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Abstract

Background: Legumes are the third largest family of angiosperms and the second most important crop class.

Legume genomes have been shaped by extensive large-scale gene duplications, including an approximately 58

million year old whole genome duplication shared by most crop legumes.

Results: We report the genome and the transcription atlas of coding and non-coding genes of a Mesoamerican

genotype of common bean (Phaseolus vulgaris L., BAT93). Using a comprehensive phylogenomics analysis, we

assessed the past and recent evolution of common bean, and traced the diversification of patterns of gene

expression following duplication. We find that successive rounds of gene duplications in legumes have shaped

tissue and developmental expression, leading to increased levels of specialization in larger gene families. We also

find that many long non-coding RNAs are preferentially expressed in germ-line-related tissues (pods and seeds),

suggesting that they play a significant role in fruit development. Our results also suggest that most bean-specific

gene family expansions, including resistance gene clusters, predate the split of the Mesoamerican and Andean

gene pools.

Conclusions: The genome and transcriptome data herein generated for a Mesoamerican genotype represent a

counterpart to the genomic resources already available for the Andean gene pool. Altogether, this information will

allow the genetic dissection of the characters involved in the domestication and adaptation of the crop, and their

further implementation in breeding strategies for this important crop.
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Background
Legumes are the third largest family of angiosperms and

include many populous species. The majority of legumes

contain symbiotic bacteria within nodules in their roots

that mediate nitrogen fixation and provide an advantage

towards competing plants. Legume seeds are rich in pro-

tein content and thus many species have been used for

human or animal consumption over the years. Legumes

as a whole constitute the second largest class of crops,

including peas, soybeans, peanuts, and beans. Common

bean (Phaseolus vulgaris L.), a major source of protein

that complements carbohydrate-rich rice, maize, and

cassava, is fundamental for the nutrition of more than

500 million people in developing countries [1]. Even

though the origin of P. vulgaris as a species was debated

for years [2, 3], recent studies suggest it originated in

Mesoamerica [4] and then migrated to the Andean re-

gion in South America, giving rise to two wild popula-

tions or gene pools. Using a limited number of loci, the

splitting of both gene pools was dated 111,000 years ago

[5]; however, demographic inferences using polymorphic

sites distributed all along the genome resulted in a tight

interval of 146,000–184,000 years ago [6]. Both analyses

indicate that common bean dispersal along the Americas

occurred prior to human migrations. Over 100,000 years

after the split of the Mesoamerican and Andean gene

pools (~8200–8500 years ago [7]), at least two independ-

ent domestication events started, one per population,

slowly shaping what we know today as cultivated popu-

lations and landraces [8, 9]. The age of the Phaseolus

stem clade (~6–8 million years ago [10]), the estimated

age of diversification of the Phaseolus extant species

clades (~2 million years ago [10]), the elapsed time after

the geographic isolation of the two gene pools, the con-

tinuous domestication processes accompanied by popu-

lation bottlenecks [11], and the evidence of genetic flow

between wild and domesticated sub-populations [12–14]

open several questions regarding common bean genome

shaping (gene duplications, gene family expansions, and

the emergence of polymorphisms) that ultimately led to

the phenotypic traits we observe in modern cultivars.

The availability of the genomic sequences of these

two gene pools would certainly contribute to the un-

derstanding of this complex evolutionary history. In

2014, the first genome of an Andean P. vulgaris

landrace was published [6, 15]. Here we determined

the complete genome sequence of the P. vulgaris Me-

soamerican breeding line BAT93, accompanied by a

detailed transcriptomic atlas of the different bean

organs and tissues through the entire development of

the plant. Finally, we reconstructed the evolutionary

history of each common bean gene, across the two

sequenced varieties and other sequenced plant

species.

Our analyses allowed the identification of a set of leg-

ume- and P. vulgaris-specific coding and non-coding

genes, including a core set of conserved plant long non-

coding RNAs (lncRNAs). Through the analysis of the

patterns of gene expression across organs and develop-

mental stages, we identified organ- and stage-specific

genes. We found that, while organ-specific protein cod-

ing genes are overwhelmingly expressed in the roots,

organ-specific lncRNAs tend to be specific for fruits.

Consistently, our analysis of co-expression networks also

reveals an important role for a few novel lncRNAs in

fruit development.

By overlaying evolutionary information on the tran-

scriptional landscape of BAT93, we found that gene du-

plication has shaped tissue expression in legumes, with

the level of tissue specialization increasing with both

time of divergence and number of retained duplicates.

Ancient genes without paralogs tend to have broad ex-

pression and form the most densely connected hubs in

the co-expression network, whereas recently emerged

genes and those that belong to large, multi-gene families

tend to be expressed narrowly, have fewer co-expressed

partners, and are associated with specialized functions in

specific tissues. Given the fact that most bean-specific

gene family expansions herein detected predate the split

of the Mesoamerican and Andean gene pools, we sug-

gest they were key events that facilitated broad distribu-

tion of common bean in America, making this species

prone to human discovery and further domestication.

Altogether, the genomic, transcriptomic and evolution-

ary features derived from our study constitute a major

resource to investigate the common and specific traces

of the P. vulgaris gene pools, and to understand how

members of the same species have adapted to different

environmental conditions such as those present in the

Andean and Mesoamerican regions.

Results

Genome sequencing and assembly

We assembled the P. vulgaris Mesoamerican common

bean BAT93 genome using a hybrid sequencing strategy

involving 454 single reads and 8, 10, and 20 kb mate pair

libraries; 3 and 5 kb SOLiD mate pair libraries; and

Sanger bacterial artificial chromosome (BAC)-end and

genomic read pairs (Additional file 1: Table S1). Data

free of redundancies were used as input for a Newbler

assembly, and Illumina reads (45× coverage) were used

to correct homopolymer errors and close or reduce gaps

within scaffolds (Additional file 1: Tables S2 and S3).

Illumina genotyping-by-sequencing (GBS) [16] data from

a set of 60 F5 lines of a BAT93 × Jalo EEP558 advanced

intercross (6.7× coverage per line on average; Additional

file 2: Dataset S1), together with 827 public marker se-

quences, were used for assembly correction and scaffold

Vlasova et al. Genome Biology  (2016) 17:32 Page 2 of 18



anchoring. Up to 900,000 variants distinguishing Jalo

from BAT93 were scored on scaffolds exceeding 20 kb.

