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RESEARCH ARTICLE Open Access

Genome analyses of the wheat yellow (stripe)
rust pathogen Puccinia striiformis f. sp. tritici
reveal polymorphic and haustorial expressed
secreted proteins as candidate effectors
Dario Cantu1, Vanesa Segovia2, Daniel MacLean3, Rosemary Bayles4, Xianming Chen5,6, Sophien Kamoun3,
Jorge Dubcovsky7,8,9, Diane GO Saunders3* and Cristobal Uauy2,4*

Abstract

Background: Wheat yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (PST) is one of the most
devastating diseases of wheat worldwide. To design effective breeding strategies that maximize the potential for
durable disease resistance it is important to understand the molecular basis of PST pathogenicity. In particular, the
characterisation of the structure, function and evolutionary dynamics of secreted effector proteins that are detected
by host immune receptors can help guide and prioritize breeding efforts. However, to date, our knowledge of the
effector repertoire of cereal rust pathogens is limited.

Results: We re-sequenced genomes of four PST isolates from the US and UK to identify effector candidates and
relate them to their distinct virulence profiles. First, we assessed SNP frequencies between all isolates, with
heterokaryotic SNPs being over tenfold more frequent (5.29 ± 2.23 SNPs/kb) than homokaryotic SNPs (0.41 ± 0.28
SNPs/kb). Next, we implemented a bioinformatics pipeline to integrate genomics, transcriptomics, and
effector-focused annotations to identify and classify effector candidates in PST. RNAseq analysis highlighted
transcripts encoding secreted proteins that were significantly enriched in haustoria compared to infected tissue.
The expression of 22 candidate effector genes was characterised using qRT-PCR, revealing distinct temporal
expression patterns during infection in wheat. Lastly, we identified proteins that displayed non-synonymous
substitutions specifically between the two UK isolates PST-87/7 and PST-08/21, which differ in virulence to two
wheat varieties. By focusing on polymorphic variants enriched in haustoria, we identified five polymorphic effector
candidates between PST-87/7 and PST-08/21 among 2,999 secreted proteins. These allelic variants are now a
priority for functional validation as virulence/avirulence effectors in the corresponding wheat varieties.

Conclusions: Integration of genomics, transcriptomics, and effector-directed annotation of PST isolates has enabled
us to move beyond the single isolate-directed catalogues of effector proteins and develop a framework for mining
effector proteins in closely related isolates and relate these back to their defined virulence profiles. This should
ultimately lead to more comprehensive understanding of the PST pathogenesis system, an important first step
towards developing more effective surveillance and management strategies for one of the most devastating
pathogens of wheat.
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Background
Wheat yellow rust, also known as stripe rust, is one of

the most devastating diseases of wheat worldwide. It is

caused by the basidiomycete fungus Puccinia striiformis

Westend. f. sp. tritici Eriks. (PST), an obligate pathogen

that along with the stem (black) rust fungus Puccinia

graminis f. sp. tritici (PGT) threatens worldwide wheat

production [1,2]. Historically, the use of major race spe-

cific resistance (R) genes in wheat varieties has been an

effective method for disease management. However, these

approaches are hampered by the evolution of resistance-

breaking races of PST. For example, the appearance of

PST races that overcome widely deployed R genes (such

as Yr2, Yr9, Yr17 and Yr27) has led to destructive pan-

demics [3]. In recent years, concerns over yellow rust have

increased with the emergence of new and more aggressive

PST races that have expanded virulence profiles and are

capable of adapting to warmer temperatures compared to

most previous races [2]. Combined with the intrinsic

ability of PST for long distance spore dispersal [4], these

new races pose an increasing threat to global wheat pro-

duction and food security [5].

Biotrophic plant pathogens such as rust pathogens

secrete an array of proteins, known as effectors, to modu-

late plant innate immunity and enable parasitic infection

[6]. Some of these effectors translocate inside plant cells

probably through specialized infection structures known

as haustoria [7-9]. Inside plant cells, effectors perturb

host processes promoting pathogenesis. However, dis-

ease resistance genes in plants, known as R genes, en-

code immunoreceptors that recognize specific pathogen

effector proteins. Once effector proteins are recognized,

plants initiate an immune response to block the devel-

opment of disease, which typically results in a localized

hypersensitive reaction and programmed cell death [10,11].

The identification and characterization of these effectors

and their cognate R genes is an important first step to

understanding the wheat-PST pathosystem and conse-

quently, to our ability to develop sustainable and poten-

tially more durable resistance breeding strategies.

Recent availability of rust pathogen genome sequences

has enabled the first steps towards wide-scale cataloguing

of putative effector proteins. For instance, Saunders et al.

[12] and Duplessis et al. [13] both implemented high

throughput computational methods to characterize the

effector complements from the fully sequenced rust fungi

PGT and Melampsora larici-populina. Recently, Cantu et al.

[14] used next-generation sequencing (NGS) to assemble a

draft genome of PST isolate 130 (PST-130), annotating

22,185 putative coding sequences and classifying 1,088 of

these as predicted secreted proteins. In addition, resources

such as cDNA libraries generated from urediniospores

and isolated haustoria (to identify PST genes specifically

expressed during pathogen infection [15-18]) are publicly

available. Together, they provide the necessary tools to

develop a framework for characterization of the putative

effector repertoire of PST.

The rapid decrease in sequencing costs now makes it

possible to re-sequence multiple PST isolates to fur-

ther characterize its pathogenicity arsenal. For instance,

comparative genome analyses of different isolates of

Magnaporthe oryzae, the rice blast pathogen, expanded

the knowledge gained from the original reference gen-

ome considerably and helped to identify new effector

genes with avirulence activity [19]. Similarly, genomic

analysis of an epidemic isolate of the potato blight patho-

gen Phytophthora infestans provided insights into in-

creased aggressiveness and virulence [20].

In this study, we re-sequenced four PST isolates with

different virulence profiles and from two distinct geo-

graphical regions (the USA and the UK). We identified

hetero- and homokaryotic SNPs, providing a first glimpse

into PST genetic diversity on a genome wide scale. We

performed independent gene discovery and annotation

across all isolates to produce a combined PST secretome

and identified haustoria-enriched transcripts. We validated

the expression of a subset of genes during an infection

time course, and revealed distinct temporal expression

patterns among them. This data was then integrated using

a modified version of the in silico pipeline described in

Saunders et al. [12] to classify the putative effector reper-

toire of PST. Using this information, we identified putative

secreted, haustoria-enriched proteins with non-synonymous

polymorphisms specifically between the two UK isolates,

which only differ in virulence to two known wheat dif-

ferential varieties. This approach identified five effector

candidates among 2,999 predicted secreted proteins that

are highly expressed in haustoria and are polymorphic

between the UK isolates, PST-87/7 and PST-08/21. These

allelic variants are now a priority for functional validation

as virulence/avirulence effectors in the corresponding

wheat varieties.

Results
Selecting PST isolates with distinct virulence profiles

Four PST isolates from different races with distinct viru-

lence profiles and varied geographic origin were selected

for genome sequencing (Table 1). All isolates were ini-

tially identified on wheat plants, except PST-21. This

isolate was originally isolated from infected triticale plants,

but was subsequently shown to be virulent on wheat

plants carrying the Yr1 resistance gene [21]. The viru-

lence profiles of the two UK isolates (PST-08/21 and

PST-87/7) were examined on a set of European differen-

tial lines, complemented by a common set of Avocet ‘S’

near isogenic lines, and compared to the previously

reported profiles for the US isolates (Table 1) [1,22].

