes were over-amplified in some sperm samples,
which caused the human DNA representative rate to be >100%
in the amplified sperm samples, such as S04, S06 and S16. The
representative rate for second-round MDA product was
reduced from 105 to 15% for S16MDA2. Even though the
representative rate for second-round MDA samples was dra-
matically decreased, the second-round MDA can give an amp-
lification of from 0- to 500-fold for eight genes, with an
average of 236-fold (Table 3).

Sequencing

We sequenced four fragments (overall �3.3 kb) in all 10
MDA products (nine sperm aliquots and one second-round
MDA product) and the leukocyte genomic DNA. Only one
artificial mutation was observed, in sample S14 (Figure 4A).
The error rate of MDA amplification in a single or a few sperm
cells was therefore estimated to be 3.65 · 10�5 in an overall
27.4 kb sequenced. All MDA products from sperm aliquots,
except S06 showed single alleles at five SNP sites in the four
fragments (Table 4). Rs1048943 and rs17861120 were
observed to be heterozygous in S06, although the peak height
of one allele was much lower that that of the other (Figure 4B,
rs1048943). Together with the STR data (see below), S06 and
S14 were deduced to contain more than one sperm, whereas
the other seven aliquots were considered to have just one
sperm each. Rs6129731, rs2235362 and rs6102287 are in
the same Contig NT_011362.9. Rs1048943 and rs17861120
are in another Contig NT_010194.16. From Table 4, it is
obvious that haplotypes for the first three SNPs are AAA
and CCG, and haplotypes for the latter two SNPs are CG
and TA.

Genotyping

Five STRs were successfully typed with the ABI 3100 sequen-
cer and GeneMapper software in 59 out of 65 reactions. The
genotypes for the nine sperm aliquots and S16MDA2 are
described in Table 5. S06 and S14 were shown to be hetero-
zygous at D11S937 and D10S547, respectively (Figure 4C,
D10S547). The allele 168 for D11S937 and 254 for D10S547
were preferentially amplified. S06 was also observed to be
heterozygous at two SNP sites as described in Table 4. This
indicated that the two aliquots contained at least two sperm
cells. Seven SNPs located in three genes, ACE, EDN1 and
ELF5, were successfully typed on the ABI7900 machine with
Assay-on-demand kits in 84/91 reactions (Figure 4D,
rs1535721). Genotypes for each sperm aliquot are described
in Table 6. Haplotypes for ACE, EDN1 and ELF5 were easily
determined to be GAT/AGC, GT/AG and AG/GA, respect-
ively. S16MDA2 had exactly the same genotypes with S16
sample for all STRs and SNPs examined.T
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DISCUSSION

Four methods for WGA: PEP (23), degenerate oligonucleotide
primed-PCR (DOP-PCR) (29), ligation-mediated PCR (LM-
PCR) (30) andMDA (24), were developed and used for studies
on single or mutiple cells. (16,25,27,30–32). Only a single
primer was used in LM-PCR in contrast to the DOP and
PEP, in which millions of different primers were included,
LM-PCR can thus amplify whole genomic sequences more
evenly and produce less bias than DOP and PEP (33), although
it requires more steps, including restriction endonuclease
digestion and ligation of digested DNA with primers. PEP
was first reported by Zhang et al. (23) to amplify single
sperm DNA and then utilized by other researchers for single
sperm analysis (15,16). Recently developed MDAwas demon-
strated to have a high amplification potential and great loci
representation with less than threefold bias (24). It has
been successfully applied for WGA from laser capture-
microdissected fresh tissue as well as single leukocytes and
blastomere cells (25,26,34), although it was reported to fail in

amplifying highly degraded samples, such as formalin-fixed,
paraffin-embedded tissues (35,36).

The MDA method was used here to amplify whole genome
DNA from single sperm cells and achieved high efficiency. In
this study, when 1 ml of 1/50C0 MDA products were used as
PCR templates, 76% reactions succeeded, and when 1 ml of
1/5C0was used, the rate increased to 93%. This means that in a
50 ml reaction, 76 or 93% of loci could be amplified at least
2500- or 250-fold, respectively, from single sperm DNA, in
contrast to only 78% of loci amplified 30-fold by the PEP
method (23). Second-round MDA product analysis showed
that a further�236-fold amplification could be obtained. Con-
sidering MDA is isothermally performed and can be done in
an incubator, the MDA reaction volume may be extended to
100 ml or more. Pre-amplification of the single sperm genome
can therefore provide sufficient DNA for thousands of geno-
typing reactions.