Discontinuous genotype profiles observed in 48 cases

were manually corrected by breaking scaffolds at the

mis-assembly points (Fig. 1a; Additional file 1: Figure

S1). Markers were aligned to the assembly and GBS pro-

files of these scaffolds were used as seeds to place other

scaffolds with this or similar profiles onto chromosomes,

followed by genetic map calculation. The final BAT93

genome sequence encompassed 549.6 Mb (Table 1),

close to previous size estimates [17, 18], with 81 % of

the assembly anchored to eleven linkage groups (Fig. 1b;

Additional file 1: Tables S4 and S5). The assembly in-

cluded 97 % of the conserved core eukaryotic genes [19],

thus reflecting its completeness.

Genome annotation

We identified transposable elements by combining de

novo and homology-based approaches, finding 35 % of

the P. vulgaris BAT93 genome assembly to be covered

by repeats, mostly long terminal repeats (LTRs;

Additional file 1: Table S6). To aid in gene prediction

and to obtain a global view of the transcriptome during

development, we sequenced with Illumina 61 RNA sam-

ples from 34 different organs and/or developmental

stages from healthy plants (Additional file 1: Tables S7

and S8). In addition, two normalized libraries derived

from 162 RNA samples from plants grown under opti-

mal and stress conditions were used for 454 pyrose-

quencing (Additional file 1: Tables S9–S12). Illumina

and 454 RNA-Seq reads, as well as public expressed se-

quence tags (EST) and cDNA sequences, were combined

with ab initio predictions to produce an initial gene set

(Additional file 1: Tables S13 and S14). This was filtered

to remove genes lacking both similarity to other plant

proteins and any evidence of expression, resulting in

30,491 protein coding genes (PCGs), whose 66,634 tran-

scripts encode 53,904 unique proteins (Additional file 1:

Table S15). Using protein signatures and phylogeny-

based transference of functional annotations we were

Fig. 1 BAT93 assembly overview. a An example of a genotype-by-sequencing (GBS) profile for the scaffold scaffold00017. The defined mis-assembly point

is at the center. Colors indicate different variants between the GBS samples and the reference genome: blue, homozygous variant; light blue, heterozygous

variant; grey, absence of any variant. Colors correspond to the linkage groups. b Synteny-like comparison of one-to-one ortologs between BAT93 (green)

and G19833 (brown) linkage groups. Colors correspond to the linkage groups, as in (c). c Circos plot representing the gene content and transcriptome maps

of the linkage groups of P. vulgaris. The outer ring represents the localization of genes across bean linkage groups. Grey regions are meant to contain genes

and white regions depleted from annotated genes. The red line shows the repeat coverage across the linkage groups. Below, squares of different colors

represent different types of genes: red, smallRNAs; blue, lncRNAs; yellow, legume-specific; black, resistance. The inner rings below the horizontal bar

delineating the linkage groups represent RNA-Seq coverage for the different organs: axial meristem, flower, pod, seed, leaf, root and stem
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able to associate functions with 94 % of the bean tran-

scripts, with 76 % of them specifically associated with

Gene Ontology (GO) terms (Additional file 1: Tables

S16 and S17, Figures S2 and S3).

We compared our PCG model predictions with that of

the Andean P. vulgaris G19883 genome [6] using a com-

bination of synteny and phylogeny-based orthology as-

signment between both genomes (details in "Materials

and methods"; Additional file 1: Table S18). Out of the

25,991 BAT93 PCGs that could be placed in linkage

groups, 20,617 were uniquely mapped to 20,618 PCGs in

the Andean genome (Fig. 1b). When considering both

placed and unplaced PCGs, 21,600 BAT93 PCGs were

mapped to 21,604 PCGs in the G19833 genome. We

then aligned the protein coding sequences of these

equivalent genes and found that 1186 PCG pairs have

sequence identity lower than 95 % when gaps are not

considered (Additional file 1: Table S19). These diver-

gent gene pairs are mainly enriched in defense response

and terpene synthase activity (Additional file 1: Table

S20). Terpene has been described before as an indirect

defense mechanism in legumes [20].

Then, we attempted to specifically characterize resist-

ance genes, as the Mesoamerican BAT93 line has been

described as less susceptible to diseases such as bean

common mosaic virus rust, angular leaf spot, anthrac-

nose or common bacterial blight compared with its An-

dean counterpart [21, 22]. We identified 852 putative

resistance genes in the BAT93 genome (Additional file 1:

Table S21), which include 234 belonging to the cytoplas-

mic NBS-LRR class. In comparison, G19833 had been

predicted to contain 376 cytoplasmic NBS-LRR class

genes, of which 316 could be mapped to 220 BAT93

genes. Out of the NBS-LRR class, we were able to place

211 and 182 genes from BAT93 and G19833, respect-

ively, into the Mesoamerican linkage groups (Additional

file 1: Figure S4). The placement allowed us to recapitu-

late the gene clusters observed by Schmutz et al. [6].

However, we were unable to find resistance-gene clusters

that were specific to either of the two varieties. These re-

sults indicate that the genomic clustering of resistance

genes predates the split of both gene pools and suggest

that the differences in pathogen susceptibility might be

due to polymorphisms in these loci, rather than a gene

presence–absence effect. Additionally, when BAT93 Illu-

mina reads were mapped to the G19833 assembly we

identified 10,193 regions of 1 kb or longer with zero

coverage containing a total of 314 PCGs. These genes

are likely lost specifically in BAT93. Although no func-

tional enrichment was detected, 17 PCGs are annotated

as involved in defense resistance (5.4 %, a proportion al-

most twice as large as that in the whole BAT93 bean

genome, 2.8 %).