The two UK isolates differed in their virulence to wheat
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varieties Robigus (YrRob) and Solstice (YrSol), but had

common virulence to ten Yr genes.

Genome sequencing, quality assessment, and gene

prediction

We used an Illumina whole-genome shotgun sequencing

approach to sequence four PST isolates in addition to the

recently sequenced isolate PST-130 [14]. After filtering

(see Methods), the total number of PST contigs assembled

ranged from 29,178 to 55,502 (Table 2). To assess the

completeness of the genome sequences, we aligned the

reads to the previously assembled PST-130 contigs [14]. A

large proportion of the reads from the newly sequenced

PST isolates aligned to the assembled PST-130 contigs (on

average 86.2% SD: ±1.6%; Additional file 1), suggesting

that most of the PST genome is present in the PST-130

assembly and confirming previous estimates of PST gen-

ome size [14]. In addition, a large fraction of publically

available PST expressed sequenced tags (ESTs) mapped

onto the assembled contigs, ranging from 81.8% in PST-

87/7 to 83.2% in PST-43, further supporting a high de-

gree of completeness of the genome assemblies. Taken

together, these data suggest the US and UK isolates in-

clude between 82 and 88% of the rust genome.

As an independent estimate of the degree of com-

pleteness of the assembled gene space, we implemented

CEGMA analysis [23]. This protocol maps a set of 248

low copy core eukaryotic genes (CEGs) that are conserved

across higher eukaryotes to the assemblies [24]. On aver-

age 72.1% (SD: ±14.6%) of the CEGs aligned as complete

gene copies to the assembled contigs (Additional file 2),

compared to 81.7% (SD: ± 9.7%) that aligned as frag-

mented partial gene copies (Additional file 2). These values

are slightly lower than those of the whole genome sequence

of P. graminis f.sp. tritici where 91.1% of the CEGs were

mapped as complete copies and 92.7% as fragmented genes

(Additional file 2). The levels of complete gene coverage

were higher for all US isolates (average 83%, SD: ± 0.6%)

and comparable to partial gene coverage (average 88.7%,

SD: ± 0%), indicating that few core eukaryotic genes were

split across contigs for these isolates. For the two UK iso-

lates (PST-08/21 and PST-87/7) complete gene coverage

was reduced (average 56.5%, SD: ± 5.7%) compared to par-

tial gene coverage (71.3%, SD: ± 3.9%), indicating slightly

higher levels of fragmentation for these genomes, which is

likely attributed to the lower level of genome coverage for

these isolates.

To identify open reading frames in the five assembled

PST genomes, we applied the MAKER pipeline which

used ab initio and homology based predictions and was

supported by cDNA evidence generated in the course of

this study (see below and Methods; [25]). On average

20,280 (SD: ±1,201) protein-coding genes were identified

in the five isolates (Table 3). Over 90% of the extended

CEGMA set, which includes 2,748 CEG variants from

six eukaryotic genomes, matched peptides predicted in

each of the assemblies, with an average of 82.4% of the

protein length aligned (SD: ± 8.9%; BLASTP, e-value ≤1e-6).

This provided an independent estimate of the complete-

ness of the gene catalogue.

Estimation of diversity between PST isolates

Urediniospores constitute asexual dikaryotic spores that

contain two independent nuclei. Therefore, to assess

genetic variation between the two nuclei in the sequenced

PST urediniospores we aligned the sequence reads of a

particular isolate to the assembled contigs of the same

isolate. This global analysis identified an average single

Table 1 PST isolates used in this study and their virulence profiles

Isolate Location of isolation Year Natural host Virulence profile on wheat

PST-21 US 1980 Triticale Yr1

PST-43 US 1990 Wheat Yr2, Yr6, Yr20, Yr21

PST-130a US 2007 Wheat Yr2, Yr6, Yr7, Yr8, Yr9, Yr19, Yr20, Yr21, Yr22, Yr23

PST-87/7 UK 2003 Wheat Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32

PST-08/21 UK 2008 Wheat Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrRob, YrSol

a Previously sequenced isolate [14].

Table 2 PST genome assembly statistics

Isolate Median coverage No. of contigs Total length (bp) N50 (bp) Max length (bp) Median length (bp) Average length (bp)

PST-21 66x 43,106 73 Mb 3,960 37,006 713 1,695

PST-43 26x 49,784 71 Mb 3,264 35,154 596 1,421

PST-130a 59x 29,178 65 Mb 5,137 49,498 901 2,220

PST-87/7 15x 55,502 53 Mb 1,302 46,297 652 962

PST-08/21 21x 50,898 56 Mb 1,600 35,677 708 1,106
a Previously sequenced isolate [14].
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nucleotide polymorphism (SNP) frequency of 5.98 ±

1.13 SNPs/kb between the two nuclei within a single iso-

late, referred hereafter as intra-isolate SNPs (Additional

file 3).

In addition, we aligned the reads of each isolate to

the assembled contigs of the other isolates (Additional

files 3 and 4). We classified these inter-isolate SNPs

into two classes; heterokaryotic SNPs which refers to a

variant position between the two nuclei within a single

isolate that is homozygous in other isolates, and homo-

karyotic SNPs, which refer to homozygous variants that

are polymorphic between two independent isolates

(Additional file 5). On average, heterokaryotic SNPs

across isolates were more frequent (5.29 ± 2.23 SNPs/kb)

than homokaryotic SNPs (0.41 ± 0.28 SNPs/kb). The

highest levels of diversity were found when reads of

isolates PST-21 and PST-130 were mapped onto the two

UK isolates (PST-87/7 and PST-08/21) and US PST-43.

Here, we observed an average of 7.11 ± 1.14 SNPs/kb

for heterokaryotic sites, whereas homokaryotic SNPs had

a frequency of 0.64 ± 0.08 SNPs/kb. When the two UK

isolates and PST-43 were compared, the heterokaryotic

SNP frequency was 2.23 ± 0.53 SNPs/kb, whereas the

homokaryotic SNP frequency was 0.02 ± 0.01 SNPs/kb

(Additional file 3). We performed a phylogenetic analysis

using the homokaryotic SNP data in both coding and

non-coding regions. In the associated dendrograms, US

isolate PST-43 clustered with the two UK isolates, PST-87/7

and PST-08/21 (Figure 1A). PST21 was more closely re-

lated to PST130 than to the other three isolates, and

both where equally distant to the PST-43/UK cluster.

Observed genetic diversity may reflect origin of isolates

To further characterize the genetic diversity between the

five sequenced isolates of PST, we assessed the number

of homokaryotic SNPs within the gene space (Additional

file 6). Using this SNP data, we generated a set of four

representative synthetic genes for each reference gene

that incorporated the SNP information independently

for each isolate to enable downstream analysis of genetic

diversity (Additional file 5). Pair-wise comparisons of

non-synonymous mutations in these gene sets revealed

that when genes representing US isolates PST-21 and

PST-130 were compared against other isolates, polymor-

phisms were more apparent (Figure 1B green circles;

Additional file 7). For instance, when using the PST-43

genes as a reference, PST-21 showed between 1,706 and

2,047 polymorphic genes in pair-wise comparisons with

all other isolates. Similarly, PST-130 showed between 1,

428 and 2,047 polymorphic genes in pair-wise compari-

sons with all other isolates, when using this same refer-

ence. In contrast, in pairwise comparisons between

PST-43, PST-87/7 and PST-08/21 less than 130 genes

were shown to be polymorphic when using the PST-43

genes as the reference (Figure 1B; Additional file 7).