Our study used real-time PCR to quantitate the copy number
for nine unique genes in 10 MDA products. Variable ampli-
fication was observed. This variation seemed to result from
random template selection, not from gene difference. For eight
genes, copy number varied from zero to several thousand or
more in 1 ml of 1/50C0 MDA products from different aliquots.
Only one gene (PMS2) showed similar amplification efficien-
cies across all eight samples. Preferred amplification and allele
dropout were observed to be quite common in MDA products
from single leukocyte cells (data not shown). These were
consistent with observations reported from other studies on
single or a small number of cells (25,26). Many researchers
have used WGA products from a limited number of cells (<5)
for CGH or LOH analysis (26,30,31). Based on data from this
study, we suggest much care should be taken in explaining
these CGH or LOH data.

Our sequencing data showed that MDA products were
appropriate for sequencing projects. Here, a total of 27.4 kb
nucleotides of MDA products from single sperm cells were

Table 3. Amplification rate for nine genes after second-round MDA treatment

Genes used for
quantification analysis

TOP1 P53 CYP1A1 PIK3CA C6orf195 ADCYAP1 PTEN PMS2 CAT

Total copy number
S16MDAa 0.5 5 68 995 0.5 840 1225 1155 905 0
S16MDA2b 0 2500 10 320 000 250 100 000 202 500 295 000 182 500 0

Amplification rate 0 500 150 500 119 165 255 202 /c

cUnable to calculate.

aThe input template DNA for the second-roundMDA reaction, which is 1 ml of 1/10C0MDA product of a single sperm aliquot S16. The copy number for each gene
in the input DNA was determined by the total copy number of these genes in MDA products of S16 divided by 500.
bThe total 50 ml second-round MDA product of S16.

Table 4. Genotypes of genomic DNA and nine sperm aliquots at five SNP loci determined by sequencing

SNP ID Contigs Position in contigs Genomic DNA S01 S04 S05 S06 S08 S13 S14 S15 S16

rs6129731 NT_011362.9 4713602 A/C ? A A A C A C A C
rs2235362 NT_011362.9 4797334 A/C C ? A A C A C A C
rs6102287 NT_011362.9 4797565 A/G G ? A A G A G A G
rs1048943 NT_010194.16 45803303 T/C C C T C/t T C T ? C
rs17861120 NT_010194.16 45817497 A/G G G A A/g A G A G G

? indicates no PCR amplification, and the italic small letter indicates the allele with amplification of much lower efficiency.

Table 5. Genotypes of genomic DNA, eight sperm aliquots and second-round

MDA product of S16 at five microsatellite (STR) loci

Samples D11S902 D11S937 D11S987 D7S486 D10S547

Genomic DNA 155/161 156/168 94/116 224/236 244/254
S04 161 156 94 224 244
S05 161 168 ? 236 254
S06 155 156/168 94 236 254
S08 155 168 116 ? 254
S13 161 168 ? 236 254
S14 155 156 94 ? 244/254
S15 161 168 116 224 254
S16 ? 156 94 236 244
S16MDA2 ? 156 94 236 244

? indicates no amplification and the italic number in this table indicates the
allele with amplification of much lower efficiency.
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sequenced and only one mutation was identified, although we
do not know whether this mutation came from the sperm itself
or MDA treatment. The error rate of MDA was estimated to be
3.65 · 10�5. In fact, during the amplification of single DNA
molecules, many mutations in the first two strands replicated,
which created a 1:3 ratio of mutated to normal allele, can be

detected by sequencing, so the incorporation error rate forF29
DNA polymerase should be <3.65 · 10�5.