In addition to PCGs, we identified and annotated small

RNA (sRNA) and long non-coding RNA (lncRNA) se-

quences. In silico homology modeling based on sRNA se-

quencing led to the identification of 2529 sRNAs belonging

to plant known families (Additional file 1: Table S22, Figure

S5). lncRNAs were identified by combining Arabidopsis

thaliana homology-based predictions and computationally

predicted transcript models based on RNA-Seq data. Once

filtered from single exon models, putative open reading

frames (ORFs), and transcripts mapped within 1 kb of an-

notated PCGs [23], we obtained 1033 intergenic lncRNAs

(38 inferred from A. thaliana), coding for 1858 transcripts

(Additional file 1: Table S23). We found 94 % of the

lncRNAs in the Mesoamerican genome were also present

in the Andean genome. Homology profiling against 12

other complete plant genomes revealed 526 bean-specific

lncRNA genes and only five lncRNAs conserved in all 12

plant genomes (Fig. 2; Additional file 1).

The bean phylome

To gain insight into P. vulgaris genome evolution, we re-

constructed its phylome, i.e., the complete collection of

evolutionary histories of bean genes, using PCG sets de-

rived from either BAT93, G19833 or both genomes. We

obtained 27,986 trees for the BAT93 phylome (available

through PhylomeDB [24, 25]), and scanned them to detect

and date gene duplication events, delineate orthology and

paralogy relationships [26, 27], and annotate functions

(Additional file 1: Tables S24–S27). We reconstructed a

species phylogeny using two complementary approaches:

Table 1 Summary of P. vulgaris cv. BAT93 genome assembly

Whole
genome

Scaffolds
only

Assembly

Total length 549,604,264 494,957,111

Number of scaffolds/contigs 68,379 9,047

N50(size/number) 433,759 / 324 526,483 / 267

N90(size/number) 2,023 / 8,894 35,958 / 1,484

Range (min-max) 500-3,177,954 2,000-3,177,954

% of Ns 34.96 % 36.99 %

G + C content 38.43 % 36.64 %

Annotation

Number of protein coding (PC) genes 30,491 29,569

Number of PC transcripts 66,634 65,685

Number of small RNAs 2,529 2,271

Number of long non-coding genes 1,033 870

G + C content exonic (for PC genes) 47.57 % 47.70 %

Number of functionally annotated
transcripts

62,713 (94.12 %) 62,594 (95.2 %)

The "Whole genome" column corresponds to the entire set of scaffolds and

unplaced contigs, while the "Scaffolds only" column corresponds only to the

set of scaffolds. Complete annotation statistic are provided in Additional file 1:

Table S15
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(i) the analysis of 172 sets of widespread groups of one-to-

one orthologs, and (ii) a super-tree reconstruction using

82,365 single-gene trees from the three phylomes above.

Both approaches yielded an identical topology (Fig. 3),

which provides an evolutionary framework for down-

stream comparative genomics analyses. From this phyl-

ogeny we defined four evolutionary periods as the lineages

preceding the divergence of Phaseolus: basal to Phaseolus;

basal to legumes; basal to rosids; and basal to the split of

rosids and asterids. We then assigned the duplications in-

ferred from gene trees to each of these periods (Additional

file 1: Tables S28 and S29). The resulting pattern of dupli-

cation densities is consistent with the proposed wave of

whole genome duplication events at the split of rosids and

asterids [28], and at the base of legumes [29, 30]. However,

in contrast to what has been observed in soybean [31], we

found no footprints that a recent whole genome duplica-

tion occurred in any of the two sequenced P. vulgaris line-

ages. We assessed functional enrichment among genes

restricted to specific clades or specifically duplicated in

the lineages described above. The largest gene family ex-

pansion specific to BAT93 corresponded to putative cellu-

lar receptors with extracellular domains (Additional file 1:

Figure S6–S8; Additional file 2: Dataset S2). We found

two additional BAT93-specific expansions that were func-

tionally enriched in seed development and the ubiquitin

pathway. We found several gene family expansions com-

mon to BAT93 and G19833 in which the gene tree topolo-

gies suggested that duplications preceded the divergence

of the two lineages. These duplications are enriched in

genes involved in defense response and response to stress

(Additional file 2: Dataset S3). Genes widespread in le-

gumes but absent from other species were enriched for

functions related to symbiosis with soil microorganisms

and pathogen response (Additional file 1: Dataset S4).

Interestingly, functions related to response to nematodes,

which often parasitize leguminous plants, and regulatory

response to auxin and oxygen were enriched among fam-

ilies duplicated at the base of legumes.

The transcriptional landscape of P. vulgaris

We used RNA-Seq libraries from 27 organs/develop-

mental stages for which we have technical replicates (7

of the 34 conditions only had one sample) to generate a

gene expression atlas across organs and during plant de-

velopment. Libraries were classified into seven organs

Fig. 2 Conservation and expression pattern of lncRNAs in P. vulgaris. Phylogenomics profiling of lncRNA transcripts in 12 plant species. Shown are

762 bean transcripts (belonging to 507 genes) conserved in at least one other plant species. Percentage of sequence identity with bean is shown

as a heat map, where green denotes high similarity and grey missing transcripts. The leftmost column indicates average expression levels in bean,

the rightmost column marks 56 transcripts inferred from A. thaliana homologues
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(root, leaf, seed, pod, stem, flower and axial meristem)

and into developmental stages (V0–R9, expanding from

48 hours to 86 days) [32, 33] (Fig. 4a; Additional file 3:

Dataset S5). Hierarchical clustering of the samples based

on PCG expression recapitulates tissue types, the main

separation being between the root and aerial samples

(Fig. 4b). This separation was recapitulated when we in-

cluded in the analysis 21 samples from leaves from dif-

ferent accessions in Bellucci et al. [34], and 24 samples

from seven organs in O’Rourke et al. [35] (Additional file

1: Figure S9). Hierarchical clustering based on lncRNA

expression also recapitulates tissue type, but in this case

pods and seeds are clearly separated from the rest of the

tissues (Additional file 1: Figure S10). At a threshold of

gene expression of 1 RPKM, we identified 20,525 (67 %)

PCGs, and 521 (52 %) lncRNAs expressed in at least one

organ (Additional file 1: Table S30; Additional file 3:

Datasets S6 and S7), and 12,261 (40 %) PCGs and 99

(10 %) lncRNAs were expressed in all organs. On

average, we detected 64 % of PCGs and 28 % of lncRNAs

expressed per organ (Additional file 1: Figures S11 and

S12).