Enrichment in non-synonymous mutations between

genes encoding predicted secreted proteins and non-

secreted proteins was assessed using the hypergeometric

test. This analysis revealed enrichment in polymorphisms

in secreted proteins for nine pairwise comparisons with

eight originating from comparisons of PST-21 or PST-

130 against other isolates (Figure 1B, orange highlighted

squares). We also calculated rates of synonymous (dS)

and non-synonymous (dN) substitutions for each pair-

wise comparison in each synthetic gene set (Additional

file 8). This analysis highlighted more genes with dN/dS > 1

when PST-21 and PST-130 were compared with all other

isolates, mirroring the pattern shown in the sequence

polymorphism analysis (Figure 1B, purple circles). For ex-

ample, for protein PST21_04206 sequence polymorphisms

and positive selection were identified between the UK iso-

lates and US PST-43 when compared to the synthetic gene

from US PST-130 (Additional file 9). There was no evi-

dence for enrichment in positive selection in genes encod-

ing secreted proteins when compared to those encoding

non-secreted proteins.

Another measure of genetic diversity is to assess the

number of absent genes in pair-wise comparisons between

isolates. The total number of genes classified as absent

with no reads aligned, was greater for alignments against

the two US isolates PST-21 (161-482 genes) and PST-130

(154-310 genes) when compared to US PST-43, UK PST-

87/7 and UK PST-08/21. Less than 100 genes were

shown to be absent in PST-43, PST-87/7 and PST-08/21

when alignments between these isolates were consid-

ered (Figure 1C; Additional file 10). Reciprocally, when

Table 3 Predicted gene catalogue for each PST isolate and similarity to conserved eukaryotic proteins and PGT proteins

Species/isolate No. proteins predicted Median protein length (amino acids) CEG matching sequencesa PGT matching sequencesa

PGT 20,566 266 2,596 (94.5%) -

PST-21 20,653 211 2,626 (95.6%) 13,301 (64.7%)

PST-43 21,036 197 2,637 (96.0%) 13,313 (64.7%)

PST-130 18,149 228 2,612 (95.1%) 13,214 (64.3%)

PST-87/7 20,688 161 2,508 (91.3%) 12,801 (62.2%)

PST-08/21 20,875 172 2,592 (94.3%) 13,183 (64.1%)
a BLASTP, e-value ≤ 1e-6. PGT, Puccinia graminis f. sp. tritici (Total PGT sequences: 20,566). CEG, Core eukaryotic genes (Total CEG sequences: 2,748).
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PST-21 or PST-130 sequence reads were mapped against

the genome assemblies of the other three isolates (PST-43,

PST-87/7 and PST-08/21), a greater number of genes were

noted as absent when compared to the alignment of the

other three isolates (Figure 1C; Additional file 10). A simi-

lar pattern was also observed when genes encoding pre-

dicted secreted proteins were assessed (Figure 1C).

This analysis confirmed our previous observation that

US PST-130 and PST-21 appear more genetically diverse

when compared to other isolates in this study, poten-

tially reflecting different evolutionary origins for these

isolates. The observed genetic diversity for US PST-21

may reflect adaptation to a different host, triticale, when

compared to isolates in this study that were isolated spe-

cifically from wheat.

RNA-seq analysis identified transcripts specifically

enriched in haustoria

We performed RNAseq analysis of UK PST-08/21 infected

wheat leaves and isolated haustoria to identify haustoria-

enriched transcripts (Additional file 11). After filtering,

we aligned reads to the PST-08/21 assembly and also

generated de novo assemblies that were used to support

the gene prediction pipeline. We conducted differential

expression analysis after normalization, using DESeq to

identify genes that were significantly up-regulated (False

discovery rate <0.01) in haustoria compared to infected

tissue (Figure 2A; Additional file 12). Within the subset

of transcripts encoding for predicted secreted proteins

(933 genes, see Methods), we identified 57 genes that

were significantly enriched in haustoria (6.1%), compared

A

B

C

Figure 1 US PST-43 may belong to the same clonal lineage as the UK isolates PST-87/7 and PST-08/21. A. Dendrograms illustrating that
US isolate PST-43 clustered with the two UK isolates PST-87/7 and PST-08/21. Dendrograms were constructed using the homokaryotic SNP
information either in the coding or non-coding regions of the genome from all pair-wise alignments. B. Pair-wise comparison of
non-synonymous mutations in synthetic gene sets illustrated that polymorphisms were more apparent when corresponding proteins
representing PST-21 and PST-130 were compared against other isolates. Each gene for a given reference was taken in turn and any homokaryotic
SNPs incorporated for each isolates mapped. The five genes (one reference gene and four synthetic genes) were then subjected to pair-wise
polymorphism and positive selection analysis using Yn00. Circle sizes represent the number of proteins with at least one non-synonymous
mutation (green circles) or under positive selection (purple circles). Pair-wise comparisons that showed enrichment in non-synonymous mutations
in secreted proteins are illustrated with an orange background. C. The total number of genes determined as absent by mapping the sequence
reads from each isolate in turn against every other isolate as a reference was greater for alignments against PST-21 and PST-130 when compared
to alignments against PST-43, PST-87/7 and PST-08/21. A similar pattern was also observed when genes encoding predicted secreted proteins
were assessed. Total number of genes absent from white to blue (0-482) for full gene complement and white to red (0-14) for secretome.

Cantu et al. BMC Genomics 2013, 14:270 Page 5 of 18

http://www.biomedcentral.com/1471-2164/14/270



to 31 (3.3%) that were significantly depleted (Figure 2B). A

much lower proportion of genes encoding for non-secreted

proteins was identified as enriched (2.1%; 411 of 19,703

genes) or depleted (1.7%) using the same analysis

(Figure 2C). These results suggest that this approach is

effective in selectively enriching for secreted proteins,

which are likely to be haustorial-expressed transcripts.

Defining and classifying the effector repertoire of PST

To identify and classify candidate effectors from PST,

we implemented a modified version of the bioinformat-

ics pipeline described in Saunders et al. [12] (Figure 3).

The five PST proteomes were combined (totaling 100,357

proteins), 5,502 secreted proteins predicted, and redun-

dancy in the combined secretome reduced (see Methods).

After consolidation, a total of 2,999 predicted secreted

proteins were selected representing the diversity of the five

PST secretomes (Figure 3). To enable the identification of

any potential conserved rust effectors, secreted proteins

were also classified and incorporated in this study from

the proteomes of Puccinia graminis f. sp. tritici and

Melampsora larici-populina, comprising 1,333 and 1,173

secreted proteins, respectively. The three rust pathogen

secretomes were combined and grouped into 1,797 pro-

tein tribes based on sequence similarity using Markov

clustering [26]. The final filtering step of the bioinfor-

matics pipeline reduced the total to 1,037 tribes, each

containing at least one PST secreted protein. Proteins in

the 1,037 PST-containing tribes were then annotated with

both known effector features from other pathosystems

and PST-specific criteria (Figure 3). The later criteria fo-

cused on allelic variation between the five PST isolates

and the expression of genes at the plant-pathogen inter-

face as determined by the RNA-seq analysis of PST-08/21-

infected wheat leaves and isolated haustoria. Expression of

genes either during infection or specifically in haustoria

was then added as criterion in the effector-mining pipeline

(Figure 3).

Identifying candidate effectors of high interest

To order and cluster protein tribes based on known effector

features and PST-specific annotation we implemented the

sorting module of the pipeline (see Methods; Figure 3).

This resulted in overall scores for each tribe that

reflected their likelihood of containing potential effector

proteins (Additional file 13). The features associated

with the top 100 ranked tribes are displayed in Figure 4.

