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White Guinea yam (Dioscorea rotundata) is an important staple

tuber crop in West Africa. However, its origin remains unclear. In

this study, we resequenced 336 accessions of white Guinea yam

and compared them with the sequences of wild Dioscorea species

using an improved reference genome sequence of D. rotundata. In

contrast to a previous study suggesting that D. rotundata origi-

nated from a subgroup of Dioscorea praehensilis, our results sug-

gest a hybrid origin of white Guinea yam from crosses between

the wild rainforest species D. praehensilis and the savannah-

adapted species Dioscorea abyssinica. We identified a greater ge-

nomic contribution from D. abyssinica in the sex chromosome of

Guinea yam and extensive introgression around the SWEETIE

gene. Our findings point to a complex domestication scenario for

Guinea yam and highlight the importance of wild species as gene

donors for improving this crop through molecular breeding.

domestication | Guinea yam | hybrid | population genomics | wild

progenitors

Yams (Dioscorea spp.) are major starchy tuber crops that are
widely consumed in the tropics. Ten yam species are culti-

vated worldwide, including Dioscorea alata in Southeast Asia,
Dioscorea trifida in South America, and Dioscorea rotundata in
West and Central Africa (1). D. rotundata, also known as white
Guinea yam, is the most important species in West and Central
Africa, an area accounting for 92.5% of global yam production in
2018 (http://www.fao.org/statistics). Beyond its nutritional and
food value, Guinea yam is also important for the culture of West
African people (2).
Despite the considerable importance of Guinea yam, its origin

has been elusive. There are two types of Guinea yam: white
Guinea yam (D. rotundata) and yellow Guinea yam (Dioscorea
cayenensis). D. cayenensis is thought to be a triploid species of
hybrid origin, with D. rotundata as the maternal parent and
Dioscorea burkilliana as the paternal parent (3, 4). In turn, the
triploid D. rotundata is thought to be a hybrid between D. rotun-
data and Dioscorea togoensis (4). However, the origin of diploid D.
rotundata, which accounts for the majority of Guinea yam pro-
duction (4), has been ambiguous. Two wild species are candidate
progenitors of diploid D. rotundata: the savannah-adapted wild
species Dioscorea abyssinica and the rainforest-adapted wild spe-
cies Dioscorea praehensilis (3–10). The geographical distributions
of D. abyssinica and D. praehensilis overlap slightly (SI Appendix,
Fig. S1). Based on morphological evaluation, Coursey proposed
that D. rotundata might be a hybrid between the two species (8).
However, other reports have indicated that the origin of Guinea
yam is ambiguous due to the small number of markers (3–7), in-
trogression (6, 7), or incomplete lineage sorting (7).
The whole-genome sequence of Guinea yam has been repor-

ted (11). A recent genome study involving 86 D. rotundata, 47 D.

praehensilis, and 34 D. abyssinica accessions suggested that dip-
loid D. rotundata was domesticated from D. praehensilis (10).
Here we addressed this hypothesis using an expanded set of
genomes from cultivated and wild Dioscorea species.
In this study, we generated an improved version of the Guinea

yam reference genome and used it to analyze the genomes of 336
accessions of D. rotundata and its wild relatives. Based on these
analyses, we attempted to reveal the history of Guinea yam do-
mestication. Our results suggest that diploid D. rotundata was
most likely derived from homoploid hybridization between D.
abyssinica and D. praehensilis. By evaluating the genomic con-
tributions of each parental species to D. rotundata, we revealed
greater representation of the D. abyssinica genome in the sex
chromosome of D. rotundata and a signature of extensive in-
trogression in the SWEETIE gene on chromosome 17.