We defined putative PCGs as house-keeping genes

when they were within the top 10 % of the expressed

genes with lowest coefficient of variation across all sam-

ples (Additional file 4: Dataset S8). This resulted in 2811

genes. GO analysis revealed that these genes preferen-

tially carry out functions related to fundamental cell pro-

cesses (Additional file 4: Datasets S9–S11). Using

orthology predictions derived from the phylome, we

compared this set with the two previously defined sets

of legume housekeeping genes: 1000 soybean genes [36]

and ~2500 genes from the common bean transcription

atlas [35] (Additional file 1: Figure S13). Remarkably

only 195 genes are common between the three sets, and

only half (1279 genes) are common between the two

common bean sets. This reflects either low conservation

of housekeeping genes or, most likely, the reduced num-

ber and divergent set of conditions in which transcrip-

tion has been monitored in these studies. Further, we

identified a core set of 25 lncRNA genes that are both

ubiquitously expressed in all organs and evolutionarily

conserved in at least seven of the twelve species used for

comparative analysis and thus may play crucial roles

similar to those played by housekeeping PCGs. In gen-

eral, highly conserved lncRNAs tend to have a higher

level of expression (Additional file 1: Figure S14).

We performed differential gene expression analysis for

PCGs across all pairs of samples, both in individual sam-

ples as well as in sets of samples grouped into organs

and developmental stages (Additional file 5: Datasets

S12–S22). We found that 937 PCGs had organ-specific

expression (details in "Material and methods"; Additional

file 1: Figure S15; Additional file 4: Dataset S8), a third

of them are from root samples (Fig. 4c, d). Organ-

specific genes are generally enriched for functions charac-

teristic of the physiology of the organ (Additional file 4:

Dataset S10). We also found 171 lncRNAs expressed in

one organ only, which represents a proportion (17 %) about

four to five times higher than that measured for PCGs

(4 %; Fig. 4c, d). Of these, about half (84) are fruit-specific,

in contrast with organ-specific PCGs, which are enriched

Fig. 3 Phylogenomics analysis. The species phylogeny is based on maximum-likelihood analyses of a concatenated alignment of 172 widespread,

single-copy orthologous genes. The two different P. vulgaris accessions used in this phylogeny are colored differently. Bars represent the total

number of genes for each species (scale on the top) and are divided to indicate different types of phylogenetic profiles: green, widespread

proteins which are found in at least 12 of the 14 species; grey, widespread but legume-specific proteins which are found in at least four of the six

legumes species; light-orange, genes without a clear phylogenetic profile; brown, species-specific genes with no (detectable) homologs in other

species. The thin blue line under each bar represents the percentage of P. vulgaris G19833 genes which have homologs in a given species.

Conversely, the thin orange line represents the percentage of P. vulgaris BAT93 genes which have homologs in a given species
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in roots (32 % of organ-specific PCGs are root-specific;

Additional file 1: Table S30).

Transcriptome dynamics during plant development

We compared gene expression in each stage of plant de-

velopment (Fig. 4d) with the previous stage globally, as

well as independently in each of the four organs where

we had sufficient numbers of samples at different stages:

root, leaf, stem and pooled flower/pod/seeds, referred to

here in after as fruits (Additional file 1: Figure S16).

Overall, a larger number of transcriptional changes

occur during the vegetative as compared with the repro-

ductive stage for both PCGs and lncRNAs (Fig. 4e). For

instance, during the establishment of primary leaves, over

1000 genes are differentially expressed, including 20

lncRNAs, while this number drops to less than 120 when

comparing leaves during the later stages. We found similar

numbers of differentially expressed genes during root, leaf

and stem development (2165, 2220 and 2859, respectively),

and a larger number (4869) during fruit formation. The

functions enriched in genes that are differentially expressed

between different stages in each organ are consistent with

the physiological changes associated with the development

of that organ (Additional file 4: Data S14–S21).

We also identified 624 genes specifically expressed

in a given developmental stage (Additional file 1:

Figure S17; Additional file 4: Datasets S8 and S11).

Genes specific to early vegetative stages (V0–V1,

~19 %) are enriched in enzyme regulator and oxido-

reductase activity, whereas genes specific to late

Fig. 4 Transcriptome dynamics. a Development stages of the common bean. Modified with permission from the technical guide for the bean

growing by the “Instituto Interamericano de Cooperación para la Agricultura” (IICA) [33]. b Hierarchical clustering of bean samples based on

expression levels of protein coding genes (PCG). The sample labels are described in Additional file 1: Table S8. c Tissue specificity of the PCGs and

lncRNA genes. The bar plot represents the proportion of genes expressed in a given number of organs d The pie charts represent the

distribution of organ-specific PCG and lncRNAs across organs. The color code for organs is specified in (b). e Differential PCG and lncRNA

expression during development. Each bar corresponds to the number of genes differentially expressed in a given developmental stage compared

with the previous one. Values above and below zero indicate the proportion of up-regulated and down-regulated genes, respectively; the

number of regulated genes is shown at the tip of the corresponding bar
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vegetative stages (V2–V4, ~20 %) are enriched in

functions related to photosynthesis, cell division and

defense response. Functions related to nitrogen fix-

ation and metabolisms are enriched in early repro-

ductive stages (R5, R6, ~46 %), while in late

reproductive stages (R7, R8 and R9, ~15 %), the most

enriched functions are related to cell fate determin-

ation, regulation of defense response and telomere

maintenance.

Co-expression network

To provide deeper insights into the transcriptomic

bases of bean cellular processes, we constructed a co-

expression network and analyzed its topological prop-

erties. We used the set of 21,560 PCGs and lncRNA

genes that were expressed in at least one sample at

more than three counts per million (CPM; "Materials

and methods"; Additional file 1). From the resulting

network we selected a sub-graph that includes nodes

with at least one connection and comprises 8884

genes (including 197 lncRNAs) and 81,220 edges

(Fig. 5a). On average, each node in the network has

18 co-expression links; lncRNAs show a much

stronger connectivity, with 30 co-expression links on

average. The most connected node, plastid lipid-

associated protein, has 260 connections. We found

that the 125 most-connected genes (>150 links) were

all inter-connected to each other, forming a dense

hub. This dense hub was not observed in a random

network generated with the same node degree

(Additional file 1). Similar to results in A. thaliana

[37], the most enriched GO categories of these hub

genes are related to photosynthesis and NADP meta-

bolic process. Among lncRNAs, two are highly con-

nected — XLOC_000314 and XLOC_004014 — with

101 and 105 connections, respectively, belonging to a

co-expression cluster related to synergid differenti-

ation. XLOC_000314 is about 9 kb away from the

Fig. 5 Co-expression network. a Co-expression network layout; the 11 largest modules are colored differently, and labeled with their putative

function. b Composition of the largest modules in the co-expression network (number of PCGs and lncRNAs, and of organ-specific genes). Colors

correspond to those in the network in (a). c Gene connectivity as a function of evolutionary age. d Gene connectivity as a function of presence/

absence of paralogs
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auxin-induced 15A-like gene, which may reflect a

functional relationship, since lncRNAs have been pro-

posed to regulate the expression of nearby PCGs [23].