To select proteins with a high likelihood as candidate

effectors we focused on tribes that ranked highly based

on our scoring system, are highly expressed and enriched

in haustoria, and display sequence polymorphisms be-

tween isolates. For example, Tribe 238 is ranked 10th in

our scoring system and is a member of Cluster VII, which

reflects the fact that both members, PST21_18221 and

PST21_18220, are expressed highly in haustoria and are

significantly enriched in haustoria with respect to infected

tissue (P = 0.001, 31 and 42-fold, respectively). This tribe

represents two distinct proteins that are present in all

isolates sequenced in this study. One protein was identi-

fied as polymorphic specifically between the US isolates,

whereas the second protein was conserved across all

isolates (Figure 5A-B). The two proteins are encoded by

genes within close proximity on a single contig in the

sequenced genomes (Figure 5C). This suggests that these

A B C

Figure 2 Comparison between infected tissue and isolated haustoria RNAseq libraries. Scatter plot of log2 transformed sequencing counts
generated by aligning RNAseq reads to all PST-08/21 genes (A), those that encode predicted secreted peptides (B), or encode non-secreted
peptides (C). Red and green colored circles correspond respectively to transcripts that were identified as significantly enriched or depleted in
isolated haustoria as determined by DESeq analysis (P≤ 0.01). Red lines represent the locally weighted polynomial regression (LOWESS method).
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genes could have arisen from a duplication event, which

is further supported by sequence similarity between the

two proteins within the N-terminus. This is consistent

with the concept that pathogenicity factors may arise

from gene duplication events followed by rapid diversifi-

cation to evolve new functions [27].

Candidate effectors with sequence polymorphisms

between the UK isolates PST-08/21 and PST-87/7

We identified secreted proteins that displayed polymor-

phisms specifically between the two UK isolates PST-87/7

and PST-08/21, which only differ in virulence to two

wheat differential varieties Robigus (YrRob) and Solstice

(YrSol). The properties of the 117 proteins identified are

displayed in Figure 5D. Of these 117 proteins, 14 were

members of tribes that ranked in the top 100 in our scor-

ing system and five were encoded by genes which were sig-

nificantly enriched and in the top 10% of expressed

transcripts in both haustorial samples (Table 4). For all five

genes a single amino acid substitution was evident between

the sequences for the two UK isolates. For example, for

PST130_05023, four amino acid substitutions were identi-

fied; one differential between the UK and US isolates, two

between UK isolates and US PST-43 when compared to

the other US isolates, and one specific substitution between

the two UK isolates (Figure 5E). Focusing on proteins that

display polymorphisms between these two isolates may fa-

cilitate the detection of avirulence and corresponding viru-

lence effector proteins that are specifically differentially

recognized by YrRob and YrSol.

Transcript profiling reveals peaks in gene expression for

candidate effectors during infection

To further characterize a subset of candidate effectors,

we assessed their expression profiles using quantitative

RT-PCR across different infection time points (20 hours

and 1, 6 and 14 days post inoculation (dpi)) (Figure 6A;

Additional file 14). Twenty-two putative effectors repre-

senting nineteen tribes were selected based on their rank

as likely effectors and their expression levels determined

by mRNAseq analysis of isolated haustoria (Table 5). The

gene models of these effector candidates were further vali-

dated during the qRT-PCR analysis using primers that

spanned the splice site junctions.

Three peaks in expression were observed for the

candidate effectors using qRT-PCR, with eight more

highly expressed at 1 dpi, four at 6 dpi and nine at 14 dpi

(Figure 6B). Haustoria are already formed at 1 dpi [28]

suggesting that some of these candidate effectors might be

involved in the very early stages of infection. Two of the

five haustoria-enriched polymorphic genes between the

UK isolates were amongst those most highly expressed at

1 dpi (PST21_15642 and PST130_00285), whereas one

showed highest expression at 14 dpi (PST130_05023).

Only one candidate effector (PST130_10194) was stably

expressed at all time-points assessed during infection. For

tribes 238, 413 and 6, the expression profiles of several

members of each tribe were assessed. With the exception

of one member of tribe 6 (PST21_11390), members of

the same tribe tended to peak in expression at the same

time-point, indicating that they may be involved at simi-

lar stages during disease progression. These results are

consistent with the concept of sequential waves of ex-

pression of different sets of effectors during the infec-

tion process [29].

Discussion
Polymorphic secreted proteins as effector candidates

In this study, we re-sequenced four PST isolates to

identify effector candidates and relate them to their dis-

tinct virulence profiles. Once the complete effector

complement was defined, we focused on highlighting

polymorphic effector candidates that may reflect rapid

Figure 3 Clustering of secreted proteins and annotation of

protein tribes based on known effector features and PST-specific
criteria. A bioinformatic pipeline was implemented to identify
groups of secreted proteins with characteristic effector features. The
proteomes of the five PST isolates were combined (totaling 100357
proteins), 5502 secreted proteins predicted, and redundancy
reduced. The consolidated PST secretome (2999 proteins) was
combined with predicted secretomes from P. graminis f. sp. tritici
(PGT) and Melampsora larcia populina (Mellp) and proteins grouped
based on sequence similarity (Markov clustering). Tribes containing
at least one PST member (1037 tribes) were annotated with known
effector features or PST-specific criteria. Finally, tribes were ranked
and heirarchical clustering implemented based on their content of
proteins with known effector features. Programs are indicated in red.
NLS, nuclear localization signal.
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Figure 4 The top 100 ranked protein tribes containing putative effector candidates. Clusters were determined using hierarchical clustering
of the top 100 ranked tribes containing putative effector candidates. A. Combined score used to rank tribes based on their content of effector
features. B. Score for similarity of tribe members to haustorial expressed secreted proteins (HESPs) or characterized fungal AVRs. C. Score for number of
members encoded by genes with at least one flanking intergenic region >10 Kb. D. Score for number of members classified as repeat containing
(RCPs). E. Score reflecting number of members classified as small and cysteine rich (SCRs). F. Score for number of members containing any
characterized effector motifs or nuclear localization signals (NLS). G. Score for number of members not annotated by PFAM domain searches. H. Score
for number of members in the top 100 expressed in infected material, determined by mRNA-seq analysis. I. Scatter plot indicating number of
members in the top 1, 5 or 10% expressed in infected material. J. Score for number of members in the top 100 expressed in haustoria, determined by
mRNA-seq analysis. K. Scatter plot indicating number of members in the top 1, 5 or 10% expressed in haustoria. L. Number of PST members showing
sequence polymorphisms between isolates. Stars indicate tribes that contain members assessed for expression using qRT-PCR.
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adaptation to specific host targets, such as disease-

resistance proteins amongst others. The list of effector

candidates we developed here should prove useful to the

rust research community to initiate functional screens for

effector activity. One possible strategy would be the in-

duction of hypersensitive cell death by potential avirulence

proteins (AVR) on differential wheat lines using an

effector delivery system as is routinely conducted in the

potato-P. infestans pathosystem [30].