Genetic Diversity of Guinea Yam

We obtained DNA samples from 336 accessions of D. rotundata
maintained at the International Institute of Tropical Agriculture
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(IITA) in Nigeria, representing the genetic diversity of Guinea
yam landraces and improved lines from West Africa. We sub-
jected these samples to whole-genome resequencing on the
Illumina sequencing platform. We aligned the resulting short
reads to the newly assembled reference genome (SI Appendix,
sections S1 and S2) and extracted single nucleotide polymorphism
(SNP) information for use in genetic diversity studies (SI Appen-
dix, Table S1 and section S3). Based on admixture analysis with
the sNMF program (12), we defined five major clusters (Fig. 1A).
When K = 2, cluster 1 was clearly separated from the other ac-
cessions. Principal component analysis (PCA) also separated
cluster 1 from the rest of the clusters (Fig. 1B). Accessions in
cluster 1 had significantly higher heterozygosity and ∼10-fold more
unique alleles than those in the four remaining clusters (SI Ap-
pendix, Figs. S2 and S3 and Table S2). Because flow cytometry
analysis confirmed that all 10 accessions analyzed in cluster 1 were
triploids (Dataset S1), we hypothesized that cluster 1 represents
triploid D. rotundata, a hybrid of D. rotundata and D. togoensis (4).
After removing the cluster 1 accessions, the nucleotide diversity of
D. rotundata was estimated as 14.83 × 10−4 (SI Appendix, Table
S3), which is ∼1.5-fold larger than that reported previously (10),
presumably because we used a larger number of samples with
diverse genetic backgrounds in our study. Linkage disequilibrium
of diploid D. rotundata showed a decay of r2 = 0.13 in a 200-kb
genomic region (SI Appendix, Fig. S4), which is slower than that of
cassava, another clonally propagated crop (13).

Phylogenomic Analysis of African Yam

Using the SNP information, we constructed a rooted neighbor-
joining (NJ) tree (14) based on 308 Guinea yam accessions se-
quenced in the present study (excluding cluster 1 triploid acces-
sions), as well as 80 D. rotundata, 29 D. abyssinica, 21 Western D.
praehensilis, and 18 Cameroonian D. praehensilis accessions that
were sequenced in a previous study (10) using two accessions of
Asian species D. alata as an outgroup (Fig. 1C). Throughout the
analyses described below, we used 388 D. rotundata accessions by
combining our samples and those used previously (10). According
to this NJ tree, the D. rotundata accessions sequenced in this study

are genetically close to the D. rotundata accessions reported previ-
ously (10) (Fig. 1C). However, the NJ tree showed that D. rotundata
is more closely related to D. abyssinica than to Western D. prae-

hensilis (Fig. 1C), which is inconsistent with a previous finding (10)
that D. rotundata is most closely related to Western D. praehensilis.
To elucidate the evolutionary relationships of the three wild

Dioscorea species that are closely related to D. rotundata—D.

abyssinica (designated as A), Western D. praehensilis (P), and
Cameroonian D. praehensilis (C)—we performed diffusion ap-
proximations for demographic inference (∂a∂i) analysis (15), which
allows for estimation of demographic parameters based on an un-
folded site frequency spectrum. First, we tested three phylogenetic
models—{{A, P}, C}, {{P, C}, A}, and {{C, A}, P}—using 17,532
SNPs that were polarized using D. alata as an outgroup without
considering migration among the species. Of the three models, {{A,
P}, C} had the highest likelihood (SI Appendix, Table S4).
This result is not consistent with the previous finding that {{P,

C}, A} had the highest likelihood (10), as determined using a
different method with fastsimcoal2 software (16). To exactly re-
peat the previous analysis, we tested these three models with
fastsimcoal2 (16) using the previous reference genome (11), which
indicated that {{A, P}, C} had the highest likelihood (SI Appen-
dix, Table S5). Taken together, our results are inconsistent with
the previous report (10) but are consistent with the PCA result
from the same report, which separated Cameroonian D. prae-

hensilis from the other African yams in PC1 (figure 2A of ref. 10).
Based on the assumption that {{A, P}, C} describes the true

evolutionary relationship among the three wild Dioscorea spe-
cies, we reestimated the evolutionary parameters with ∂a∂i,
allowing symmetric migration (gene flow) among the species
(Fig. 1D). Since the results indicated that Cameroonian D.

praehensilis is distantly related to D. rotundata and was not likely
involved in genetic exchange with D. rotundata (Fig. 1C), we
focused on Western D. praehensilis, which we refer to as D.

praehensilis hereinafter for brevity.
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Fig. 1. Genetic diversity and phylogenomics of Guinea yam and its wild relatives. (A) Ancestry proportions of each Guinea yam accession with 6,124,093 SNPs.