Genes included in the co-expression network were

then analyzed considering their relative evolutionary age

and number of paralogs, as inferred from the phylome.

For this, we used a phylostratigraphic approach using

the furthest detectable ortholog (or homolog for genes

without detectable orthologs) as a proxy for the evolu-

tionary origin of the genes. The co-expression network

was enriched in ancient genes, with 75 % of the genes

assigned to the oldest relative age (Additional file 1:

Table S31) compared with the whole genome (~58 %).

Consistently, the network was depleted in Phaseolus-

specific genes (~2 %) with respect to the whole genome

(~19 %). We then assessed whether the age and the co-

expression connectivity of a gene were related (Fig. 5b;

Additional file 1: Figure S18). We found that ancestral

gene families were enriched among highly connected

genes (>100 connections, Fisher exact test p value

1.9377e-12), whereas no Phaseolus-specific genes were

present in this class. Finally, we divided genes in the net-

work into two categories — with or without paralogs —

and found that singletons had a significantly higher

number of connections compared with genes with at

least one paralog (22.72 versus 17.11 connections on

average; t-test p value 1.8821e-08). Conversely, we found

that most singletons were assigned to highly connected

genes (>100 connections), whereas genes with few con-

nections tended to have paralogs (Fig. 5c; Additional file

1: Figure S19). Our findings support the hypotheses that

(i) older genes and (ii) genes without paralogs tend to

have a broad expression and a large number of co-

expression partners, whereas gene duplication leads to

more specialized expression patterns, fewer co-

expression partners, and therefore less constrained

expression.

We used a fast-greedy community algorithm to divide

the network into inter-connected modules and carried out

functional enrichment analyses of the 11 modules having

more than 100 genes (Fig. 5d; Additional file 5: Datasets

S23 and S24). The largest module had 1271 genes with

39,041 edges and an average connectivity of 50, and in-

cluded the densely interconnected hub already described

above. This module has more than 170 significantly

enriched GO terms (p value < e-5), of which most are re-

lated to photosynthesis. The second largest module (1138

genes) is related to protein localization and cell growth

processes. These two modules are strongly depleted from

both lncRNAs and organ-specific PCGs. The third module

is enriched in genes specific to the root and, consistently,

the majority of their functions are related to oxidation-

reduction, flavonoid processes and root development. In

module eight, we found enrichment in genes specific to

pods and seeds, as well as a strong enrichment for

lncRNAs. Among significantly enriched functions, we

found RNA biosynthetic processes and regulation of gene

expression, as well as those related to ovule and floral

organ development. We studied the distribution of gene

ages among these clusters (Additional file 1: Table S32)

and found that all modules were enriched in ancient

genes. Interestingly, modules associated with root devel-

opment (module 3) and flowering activity (module 8) are

enriched in legume-specific genes, with approximately

two-fold enrichment with respect to the genomic average.

Gene duplication and divergence in expression patterns

Gene duplication is considered a major source of bio-

logical functional innovation [38]. The genetic redun-

dancy introduced by a duplication event enables the

evolution of novel interactions and functions, al-

though the underlying mechanisms of how this is

achieved are poorly understood. Here, we exploited

the availability of a comprehensive expression atlas

and the phylome for P. vulgaris BAT93 to study the

temporal and spatial patterns of expression diversifi-

cation for genes duplicated at different evolutionary

periods. In this regard, we detected and dated gene

duplications by automatically scanning all bean gene

phylogenies (see "Materials and methods"; Fig. 6a;

Additional file 1: Table S28). For each duplication

event detected we dated the time of duplication and

computed the level of tissue expression divergence

between the resulting paralogous genes using the

Pearson correlation coefficient (PCC) and the tissue

expression complementarity (TEC; see "Materials and

methods") [39]. In brief, TEC measures the fraction of

tissues in which only one of the two genes is specific-

ally expressed with respect to the total number of tis-

sues in which any of the two genes are expressed.

Thus, the higher the TEC, the bigger the expression

complementarity of both genes. Our results show that

genes assigned to older duplication events are less

correlated and have more complementary expression

profiles than those assigned to younger events

(Fig. 6b). We then used the coefficient of variation to

quantify the fluctuations of expression levels across

samples for genes with different numbers of paralogs.

Our results (Fig. 6c) show that, similar to what has

been observed in Caenorhabditis elegans and human

[40], variability in gene expression increases with the

number of paralogs.

Discussion

Although the common bean (P. vulgaris) is one of

the most important food legumes in the world [41],

until very recently genomics resources available were

scarce. Together with the recent sequencing of the
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genome of an Andean landrace [6], the phylogenetic,

genomic and transcriptomic data generated in this

study provide invaluable resources to understand the

biology and evolution of Mesoamerican common

bean, and its differences from the Andean lineage, offer-

ing new tools and methodologies to generate superior

varieties.

Here we focused on the investigation of the patterns of

gene expression underlying organ development and forma-

tion, and how this relates to underlying gene evolution.

Overall, our results are consistent with previous analysis of

the common bean transcriptome [34, 35, 42–45]. We found

that about 70 % of genes exhibit modulated expression

during development or across organs; with some genes

being extremely highly expressed in particular stages, i.e.,

ribulose-bisphosphate carboxylase and storage proteins

from the phaseolin families in the leaf and seed samples,

respectively (RPKMs of about 50,000). Additionally, our

sampling included the embryonic stage V0, which

allowed the identification of genes contributing to

early organ formation. Thus, we found that genes

preferentially expressed in early stages of development

are enriched in enzymatic and oxido-reduction func-

tions, and that it is only later during development

that photosynthetic functions are activated.