The co-evolutionary arms race between pathogens and

plants has led pathogens to respond by mutating or losing

AVR effector proteins [31]. A survey of six Melampsora

lini isolates identified diversifying selection acting on the

Avr567 locus, with substitutions identified in surface

A D

E

B

C

Figure 5 Secreted proteins with high likelihood as candidate effectors. A. Sequence alignment of PST21_18220, a member of tribe 238, and
the corresponding alleles from the other four isolates illustrating sequence polymorphisms specifically between the US isolates, PST-21, PST-43
and PST-130. B. Sequence alignment of the second member of tribe 238, PST21_18221, and its alleles from other isolates illustrating that this
protein was highly conserved across isolates. C. The two members of tribe 238, PST21_18220 and PST21_18221, are in close proximity within a
single contig in the genome sequence. The corresponding genes were expressed during infection and were also highly expressed and enriched
in haustorial samples as determined by mRNA-seq analysis. D. Features displayed by the 117 proteins that were identified as polymorphic
between the two UK isolates PST-08/21 and PST-87/7. E. Sequence alignment of PST130_05023 and the synthetic genes that incorporate the SNP
information from the other four isolates sequenced, illustrating sequence polymorphisms between isolates. Polymorphic residues are indicated
below the sequence by red stars.
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Table 4 Secreted proteins with non-synonymous substitutions between UK isolates PST-87/7 and PST-08/21 and in tribes ranking within the top 100 potential

effector tribes

Gene ID Tribe
no.

Tribe
ranking

Length
(amino acids)

Similarity
to HESPs or
fungal AVRs

1 FIR
≥10 Kb

No. of
repeat units

SCR
protein

Effector motifs
(amino acid position)

NLS
signal

PFAM
mapping

Infected
material
(reads)

Haust. 1
(reads)

Haust. 2
(reads)

Enrichment in
haustoria

Fold change
(log2)

P value
(adj)

PST130_14637 9 6 609 No No 10 No - No No 0 0 4 1.02 0.68

PST21_19014 11 14 167 No No 0 No Y/F/WxC(85); LIAR(32) No Yes 535 120 534 −0.38 0.87

PST887_17743 11 14 185 No No 0 No Y/F/WxC(103); LIAR(32) No Yes 904 167 695 −0.61 0.70

PST130_00418 8 17 176 No No 20 No - No No 6 0 361 4.15 1.00

PST21_12116 74 20 455 No No 0 No - No Yes 298 3708b 34272b 5.99 <0.001

PST130_05023 351 22 281 No No 6 No - No Yes 2475a 7368b 62158c 3.85 0.011

PST21_18360 437 23 394 No No 0 No - No No 480 5957b 15413b 5.08 0.001

PST130_00285 317 25 207 No No 0 No - No Yes 919 6699b 36240b 4.77 0.001

PST21_15642 308 28 102 No No 0 Yes - No No 209 6002b 6286a 5.96 <0.001

PST21_17946 17 39 177 No No 3 No - No No 396 417 3015 2.21 0.19

PST21_04206 456 58 515 No No 0 No - No Yes 2563a 513 1806 −0.70 0.65

PST21_20471 21 83 376 No No 13 No - No No 24 7 34 0.05 0.69

PST43_15488 111 94 94 No No 0 Yes Y/F/WxC(23) No Yes 399 0 76 −3.81 0.17

PST21_15274 111 94 91 No No 0 Yes Y/F/WxC(23) No No 64 1 24 −2.46 0.17

HESPs, Haustorial expressed secreted proteins. FIR, flanking intergenic region. SCR, small cysteine-rich. NLS, nuclear-localization signal. Haust, Haustorial library.

Genes expressed in the top 10 (a), 5 (b) and 1% (c) in a particular RNAseq dataset.
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exposed residues that dictated host recognition [32,33].

Likewise, Yoshida et al. [19] identified three novel Avr

genes that were absent from the M. oryzae genome se-

quence (isolate 70-15) but present in the re-sequenced

avirulent isolate Ina168. In PST, we did not find evidence

of large scale absence of genes or putative effectors on

the scale identified in M. oryzae [19]. Even when com-

paring between the most distantly related isolates, we

found less than 15 predicted secreted protein genes to

be absent in any pairwise comparisons (<1.3% of the

total predicted secretome, Figure 1C). Although this is

a first and limited sampling of the available PST di-

versity, it suggests that gene loss may not be the main

driver for changes in virulence. Therefore, assessing

allelic variation in putative effectors between distinct PST

isolates will likely be important to identify avirulence/

virulence alleles.

Uncovering the evolutionary origin of PST isolates

Comparative genomic studies are powerful tools for

assessing the evolutionary origin of particular races. In

this study, the limited genetic diversity found between

US isolate PST-43 and the two UK isolates, PST-87/7

and PST-08/21, could be indicative of these isolates be-

longing to the same clonal lineage. This is supported by

a diversity study based on 117 amplified fragment length

polymorphism (AFLP) fragments which showed that

PST isolates collected before 2000 in the US and Europe

clustered together [34], thereby suggesting a common

origin. Interestingly, the two UK isolates used in this

study were collected after 2000 (2003 and 2008), yet still

cluster with the older US race. This agrees with virulence

data which suggests that despite the emergence of new

highly aggressive isolates after 2000 in some European

countries (Denmark and Sweden), these have not yet

appeared in UK fields (unpublished observations, Rosemary

Bayles). Conversely, differences between races can reflect

diverse evolutionary origins or host specificity. In this

study, US isolates PST-130 and PST-21 appear more

genetically diverse when compared to the other isolates

we sequenced. This is supported by studies showing that

US races isolated post-2000, such as PST-130, may have

a different origin than those isolated pre-2000 [5,34]

and that PST-21 displays host specificity for triticale [21].

The data generated is not only valuable for addressing

these evolutionary questions, but can also be used by the

wider rust research community for development of more

extensive polymorphic markers for large-scale screening

of PST field populations and to complement the current

set of dominant AFLP markers.

Utility of haustoria-enriched transcripts in effector mining

As biotrophic fungi and oomycetes secrete effectors from

highly specialized structures, known as haustoria, we also

undertook transcriptome analyses of infected tissues and

isolated PST haustoria to identify potential Avr genes. For

example, sequencing ESTs from M. lini isolated haustoria

led to the identification of three uncharacterized Avr genes

[7], suggesting that haustorial expressed transcripts repre-

sent a rich source for Avr effector identification. To iden-

tify haustoria enriched transcripts, we compared gene

expression levels between infected material and isolated

haustoria. Although RNAseq analysis of infected material

was limited to a single biological replicate, we used the

DESeq approach [35] to assess enrichment as this package

is suited for working with partial replicates [36]. This

enabled us to estimate levels of variation in the infected

B

A

Figure 6 Quantitative RT-PCR revealed peaks of expression

for the selected effector candidates during plant infection.

A. Schematic representation of the stages of PST development
during plant infection. B. Quantitative RT-PCR was undertaken at four
stages of PST-08/21 infection for a subset of 22 effector candidates.
Three peaks of expression were noted at 1 day post-inoculation
(dpi), 6 dpi and 14 dpi. hpi, hours post-inoculation; S, uredinospore;
SV, substomatal vesicle; IH, invasive hyphae; HM, haustorial mother
cell; H, haustorium; P, pustule; G, guard cell.
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Table 5 Tribe members selected for expression profiling during PST infection of wheat

Tribe
no.