Microsatellite slippage is a big problem in WGA from sin-
gle cells using PCR-based methods, especially those in which
thermophilic polymerases without strand displacement activ-
ity, such as Taq or Pfu, were used (26,37,38). The MDA

Figure 4. MDA products were useful for a variety of genetic applications, including sequencing and SNP and STR analysis. (A) A mutation at 45803241 of
NT_010194.16 ismarked by red arrows in the S14MDAproduct. (B) Sequencing traces for rs1048943 (markedby red arrows) and its flanking10 nt in genomicDNA,
S14, S06 and S16MDAproducts. S06 has two alleles, although theC allelewasmuch preferred for amplification. (C) The electropherogram for theD10S547 locus in
genomicDNA, S14, S04 and S05 samples displayed byGeneMapperV3.0. Their genotypeswere displayed in Table 5. S14was observed to have two alleles (244 and
254), although allele 254 showed to be preferentially amplified. The orange peak is a 250 bpmarker. (D) The interface for the identification of genotypes at rs1535721
locus byTaqman assay using theABI7900. The green one is for genomicDNAsample, blue for S05, S13 andS15, and red for S06, S08, S14, S16 and S16MDA2. · is
for S04, for which the amplification failed.
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method utilizes the F29 mesophilic polymerase for primer
extension. The F29 polymerase has strong strand displace-
ment activity and is able to extend >70 kb on DNA templates.
Even stable secondary structure in the template does not affect
the processivity and strand displacement ability of the enzyme
(39). Polymerase slippage was demonstrated to include four
major steps: (i) arrest of DNA synthesis within direct repeats,
(ii) dissociation of the polymerase from the template, (iii)
unpairing of the 30 end of the newly synthesized strand and
its reannealing to the neighboring repeat and (iv) resumption
of DNA synthesis (37). The aforementioned features of F29
polymerase, which prevent the dissociation of the enzyme
from the template, are therefore theoretically able to drastic-
ally reduce the rate of slippage at microsatellite sites when
F29 polymerase is used, in contrast to other polymerases
without strand displacement activity. Hellani et al. (26) has
observed no microsatellite slippage at 16 loci in MDA pro-
ducts of 40 single leukocytes. Our data also showed that all
alleles at five STR sites detected in MDA products of eight
sperm aliquots were identical to parental alleles in genomic
DNA, indicating no microsatellite slippage occurred. It was,
therefore, demonstrated that MDA products from single sperm
cells were useful for further microsatellite analysis.

From the genotyping data of single sperm cells, we can
easily determine the two haplotypes in the sample studied.
For example, haplotypes composed of rs6129731, rs2235362
and rs6102287 should be AAA and CCG (Table 4), and for the
ACE gene they are GAT and AGC (Table 6). Currently, almost
all available haplotypes with a high density of SNPs in human
population have been inferred by statistical methods from
phase-unknown genotypes in random samples or trio families
(see data from PGA, EGP and HapMap projects). Further LD
analysis was performed based on the inferred haplotype data.
Little is known about how well these inferred haplotypes
match the true ones, and how much inference error can affect
the LD pattern. It is necessary to investigate some represent-
ative regions by comparing experimentally determined true
haplotypes with those inferred statistically. Here, we demon-
strated that MDA in single sperm cells can produce sufficient
DNA for thousands of genotyping reactions. By genotyping
DNA from leukocytes and MDA products from one or two
single sperm cells, the true haplotypes in a large chromosome
region can therefore be determined.

In this study, we found that sperm lysis at 65�C instead of on
ice, as described in the manual supplied, could provide much
better amplification. It is possible that warm incubation is

more efficient in releasing DNA from the chromosomes.
Except for alkaline lysis, some other studies also used pro-
teinase K to treat cells before subjecting them toMDA (26,34).
Rook et al. (26) tried alkaline lysis on ice and proteinase
K digestion of laser capture-microdissected tissues, and
decreased allele imbalance was observed for proteinase K
treatment. Using proteinase K for lysis of sperm cells may,
therefore, also produce good amplification.

We have demonstrated that MDA is an effective way for
global genome amplification in single sperm cells and can
provide sufficient single sperm DNA for genotyping in
large quantity. It also makes possible fine mapping of male
meiotic recombination sites on a <10 kb level, and experi-
mental determination of haplotypes in a large chromosome
region, or even a whole chromosome. These maps can unam-
biguously help better understand LD patterns in human popu-
lation, thus further facilitating association studies. It can also
improve our knowledge about the mechanism of recombina-
tion, especially how recombination is initiated.
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