One of the main traits of P. vulgaris is the high

protein content of its seeds. Seed and fruit develop-

ment are complex processes that require coordinated

expression and regulation of several genes [46, 47].

Our results show that the transcriptional changes oc-

curring during fruit development are enriched in

genes related to aleurone grain, nutrient reservoir ac-

tivity, DNA replication, cell cycle, epigenetic and

polysaccharide biosynthesis processes, and embryo

morphogenesis. Similar results have been found in

Lotus japonicus and other legumes [48]. Notably, our

results suggest that lncRNAs may play an important

role in fruit development. Indeed, organ-specific

lncRNAs are preferentially expressed in the fruit. This

parallels the bias observed towards lncRNA expres-

sion in mammalian gonads [49]. lncRNAs have been

proposed to play a role during spermatogenesis [50],

and we have actually found that the two most tran-

scriptionally connected lncRNAs are part of a cluster

related to synergid differentiation, and are thus very

likely involved in synergid development. These obser-

vations could hint at an ancient program common to

plants and animals involving lncRNA in sexual

reproduction. Also, as in animals, bean lncRNAs show

low levels of conservation: less than one-third of the

Fig. 6 Analysis of dated duplicated genes. a Species list assigned to different relative evolutionary periods. Red squares represent a duplication event.

b Average Pearson correlation coefficient (PCC) and tissue expression complementarity (TEC) scores computed for the proteins assigned to particular

ages. The number of genes duplicated at a particular age is indicated in parentheses on the x-axis. c Relationship between gene expression variation

and gene duplications. The blue color represents the mean coefficient of variation (CV) for a real set of paralogs and red for a randomly assigned one.

The last class on the x-axis (8) contains eight or more paralogs
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transcripts are conserved beyond Glycine max, sug-

gesting rapid lncRNA turnover, as reported in insects

and vertebrates [51].

Organ-specific PCGs, in contrast, are preferentially

expressed in the root. In particular, we found that, in

this organ, PCGs involved in nitrogen fixation and nodu-

lation are preferentially expressed in pre-flowering and

flowering stages (R5 and R6, respectively), suggesting

that plants may already adapt their metabolism to the

symbiosis from these stages. Co-expression network ana-

lysis is a powerful approach to investigate the concerted

action of genes, to infer gene functions and provide

novel insights into the system-level understanding of cel-

lular processes [52–54]. Our results suggest that the lar-

gest sets of P. vulgaris genes with concerted expression

are involved in basic plant functions, such as photosyn-

thesis, cell cycle, protein synthesis, etc., as previously re-

ported [34, 37]. We also observe large modules of

species-specific genes, such as those related to root de-

velopment, nodulation and symbiosis. Among others,

enrichment in these modules in functions related to

abiotic stress, stimulus and floral development may be

related to domestication [34]. Interestingly, while

PCGs show stronger sequence conservation than

lncRNAs, we found little overlap between the set of

housekeeping genes defined here and other house-

keeping gene sets, previously defined in soybean and

the bean Andean landrace [35, 36], most likely because

of the limited set of organs and conditions profiled in

those studies.

The availability of comprehensive catalogues of evolu-

tionary histories of genes and of the dynamics of their

expression across tissues and developmental stages has

enabled us to assess at a genome-wide scale, and for the

first time in plants, how the number and age of gene du-

plications affect patterns of tissue expression. It has been

hypothesized that the partitioning of gene expression in

a spatial or temporal manner — a form of sub-

functionalization — has played a major role in the initial

retention of duplicates, because complementary expres-

sion patterns achieved through differential degeneration

of the ancestral gene expression profile may render both

copies indispensable [55, 56]. Further evolutionary

events may result in other forms of functional diversifi-

cation, including the acquisition of novel expression pat-

terns and functional activities, so that the divergence in

terms of expression is expected to increase with time.

Massive gene duplications, including those resulting

from whole genome duplications, are widespread in

flowering plants and constitute a driving force in

angiosperm diversification and adaptation. However,

in contrast to vertebrates or fungi, the diversification

of genome-wide expression patterns after duplication

has not been widely studied in plants. Previous work

has focused on measuring expression divergence be-

tween duplicates within a given evolutionary period

such as an ancient whole genome duplication [57], or

globally measuring divergence between paralogs, with-

out stratifying them by duplication periods [58]. Our

results suggest an important role of gene duplication

in enabling tissue and temporal specialization of

genes.

In fact, the divergence in tissue expression patterns

among paralogs increases both with their time of di-

vergence, as inferred from the gene phylogeny, and

with the number of paralogs in a gene family. This

indicates that diversification in tissue gene expression

levels accumulates with time, as duplications occur.

This finding is consistent with the co-expression net-

work analysis, in which old singletons are highly

enriched among highly connected genes, while youn-

ger genes and families with many paralogs tend to be

enriched in more specialized modules, less densely

connected and tightly associated with a specific organ

or development stage.

Given that BAT93 and G19833 genotypes derive from

independent domestication events, we can assess, for the

first time, whether genomic changes leading to pheno-

typic features characteristic of domestication predate or

not their divergence. Seed size, for instance, is a pheno-

typic trait that differentiates domesticated accessions

from their wild relatives, and also distinguishes Andean

from Mesoamerican bean accessions even at the wild

state (the weight of 100 seeds is 3.5–6.5 g for wild

Mesoamerican beans compared with 11.6–13.9 g for

wild Andean beans). Two BAT93-specific gene family

expansions were found to be functionally enriched in

seed development and the ubiquitination pathway,

whose role in germination and seed development has

been established in another legume species, Lupinus

albus L. [59]. Even though it remains unknown if such

specific expansions preceded or occurred in parallel to

the domestication process in Mesoamerica, they suggest

that a similar phenotype — larger seeds — has been

achieved through different pathways and genetic compo-

nents in the two gene pools. In contrast to this scenario,

the origin of resistance gene clusters was proposed to

precede the geographic separation of the wild com-

mon bean gene pools [60]. Indeed, we found that all

resistance gene clusters are shared between the two

lineages, suggesting they were established in their wild

ancestor and that the observed differences in disease

susceptibility are due to polymorphisms in these loci.