Tribe
ranking

No. of
proteins

Average protein length
(amino acids)

Species distribution
(No. of proteins)

No. of proteins in
top 100 expressed
during infection

No. of proteins in
top 100 expressed

in haustoria

Members assessed for
peak in expression

General effector features (No. of proteins)

63 2 13 180 PST (2), PGT (5),
Mel (6)

2 2 1 dpi (1) Similarity to M. lini hesp-C49 (10); Internal repeats (2);
Members encoded by genes with 1 FIR ≥10Kb (2);

Without PFAM annotation (11)

467 3 3 109 PST 0 3 14 dpi (1) SCRs (3); Without PFAM annotation (3)

238 10 5 112 PST 0 5 14 dpi (2) Internal repeats (2)

413 12 3 95 PST (2), PGT (1) 1 2 14 dpi (2) Y/F/WxC (2); SCRs (3); Without PFAM annotation (1)

276 13 4 288.5 PST (2), PGT (1),
Mel (1)

0 2 1 dpi (1) Similarity to M. lini hesp-735 (3) and hesp-379 (1);
Internal repeats (1); Without PFAM annotation (1)

351 22 4 276.5 PST (3), PGT (1) 0 3 14 dpi (1) Internal repeats (2); Without PFAM annotation (2)

317 25 4 209.5 PST (3), PGT (1) 0 3 1 dpi (1) -

308 28 4 145 PST 0 3 1 dpi (1) SCRs (3); Without PFAM annotation (3)

596 31 2 139 PST 0 2 1 dpi (1) Without PFAM annotation (2)

79 34 12 299.5 PST (8), PGT (1),
Mel (3)

0 4 Stable (1) Y/F/WxC (2), LIAR (1); Members encoded by genes
with 1 FIR ≥10Kb (1); Without PFAM annotation (2)

928 43 1 163 PST 1 1 6 dpi (1) Y/F/WxC (1); Without PFAM annotation (1)

1004 43 1 132 PST 1 1 6 dpi (1) Without PFAM annotation (1)

593 60 2 160 PST 0 1 1 dpi (1) Without PFAM annotation (1)

544 75 2 216 PST (1), PGT (1) 0 1 6 dpi (1) SCRs (1); Internal repeats (1); Without PFAM
annotation (2)

1232 78 1 163 PST 0 1 14 dpi (1) Without PFAM annotation (1)

1118 96 1 201 PST 0 1 6 dpi (1) LIAR (1)

426 133 3 142 PST 1 1 14 dpi (1) Without PFAM annotation (1)

6 154 49 224 PST (27), PGT (21),
Mel (1)

0 4 1 dpi (2), 14 dpi (1) Y/F/WxC (1), LIAR (2), RXLR (1); Without PFAM
annotation (31)

dpi, days post-inoculation.
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material sample based on that observed in the replicated

haustoria samples. Despite the low power of detection

with this approach we could identify haustoria enriched

genes with sufficient confidence. These transcriptome

results helped to further classify and prioritize the PST

secretome. It also establishes a robust baseline from

which to extend this analysis to other isolates.

Improving existing PST gene models

An additional contribution of the expression studies was

to generate more reliable PST gene models, which is crit-

ical to identify genes encoding for proteins with secretion

signal peptide sequences. This was especially relevant for

the downstream effector prediction pipeline since this

constitutes the first criteria with which proteins are classi-

fied and filtered. We addressed this potential limitation by

firstly complementing the homology based and ab initio

prediction pipeline [25] with the de novo transcript assem-

blies generated from the RNAseq data and secondly, by

integrating independent gene predictions from all iso-

lates. Whilst assessing the independent gene sets obtained

for the different isolates we noted that for many frag-

mented genes, a non-fragmented copy could be identified

in at least one genome. Therefore, it is anticipated that the

gene catalog presented here will be a better representation

of the PST gene complement, than the previous one which

was based on genomic sequences alone [14]. The overall

accuracy of the gene predictions herein were also sup-

ported by the identification of higher frequencies in nu-

cleotide variants in the intronic regions than in the

exons for both heterokaryotic and homokaryotic SNPs

(Additional file 3).

Applying comparative genomics to effector mining

The recent release of draft genome sequences for several

rust pathogens has provided the first step towards wide-

scale cataloguing of putative effector proteins [13,14]. So

far, these studies have been limited to secretome predic-

tion and annotation from a single reference genome. Here,

we employed a comparative genomics approach to move

beyond the single isolate-directed catalogue and utilise the

distinct virulence profiles of the isolates sequenced to

identify putative virulence/avirulence effectors. Our aim

was to integrate genomics, transcriptomics and effector-

focused annotation to generate a rich source of informa-

tion that could be utilized to identify effector candidates

in PST. However, this raises the challenge of developing

methods that can utilize the vast abundance of data to

address clearly defined biological questions. The cluster-

ing and classification methods used here allowed us to

organize the complexity of these large datasets. Providing

the data in an easily comprehensible format (Figure 4) will

enhance accessibility and help the wider rust research

community to rapidly access effector candidates. Moreover,

this method provides a logical framework to prioritize

candidate effector genes for functional validation, an

approach that will become increasingly powerful as

additional races are re-sequenced, more mRNAseq data

becomes available and the avirulence activity of candi-

date effectors is established.

The use of association analysis to identify candidate

avirulence proteins has been successfully implemented

in other pathosystems [19,37]. As a first step in this

direction, we examined two UK isolates (PST-87/7 and

08/21) that share common virulence for ten wheat Yr

genes (Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32),

but differ in their ability to infect two UK varieties,

Robigus (YrRob) and Solstice (YrSol). We found no evi-

dence of gene loss between these isolates. However,

focusing on polymorphic variants that were also highly

expressed and enriched in haustoria (within the top 10%

expressed genes) reduced the dataset from 2,999 se-

creted proteins to just five polymorphic effector candi-

dates. These genes and their allelic variants are now a

priority for functional validation as virulence/avirulence

effectors in the wheat varieties Robigus and Solstice.

The next challenge – functional validation of effector

candidates

The next step will be to establish functional validation

methods for rust effectors in wheat. This crucial phase is

still in its infancy [38,39] and will most likely be limited

to testing a handful of candidate genes in the initial

stages. Several groups have attempted to modify existing

heterologous expression systems from other pathosystems

to establish a reliable method for testing rust AVR effector

candidates in wheat. This includes delivery of effector

candidates directly into wheat cells by expressing them

in bacterial pathogens for delivery by the type III secre-

tion system [39] or through virus-mediated approaches

[40]. Alternatively, host-induced gene silencing could be

utilized to transiently silence and test PST pathogenicity

or virulence genes. Recently, silencing of three en-

dogenous genes in Puccinia triticina, the wheat leaf rust

pathogen, was reported using transient Agrobacterium-

mediated expression of corresponding RNAi constructs in

wheat [38]. If established as a large-scale functional assay

system, transient expression could be utilized to enable

high-throughput loss-of-function screening of a diverse

array of PST effector candidates in wheat.

Conclusions
This study provides valuable information including (i) an

estimate of the distribution of genetic diversity within

and among PST isolates, (ii) characterization of the ex-

pression of PST genes in infected tissue and haustoria

using RNAseq analysis, (iii) a bioinformatics pipeline to

organize and prioritize candidate effector genes for
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functional studies and (iv) a list of candidate avirulence

genes which display polymorphisms specifically between

two UK isolates. As additional races and divergent iso-

lates are re-sequenced, polymorphic effectors will be

more easily distinguished from underlying genetic diver-

sity between isolates, streamlining the cataloging of po-

tential avirulence/virulence proteins for testing. The

functional validation of these will ultimately lead to a

more comprehensive understanding of the PST patho-

genesis system, an important step towards developing

more effective surveillance and management strategies

for one of the most devastating pathogens of wheat.

Methods
Genome sequencing, assembly and gene prediction

Genomic DNA was extracted for each isolate from dried

urediniospores using the CTAB method as described by

Chen et al. [41]. DNA libraries were prepared as described

previously for PST-130 [14]. Library quality was confirmed

before sequencing using the Agilent 2100 Bioanalyzer

(Agilent Technologies, UK). Sequencing was carried out

on an Illumina HiSeq machine at the DNA Technolo-

gies Service core at UC Davis. Adapter and barcode

trimming and quality filtering were carried out using

the FASTX-Toolkit [42]. Terminal nucleotides at the 3′

end with sequencing quality below Q20 were removed

and reads that after trimming were shorter than 40 nu-

cleotides were discarded. FASTQ files of high-quality

trimmed sequences were used for downstream analysis.