TDr96_F1 is the sample used as the reference genome. (B) PCA result of the 336 Guinea yam accessions. (C) NJ tree of four African yam lineages reconstructed

using D. alata as an outgroup based on 463,293 SNPs. The numbers indicate bootstrap values after 100 replications. The sequences of D. rotundata in the

previous study (10) were included in the tree. (D) Evolutionary relationship of three African wild yam lineages (D. abyssinica, Western D. praehensilis, and

Cameroonian D. praehensilis) as inferred by ∂a∂i (15) using 17,532 SNPs. N, M, and T represent the relative population size from Nanc, migration rate, and

divergence time, respectively.
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Hybrid Origin of Guinea Yam

We propose three hypotheses for the origin of Guinea yam (D.
rotundata) based on the NJ tree (Fig. 1C) and ∂a∂i (15) (Fig. 1D).
The first hypothesis is that D. rotundata was derived from D.
abyssinica (hypothesis 1 in Fig. 2A); the second is that D.
rotundata was derived from D. praehensilis (hypothesis 2 in
Fig. 2A). However, in hypotheses 1 and 2, the divergence time of
D. rotundata from the wild species might not be sufficient to
separate the three lineages, and there may be incomplete lineage
sorting among the species. The third hypothesis is that D.
rotundata originated as an admixture between D. abyssinica and
D. praehensilis (hypothesis 3 in Fig. 2A).
Before estimating the evolutionary parameters for the three

hypotheses, we studied the allele frequencies of the 388 D.
rotundata sequences, focusing on 144 SNPs that are positioned
over the entire genome and are oppositely fixed in the two
candidate progenitors (Fig. 2B and SI Appendix, Fig. S5). If hy-
pothesis 1 or 2 is correct, then the allele frequencies in these 144
SNPs should be highly skewed to either of the progenitors. The
patterns of allele contributions from the two candidate species to
D. rotundata were nearly identical, however. This result suggests
that hypothesis 3, the admixture origin of Guinea yam, is most
likely correct.

We tested the three hypotheses by ∂a∂i (15) with symmetric
migration (gene flow) rates using 15,461 SNPs polarized by D.
alata (Fig. 2A), which showed that hypothesis 3 had the highest
likelihood and the lowest Akaike information criterion value
(Fig. 2C and SI Appendix, Table S4). This result supports the
admixture hypothesis, that D. rotundata was derived from crosses
between D. abyssinica and D. praehensilis. The parameters esti-
mated by ∂a∂i indicate that the hybridization between D. abys-
sinica and D. praehensilis was relatively recent in relation to the
divergence between the two wild species. This analysis also indi-
cated that the genomic contributions from D. abyssinica and D.
praehensilis during the hybridization period were ∼68% and 32%,
respectively. Introgression generally results in highly asymmetric
genomic contributions from the parental species, whereas hy-
bridization shows symmetric genomic contributions (17). The in-
termediate genomic contributions revealed by this analysis support
the hybridization hypothesis rather than the introgression hy-
pothesis. Our findings are in line with the hybrid origin of the
Guinea yam proposed by Coursey in 1976 based on morphology
(8) and supports his speculation that spontaneous hybridization
between wild yams could have occurred at the artifactual “dump
heaps” created by people living in the savannah between the forest
and the Sahara (9).

BA

C

TA-P

TR

(1.58)

(0.05)

NAP

(1.00)

NA NP

(0.51) (0.38)

NR

(0.09)

D. a
byssinica

D. p
ra

ehensilis

D. r
otu

ndata

fA fP
(0.68) (0.32)

MA-P

(0.62)

MA-R MP-R

(2.32) (2.80)