Indeed the genes with higher divergence between the

two lines are often involved in defense response

mechanisms, supporting ongoing co-evolution with

pathogens [61]. Similarly, we found that all Phaseolus-

specific gene family expansions common to both
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Mesoamerican BAT93 and Andean G19833 emerged

from duplications that predate the divergence of the

two lineages, and thus are not the result of parallel

(convergent) expansions. Other adaptations relevant

for the crop, such as symbiosis with soil organisms

and resistance to pathogens such as nematodes, seem

to stem from innovations within the broader legume

lineage. In particular we found that the two bean ge-

notypes harbor a gene cluster whose expansion in

soybean has been related to resistance to nematodes

[62], which are common parasites of legumes. Al-

though the genes from this cluster were highly

expressed in both accessions, the depth of read cover-

age did not reveal the presence of a higher copy

number in common bean. Overall these results sug-

gest that genomic adaptations could have facilitated a

broad distribution of P. vulgaris populations in Amer-

ica, making them prone to human discovery and fur-

ther domestication. Moreover, P. vulgaris belongs to

one of the two principal clades of Phaseolus that in-

cludes four of the five main domesticated species (i.e.,

P. acutifolius, P. coccineus, P. dumosus, and P. vul-

garis). Species of this clade collectively flower during

either the dry or rainy season, are mostly not sensitive to

disturbance, and some can tolerate a long frost period

(e.g., P. coccineus, P. angustissimus). Phaseolus species are

distributed from southeastern Canada south through

eastern USA and across southern USA to southeastern

California, throughout Mexico and Central America, and

in the Andean region of South America. They are broadly

distributed in elevation gradients throughout this range,

from lowland dry and wet forests up to pine-oak and pine

forests. Thus, the commonness of some of this species

may have facilitated, in part, their discovery for domestica-

tion [10, 63]. Whether the gene family expansions de-

scribed in this study are P. vulgaris-specific or shared by

other sister species should be addressed in future studies.

Ultimately, sequences from additional domesticated and

wild accessions, together with the genome sequences of

closely related Phaseolus species, will be needed to disen-

tangle with higher resolution which genome changes pre-

ceded and most likely enabled domestication or occurred

concomitantly to it.

Conclusions

We present genomic, transcriptomic, and phyloge-

nomic data on a Mesoamerican variety of common

bean, which will serve as important resources for

breeders and for understanding the domestication

process in this important crop. Our results comparing

two independently domesticated lineages suggest that

most bean-specific gene family expansions, including

those involving resistance genes, predate the split of

the Mesoamerican and Andean gene pools and thus

predate domestication. This suggest the possibility

that key pre-existing adaptations may have facilitated

domestication of certain species. Our transcriptome

atlas shows that lncRNAs are particularly enriched in

germ-line related tissues (pods and seeds), which sug-

gests a possible role in fruit development. Of note,

the association with germ-line tissues is reminiscent

of what has been described for lncRNAs in animals.

More generally our results point to an important role

of gene duplication in shaping differential tissue and

developmental expression in plants, which parallels

previous observations in animals. As gene families get

larger through successive duplication rounds their ex-

pression patterns become more narrower and differ-

ent from each other.

Materials and methods

Plant material

P. vulgaris BAT93 is a breeding line developed at the

International Center for Tropical Agriculture (CIAT,

Cali, Colombia) and derived from a double cross involv-

ing four Mesoamerican genotypes. The biological mater-

ial collected for this analysis included other important

accessions: Jalo EEP558 and 60 F5 BAT93/Jalo EEP558

intercross plants [64]. Plants were grown under green-

house conditions and young trifoliate leaves were

collected for DNA extraction. For total RNA extraction,

the breeding line BAT93 was growth at ±25 °C, 80 % hu-

midity, and 16 h light:8 h dark photoperiod (Additional

file 1).

DNA/RNA sequencing and assembly

Single-read and mate-pair libraries for BAT93 were pre-

pared for sequencing on Roche, Illumina, SOLiD and

Sanger platforms. A BAC library derived from the

BAT93 line was sequenced at the Arizona Genome

Institute (AGI, USA) using the automated sequencing

platform ABI3730xl® (Applied Biosystems). TruSeq li-

braries were run on a HiSeq2000 instrument on five

lanes of paired-end 100 bp sequencing reads. The

reference genome sequence from BAT93 was assembled

based on Roche/454, SOLiD and Sanger reads using

Newbler v2.6 [65]. Assembly improvement, verification

and chromosomal anchoring utilized GBS data, gener-

ated on the Illumina sequencing platform from 60

progeny of an F5 advanced intercross of BAT93/Jalo

EEP558 (Additional file 1). BAT93 RNA-Seq libraries

were prepared using the Illumina TrueSeq RNA-Seq

ibrary preparation protocol. Pooled sequencing of

indexed libraries was performed on the Illumina HiSeq

with v3 sequencing chemistry and approximately 50

million read pairs (2 × 75 nucleotide sequencing protocol)

were generated per sample. sRNA sequencing on the

same samples was carried out with non-fragmented
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RNA. We used the Illumina small RNA v1.5 protocol

and selected inserts of size 20–100 nucleotides.

Pooled sequencing of indexed libraries on the HiSeq

resulted in 7–11 million reads per sample (50 nucleo-

tide single reads). Furthermore, RNA was extracted

from different BAT93 samples under more than 100

biotic and abiotic stress conditions, as well as differ-

ent developmental stages and sequenced using the

454-titanium platform. After two sequencing runs, we

obtained 1,830,138 reads that were assembled by

Newbler v2.5 into 21,628 isogroups that include 28,601 iso-

tigs with an average length of 1047 bp (Additional file 1).

Repeat detection

For the de novo predictions of repeat elements, the

REPET pipeline [66] was used. The predicted LTR retro-

transposon family was further refined using the pro-

grams LTRharvest [67] and LTRdigest [68]. The final

prediction for LTR retrotransposons is the union of this

procedure and REPET-based predictions. Homology-

based transposable element identification was performed

using RepeatMasker [69] against plant-specific repeat

families in RepBase v.17.11 [70]. Additionally, we ran

RepeatMasker v3.2.8 against plant-specific repeat fam-

ilies and G. max repeat library from RepBase to identify

interspersed repeats.