The pair-end trimmed and filtered reads were de novo

assembled using the CLC Genomic Workbench 4.0

software [43]. The following parameters were applied:

mismatch, insert, and deletion cost = 3; length fraction = 0.3;

similarity = 1.0 no global alignment; conflict resolution =

vote; ignore nonspecific matches; min contig length =

300 bp; paired-end distance = 100–600 bp. Contigs with

homology with non-fungal sequences in the complete NCBI

nt collection were considered contaminant and discarded.

Assemblies were deposited at GenBank and the SRA and

WGS accession numbers are listed in Additional file 1 to-

gether with the general sequencing and assembly metrics.

To assess genome completeness reads from each isolate

were filtered for contaminants and then mapped to the

assembled PST-130 contigs. PST ESTs used for assessment

of genome completeness were obtained from GenBank.

Gene prediction was undertaken following the MAKER

pipeline [25] using PST ESTs, de novo transcript assemblies

generated in this work (see below), and PGTand P. triticina

(PT) peptide sequences as templates for gene model dis-

covery. The homology based gene prediction implemented

in MAKER was integrated with the ab initio prediction

program SNAP [44] using as training dataset the above

mentioned PST, PGT, and PT datasets.

Assessing genetic diversity

Illumina pair-end genomic sequence reads from each iso-

late were mapped onto each other isolate used as a refer-

ence using Novoalign (version 2.07.18 [45]; parameters

used: -R99, -i PE 500,400 -Q30 -o SAM). Custom perl

scripts were used to extract the mapping counts from the

SAM files and determine the sequencing coverage of each

gene. Mapping metrics are reported in Additional file 4.

Genes were classified as absent when no reads mapped to

the coding region of a particular gene. SAM files were

converted into BAM format, sorted, indexed, and analyzed

using Picard tools (version 1.55 [46]). Single nucleotide

polymorphisms (SNPs) were determined using the Gen-

ome Analyzer Toolkit pipeline (GATK, version 1.65; [47]).

The GATK RealignerTargetCreator and IndelRealigner

programs were applied to realign the reads mapped on

indel sites. The GATK UnifiedGenotyper with parame-

ters --outputmode EMIT_VARIANT_ONLY and -glm

SNP was then used to identify SNPs. The alignment of

sequencing reads to the correct genomic location is crit-

ical for the accurate identification of genetic variants.

Thus, the variant calling was restricted to those sites

that did not display either too low (minimum 5x cover-

age) or too high coverage. Genomic regions that display

a higher than expected number of aligned reads are

likely to be stretches of similar or repetitive sequences

that have been assembled together [14]. To reduce the

number of false positive identified (i.e. SNPs between

non-orthologous region), we imposed a maximum

coverage threshold equivalent to 1.5 times the median

coverage over the entire assembly. To determine whether

the calculated median coverage is a valid proxy of the

coverage associated with single copy genes, sequencing

reads were remapped on a set of 10 single copy genes

previously identified in the PST-130 assemblies [14].

The sequencing coverage on these single copy genes

was very similar to the median coverage over the entire

assembly [e.g. 63.9x coverage (SD: ±6.7) and 59.9x (SD:

±5.7) in PST-21 and PST-130, respectively]. Assuming

that the coverage of a repetitive region increases pro-

portionally with the copy number, the maximum cover-

age threshold we selected is expected to reduce both

Type I and Type II errors of calling a single copy locus

to less than 0.001 for all races. Heterokaryotic sites were

identified as sites with allelic frequency = 0.5. If a site in

the reference had allelic frequency of 0.5 or the mapped

reads from another isolate had allelic frequency = 0.5

the site was considered heterokaryotic (Additional File 5).

Homokaryotic variants were identified as sites that are

homokaryon both in the reference (allelic frequency = 1.0)

and in the mapped reads (frequency of the alternative

allele = 1.0). The overall ratio of transition over transversion

mutations across all five isolates was 2.30 ± 0.17. These

values are consistent with human studies [48] and as
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expected, are higher than the 0.5 ratio that would be

obtained if all substitutions were equally probable.

To assess genetic diversity between isolates synthetic

gene sets were generated. Each gene for a given refer-

ence was taken in turn and any homozygous SNPs in-

corporated for each isolate mapped (Additional File 5).

The five genes (one reference gene and four synthetic

copies) were then subjected to pair-wise polymorphism

and positive selection analysis using the bioinformatics

program Yn00 [49]. Any pair-wise comparisons that

yielded a dN value > 0 were classified as polymorphic

and those with dN/dS values > 1 were classified as under

positive selection. The polymorphism and positive selec-

tion analysis was automated using custom Perl scripts.

Preparation of PST infected plant material for mRNAseq

analysis

Two sample types were selected for mRNAseq analysis,

infected wheat leaf material and purified haustoria.

Wheat seedlings (cv Avocet ‘S’) were infected with PST-

08/21 and incubated in the dark at 10ºC with high rela-

tive humidity for 24 hours. Plants were then transferred

to a 16 h/8 h day/night cycle at 18ºC. For infected leaf

samples material was collected at 6 and 14 days post-

inoculation (dpi) and pooled prior to RNA extraction.

Alternatively, haustoria were isolated from infected leaf

material 7 dpi. Two independent haustorial isolations

were undertaken, each from ~2,500 infected wheat seed-

lings. A total of 20 g of infected leaf segments were col-

lected that displayed localized infection, as determined

by small white flecks without rust sporulation. The seg-

ments were washed with 70% ethanol for 1 min,

followed by water for 1 min, then haustoria isolation

performed as described in Song et al. [50] using either

three (H1) or two (H2) rounds of sucrose gradient

purification.

Total RNA was extracted from both the infected wheat

leaf material and purified haustoria using TRIzol reagent

(Invitrogen, UK) and treated with DNA™-free DNase

(Manufacturer) and the Removal Reagents kit (Ambion,

UK) following the manufacturer’s instructions. The

quantity and quality of RNA extracted was assessed

using the Agilent 2100 Bioanalyzer (Agilent Technolo-

gies, UK).

Transcriptome sequencing, de novo assembly and

alignment

cDNA libraries were prepared using the Illumina TruSeq

RNA Sample preparation Kit (Illumina, US) for RNA

extracted from infected material and the haustoria H2 sam-

ple, whereas RNA extracted from the haustoria H1 sample

was processed using the Clontech SMARTer Ultra Low

Input RNA Kit (Clontech, Takara Bio Europe, France).

Library quality was confirmed before sequencing using the

Agilent 2100 Bioanalyzer (Agilent Technologies, UK). Se-

quencing was carried out on an Illumina Genome Analyzer

II at The Sainsbury Laboratory. The 76 bp pair-end reads

were filtered for quality as described above and aligned to

genomic PST assemblies using Bowtie (version 0.12.7 [51])

in global alignment mode allowing a maximum of two mis-

matches (parameters: -v 2 --best -k 1). SAM output files

were parsed with custom Perl scripts to determine the

number of reads mapping to a single PST transcript. DEseq

[35] was used to normalize raw transcript counts and to

compare libraries from PST infected tissue and enriched

haustoria preparations in order to determine potential

transcript enrichment in isolated haustoria compared to

whole infected material (version 1.10.1). The reads were

also assembled de novo using the Trinity package [52]

with default settings to serve as additional evidence for

gene prediction. The Illumina reads were deposited in

the National Center for Biotechnology Information’s Gene

Expression Omnibus (GEO) and are accessible through

GEO (GSE42496; [53]).