D
. a

b
y
s
s
in

ic
a

D
. a

b
y
s
s
in

ic
a

D
. p

ra
e
h
e
n
s
ili
s

D
. r

o
tu

n
d
a
ta

O
u
tg

ro
u
p

Hypothesis 2

D
. a

b
y
s
s
in

ic
a

D
. p

ra
e
h
e
n
s
ili
s

D
. r

o
tu

n
d
a
ta

O
u
tg

ro
u
p

Hypothesis 1
D

. p
ra

e
h
e
n
s
ili
s

D
. r

o
tu

n
d
a
ta

O
u
tg

ro
u
p

Hypothesis 3

A R P O A R P O A R P O

Frequencies of AA (yellow), AP (white), 
PP(blue) genotypes

1
4
4
 S

N
P

s

D. rotundataA P

AIC = 20319 AIC = 20791 AIC = 20124

D

0.0

F
S

T

100 200 300 400 5000

Mbp

Sex chromosomeD. abyssinica vs. 
D. rotundata

F
S

T

100 200 300 400 5000

Mbp

Sex chromosomeD. praehensilis vs. 
D. rotundata

0.2

0.4

0.6

0.0

0.2

0.4

0.6
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To evaluate the genetic distances of D. rotundata from the two
parental species for each chromosome, we calculated fixation in-
dex (FST) values (18) (Fig. 2D and SI Appendix, Table S6). The
genetic distances from the two parents varied across the different
chromosomes, and the overall genetic distance of D. rotundata
from D. abyssinica was shorter than that from D. praehensilis (SI
Appendix, Table S6). Intriguingly, chromosome 11, to which we
previously mapped the candidate locus for sex determination (11),
had the shortest genetic distance from D. abyssinica and the lon-
gest genetic distance from D. praehensilis among all chromosomes,
indicating that chromosome 11 of D. rotundata is highly skewed to
D. abyssinica (Fig. 2D and SI Appendix, Table S6). Similarly, in-
terspecies divergence is different between the autosomes and sex
chromosome of the dioecious plant species Silene (19).

Evolutionary History of Guinea Yam

In angiosperms, plastid genomes are predominantly inherited
maternally (20), making them useful for studying maternal
lineages. To infer the maternal history of Guinea yam, we con-
structed a haplotype network of the whole plastid genome with
all samples used in the NJ tree (Fig. 1C), as well as the triploid
accessions in cluster 1 (Fig. 3A and SI Appendix, section S6).
According to this haplotype network, Cameroonian D. prae-
hensilis has the longest genetic distance from D. rotundata. This
result is in line with the phylogenomic trees of African yam
(Fig. 1 C and D). Strikingly, the plastid genomes of diploid and
triploid D. rotundata are uniform and very similar to those of
Nigerian or Beninese D. abyssinica, although the latter has an-
other plastid genome lineage distant from that of D. rotundata.
The plastid genomes of D. praehensilis from Nigeria, Benin, and
Ghana appear to be derived from Nigerian or Beninese D.
abyssinica. These results indicate that D. abyssinica is an older
lineage than D. praehensilis, and that the places of origin of D.
rotundata and D. praehensilis are probably around Nigeria or
Benin. Based on the whole-genome diversity of D. rotundata, a
recent study (10) hypothesized that the origin of D. rotundata
was around north Benin, as supported by the current results. The
plastid genomes of some wild species are identical to those of
cultivated Guinea yams. Hybridization between cultivated yams
and wild yams may account for this observation (7).

The results of nuclear genome admixture (Fig. 2) and plastid
haplotype network (Fig. 3A) analyses indicate that the maternal
origin of diploid D. rotundata is D. abyssinica and its paternal
origin is D. praehensilis (Fig. 3B). Hybridization between D.
abyssinica and D. praehensilis is rare (10), but such rare hybrids
appear to have been domesticated by humans. The triploid D.
rotundata shares its plastid haplotype with diploid D. rotundata,
indicating that diploid D. rotundata served as the maternal par-
ent and D. togoensis was the paternal parent. D. cayenensis is
reported to have D. rotundata as the maternal parent and D.
burkilliana as the paternal parent (3, 4). All cultivated Guinea
yams are hybrids containing D. abyssinica plastid genomes.
To explore the changes in population size, we reinferred the

demographic history of African yam by ∂a∂i (15), allowing mi-
gration (Fig. 3C and SI Appendix, section S7). We used the same
dataset as in Fig. 2C. By fixing the parameters predicted in
Fig. 2C except population size, we reestimated each population
size at the start and end points after the emergence of these
species, assuming an exponential increase/decrease in population
size. According to this analysis, since the emergence of the wild
progenitors of Guinea yam, the population size of D. abyssinica
has been decreasing, while that of D. praehensilis has been in-
creasing (Fig. 3C). This finding suggests that the D. praehensilis
population was derived from D. abyssinica, which is consistent
with the results of haplotype network analysis (Fig. 3A).