Secretome prediction and Markov clustering

The predicted proteomes of all five PST isolates were

combined and secreted proteins predicted using SignalP2

with parameters described in [54]. Transmembrane do-

main containing proteins and proteins with mitochondrial

signal peptides were removed using TMHMM [55] and

TargetP [56], respectively. To reduce redundancy secreted

proteins were clustered that displayed 99% sequence iden-

tity over 50% of the sequence length, using CD-HIT [57].

A single representative sequence was selected from each

protein cluster and used for downstream analysis. Pre-

dicted proteomes of M. larici-populina and P. graminis

f. sp. tritici were obtained from Duplessis et al. [13]. The

secretomes were predicted as above for PST using

PexFinder, followed by TMHMM and TargetP analysis.

Proteins from the three predicted secretomes were then

clustered based on sequence similarity using TribeMCL

[26] following methods described in [58].

Annotation of secreted protein tribes with effector

features

Automated BlastP-based annotation was performed on

proteins included in the secretome tribes using Blast2GO

[59] with default parameters. In addition, BlastP analysis

of proteins in the secretome tribes was conducted using

the haustorial EST database constructed previously [12],

with an e-value cutoff of 10-5. We searched each protein

for the effector motifs [L/I]xAR [19,60], [R/K]CxxCx12H

[19], RxLR [61], [Y/F/W]xC [62,63], YxSL[R/ K] [64] and

G[I/F/Y][A/L/S/T]R [7] between amino acids 10 to 110

using Perl scripts. Nuclear localisation signals were pre-

dicted with PredictNLS [65]. Protein internal repeats were

predicted using T-Reks [66]. We also assessed the length
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of the flanking intergenic regions (FIRs) between genes

and the cysteine content of proteins using custom Perl

scripts. Proteins cataloged as small and cysteine rich were

less than 150 amino acids long and had a cysteine content

higher than 3% as defined in Saunders et al. [12].

Scoring secreted protein tribes for the likelihood of

containing effector proteins

First, the method described in Saunders et al. [12] was

used to assign an e-value to each feature within a tribe.

The e-value was based on the number of proteins within

a tribe that displayed a particular feature, relative to the

likelihood of a tribe of the given size containing the

same number of proteins with that particular feature by

chance (Additional file 13). Next, the individual e-values

were log converted into a score and a combined score

calculated giving more weight to features that may be

more indicative of effector proteins which included high

expression in haustoria (a, in top 100 expressed genes; b,

in top 500 expressed) or infected material (c, in top 100

expressed genes, d, in top 500 expressed), similarity to

previously characterized HESPs or AVR effector proteins

(e). A lower weight was given to other effector-related

criteria that included the absence of any annotation (f) and

the score associated with small cysteine-rich proteins (g).

Combined score ¼ roundðlog aþ bþ cþ dþ eþ 1; 2ð Þ

� 1þ 0:1 � f þ gð Þð Þ; 3Þ

The combined score was then used to rank the tribes

based on their likelihood of containing potential effector

proteins. The features associated with the top 100 ranked

secreted protein tribes were visualized using Circos [67].

qRT-PCR of effector candidates during infection

Wheat seedlings (cv Avocet ‘S’) were infected with PST-

08/21 and incubated as described above. Six biological

replicates were sampled at each time point (20 hours, 1

dpi, 6 dpi or 14 dpi). For each sample, 2.5 μg of total

RNA was extracted and used for cDNA synthesis with

the SuperScript First-Strand Synthesis System for RT-

PCR (Invitrogen, UK). qRT-PCR was undertaken for 22

candidate effectors described in Additional file 15. Tran-

script levels were determined on a LightCycler® 480 instru-

ment (Roche Applied Science, UK) using LightCycler 480

SYBR Green I Master (Roche) and the following condi-

tions: 5 minutes at 95ºC; 40 cycles of 15 sec at 95ºC,

15 sec at 60ºC, 20 sec at 72ºC. The PCR amplification spe-

cificity was checked by dissociation curve analysis (from

60ºC to 95ºC). Transcript levels were normalized with

P. striiformis elongation factor 1 [15,68] and linearised

values determined using the 2-ΔΔCT method [69].

Additional files

Additional file 1: Summary of raw and trimmed reads and

assemblies of PST-21, 43, 130, 87/7, and 08/21 genomic DNA.

Additional file 2: Quality assessment of genome assembly using

CEGMA for five PST isolates. Of the 248 core eukaryotic genes (CEGs)
88.7% could be identified in the three PST US isolate genomes (PST-130,
PST-43 and PST-21). The CEGMA pipeline distinguishes between CEGs
found in complete (A) copies or as partial fragments (B) and separates
the CEGs based on levels of conservation across higher eukaryotes, with
group 4 being the most conserved. The levels of complete gene
coverage were high for all US isolates, indicating few core eukaryotic
genes were split across contigs. For the two UK isolates (PST-08/21 and
PST-87/7) complete gene coverage was reduced compared to partial
gene coverage, indicating higher levels of fragmentation for these
genomes.

Additional file 3: Variant calls in the pairwise comparisons between

all PST isolates used in this study.

Additional file 4: Summary of the reciprocal mapping of sequence

reads for the 5 genomes using each in turn as a reference.

Additional file 5: Assessing the genetic diversity both within and

between PST isolates. A. Summary of the main steps used to identify
genetic variants between PST isolates. B. Diagram to illustrate how we
defined heterokaryotic (het) and homokaryotic (hom) variants between
isolates. C. Illustration to show how synthetic genes were generated from
homokaryotic SNPs identified in Illumina reads of isolate B mapped to
the reference isolate A.

Additional file 6: Number of SNPs identified in each gene of the 5

PST genomes.

Additional file 7: Pairwise dN values calculated using Yn00 for each

gene of the 5 PST genomes, comparing all isolates.

Additional file 8: Pairwise dN/dS values calculated using Yn00 for

each gene of the 5 PST genomes, comparing all isolates.

Additional file 9: (PST21_04206 displays sequence polymorphisms

and positive selection between UK isolates and US PST-43 when

compared to the synthetic gene from PST-130. A. Sequence
alignment of PST21_04206 and the synthetic genes that incorporate the
SNP information from the other four isolates sequenced, illustrating
sequence polymorphisms between isolates. Polymorphic residues are
indicated below the sequence by red stars. B. Positive selection analysis
on the PST21_04206 synthetic gene set demonstrated positive selection
when US PST-43, UK PST-87/7 and PST-08/21 when compared against
the US PST-130 sequence.

Additional file 10: Depth, fold, and breath mapping coverage

values for individual gene sequences that were identified as absent

in any isolate.

Additional file 11: Summary of RNAseq reads from PST-08/21

infected tissue and haustorial libraries 1 and 2.

Additional file 12: Raw and DESeq normalized Illumina counts of

reads mapped onto each of the transcripts of the 5 PST genomes

with the fold enrichments in the haustoria libraries and the

associated P-values calculated using the DESeq statistical analysis.

Additional file 13: Complete list of tribes with full annotation data

and matching features. The file contains (i) the list of proteins included
in the tribe analysis with full annotation including effector properties, and
(ii) the list of tribes with the number of proteins matching effector
properties they contain.

Additional file 14: Summary of the relative gene expression values

measured using quantitative RT-PCR for 22 selected effector

candidates.

Additional file 15: Primers used in the quantitative RT-PCR

experiments.
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