Extensive Introgression at the SWEETIE Locus

To explore multiple introgression to D. rotundata from the two
wild species, we analyzed the f4 statistic (21) using four groups:
D. rotundata clusters 2 and 5, D. rotundata cluster 4, D. abys-
sinica, and D. praehensilis (SI Appendix, section S8). The f4 sta-
tistic reveals the representation of two alternative discordant
genealogies (Fig. 4A). The f4 value is close to zero if the first two
groups of D. rotundata show a concordant genealogy in relation
to D. abyssinica and D. praehensilis. In contrast, the f4 value di-
verges from zero if the two groups of D. rotundata exhibit dis-
cordant genealogy and a large genetic distance to each other. We
obtained the f4 statistic f4 (P25, P4, PP, PA) for each SNP and
performed sliding window analysis (Fig. 4B). The f4 value was
close to zero across the genome, indicating that overall, we cannot
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decide between topology 1 and topology 2. However, the genomic
regions around the SWEETIE gene showed the lowest f4 (P25, P4,
PP, PA) [Z(f4) = −5.66], with overrepresentation of topology 2 in
the SWEETIE gene (DRNTG_01731) (SI Appendix, Table S7).
To explore the genealogical relationships around the

SWEETIE gene, we constructed a Neighbor-Net (22) around this
locus (4.00 to 4.15 Mb on chromosome 17) (Fig. 4C). The
Neighbor-Net showed that the locus of cluster 4 was close to that
of D. praehensilis, while the loci of clusters 2 and 5 and some
other accessions were close to those of D. abyssinica. These re-
sults indicate that the SWEETIE gene was introgressed from the
wild species more than once. The SWEETIE gene encodes a
membrane protein involved in the general control of sugar flux
(23). The Arabidopsis thaliana sweetie mutant shows pronounced
changes in the accumulation of sugar, starch, and ethylene along
with significant changes in growth and development (24). We still
do not know the effect of this introgression on the phenotype of
Guinea yam, but this locus appears to be a target of selection.

Homoploid Hybrid Formation as the Trigger of
Domestication

The importance of hybridization and polyploidization for crop
domestication is well documented (25, 26), including in bread
wheat (27) and banana (28). Compared with allopolyploidy, only a
limited number of homoploid hybridizations have been reported in
plants (29), and homoploid hybridizations have rarely contributed
to the origin of crops (30). Homoploid hybridization can increase
genetic variation via recombination between distantly related spe-
cies, and it often allows the hybrid to adapt to unexploited niches
(31). In the case of Guinea yam, the savannah-adapted wild species
D. abyssinica and the rainforest-adapted wild species D. praehensilis
are not suitable for agriculture; however, their hybrid, D. rotundata,
could have been adopted for cultivation by humans. Gene combi-
nations from different wild yams might have contributed to the

domestication of Guinea yam. The present study provides an ex-
ample of the origin of a crop through homoploid hybridization.

Use of Wild Species to Improve Guinea Yam

A project for the improvement of Guinea yam by crossbreeding
has been initiated (AfricaYam: https://africayam.org). However, the
current breeding projects depend solely on D. rotundata genetic re-
sources. Systematic efforts are needed to introgress beneficial alleles
from wild species into crops; these alleles will increase disease resis-
tance and abiotic stress tolerance to improve crop resiliency and
productivity (32). Our study revealed that the two wild progenitor
species (D. abyssinica and D. praehensilis) of Guinea yam contain
much greater genetic diversity than D. rotundata (Fig. 2C), suggesting
that these wild species could be useful sources for alleles of agricul-
tural importance. However, the D. abyssinica and D. praehensilis ac-
cessions in IITA GenBank account for only 1.6% of the total
Dioscorea accessions maintained as of 2018 (33). Therefore, it will be
important to collect and preserve wild Dioscorea species as genetic
resources for improving Guinea yam. Our findings suggest that new
alleles of loci, such as the SWEETIE gene, were introgressed from
wild yams into cultivated Guinea yams multiple times, which likely
conferred the plants with phenotypes preferred by humans. Many
more alleles from wild species remain to be exploited for systematic
breeding. Our findings highlight the need to consider how to effec-
tively leverage the gene pools of wild species from different habitats
for the rapid breeding of Guinea yam using genomic information.

Data Availability. All study data are included in the main text and
supporting information.
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