Gene annotation

For the PCG annotation, RNA-Seq reads, 454 isotigs

assembled from a pyrosequenced normalized cDNA

library and ESTs/mRNAs present in GenBank [71],

and proteins from Uniprot [72] were aligned to the

genome. Ab initio gene prediction software, GeneID,

SGP2, AUGUSTUS and GlimmerHMM [73–76], were

first trained using a set of PASA training set candi-

dates and then run on the reference assembly. All

these sources were combined with Evidence Modeler

[77] into consensus PCG models, which were passed

through two rounds of annotation updates using

PASA to add untranslated regions and alternative

splicing variants.

Functional annotation was performed using an in-

house developed pipeline which performs an electronic

inference of function that is based on the sequence simi-

larity between the bean predicted proteins and known

proteins in different public repositories: InterPro [78],

KEGG [79], Reactome [80], SignalP [81], PhylomeDB

[24] and Blast2GO [82].

Plant disease resistance genes were predicted by two

methods: 733 genes were annotated by using the Disease

Resistance Analysis and Gene Ontology (DRAGO) pipe-

line [83]; and 120 resistance genes were identified by the

presence of a NB-ARC domain in their sequences for a

final set of 852 genes (Additional file 1).

Long non-coding RNA

Homology-based lncRNAs were predicted in bean taking

A. thaliana lncRNA transcripts as templates. These were

compared using blast [84] against the masked bean as-

sembly and the hits were then used as anchor points to

realign the A. thaliana queries with surrounding gen-

omic regions using exonerate [85] as a split aligner. Final

conservation was estimated on T-Coffee [86] pairwise

re-alignments between the query and its predicted

spliced model. Ab initio lncRNA models were predicted

using Cufflinks, and then Cuffmerge [87] was used to

combine transcript models from all samples into a single

set of consensus models. Single-exon models, transcripts

within 1 kb of coding regions, and putative ORFs were

filtered out [23]. Sets of transcripts overlapping by at

least 1 nucleotide were clustered into gene models. Se-

quence conservation of transcripts was determined ap-

plying the procedure described above for homology-

based prediction to the 12 plant genomes using all bean

transcript models as templates. lncRNA transcript ex-

pressions were obtained using the Flux Capacitor [88].

Small non-coding RNA

Small non-coding RNAs were predicted using the

CMsearch tool from the Infernal package (v.1.1rc2) [89].

An E-value cutoff of 0.01 allowed detection of 2529

non-overlapping hits; of these, 258 are in contigs and

2271 in scaffolds. We were able to classify 2371 of them

into different general categories as shown in Table S22

in Additional file 1.

Transcriptome analysis

Reads were independently aligned to the reference P.

vulgaris assembly v10 using the GEMtools RNA-Seq

pipeline v1.6.2 [90]. On average, 89 ± 5 % of the reads

were mapped across samples, 69 ± 10 % of the reads

mapping uniquely. Flux Capacitor v1.2.4 [88] was used

to quantify genes, transcripts, exons and splice junctions

in each sample separately; expression levels are given in

reads per kilobase per million mapped reads (RPKM)

[91] and in read counts. For the differential expression

analysis and co-expression network construction we

have normalized read counts into counts per million

(CPM). In addition, to quantify annotated elements, we

built de novo contigs by merging overlapping RNA-Seq

reads. Cumulatively across all samples, 85 % of exonic,

75 % of intronic and 5 % of intergenic nucleotides were

covered by contigs. To identify the organ-specific PCGs

we calculated average expression values for each organ;

genes having average RPKM ≥ 0.1 in a given organ and

less in all others were considered organ-specific. The

same procedure was performed to identify stage-specific

genes. Differential expression was estimated with the

software package edgeR (R v3.0.1, edgeR v3.2.4) [92].
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Hierarchical clustering analysis of the expression profiles

were performed using the hclust command in R and de-

fault complete linkage method. The GO and enrichment

analyses were performed using the Blast2GO [82] and

topGO [93] with a false discovery rate ≤ 0.05. The bean

co-expression network was constructed using the entire

set of PCGs and lncRNA genes. Genes with low expres-

sion (<3 CPM) were filtered out. In total we used 21,560

genes for the initial network construction. Gene expres-

sion values were log-transformed and the resulting ex-

pression matrix was scaled along both the genes and the

samples; pairwise PCC was calculated between all pairs

of genes. Graphical Lasso [94] was used to construct the

network. The graph was drawn using the Fruchterman-

Reingold layout [95]. Downstream analyses were per-

formed on the sub-networks with more than one edge

between nodes. The network was subdivided by using a

fast-greedy community algorithm [96].

Phylogenetic and comparative analysis

The database used for the phylome reconstruction

contained 30,405 unique protein sequences for com-

mon bean. The resulting phylome comprises 27,986

gene trees, representing 92 % of the predicted pro-

teins. To build the gene trees, a Smith-Waterman

search was used to retrieve homologs of each bean

protein. These homologous sequences were aligned

using MUSCLE v3.8 [97], MAFFT v6.712b [98], and

KAlign v2.08 [99] and then the resulting alignments

were combined using M-Coffee [100] and trimmed

with trimAl v1.4 [101]. Phylogenetic trees based on

the maximum likelihood approach were inferred from

these alignments. Maximum likelihood trees were re-

constructed using the two best-fitting evolutionary

models. The evolutionary models best fitting each

protein family were selected using BioNJ [102] and

PhyML v3 [103]. Orthology and paralogy relationships

among P. vulgaris genes and those encoded by the

other considered genomes were inferred using a

phylogenetic approach, implemented in ETE v2 [104].

The resulting orthology and paralogy predictions can

be accessed through http://phylomedb.org/ (Additional

file 1). Two additional phylomes following the same

strategy were reconstructed to include in the com-

parative analyses the P. vulgaris G19833 genome. One

of the phylomes was reconstructed using the P. vul-

garis BAT93 genome as reference while the other one

was reconstructed using the P. vulgaris G19833 genome as

the reference. For all analysis we used v.218 of G19833 ob-

tained from Phytozome v10 [105]. Phylomes have

30,405 and 27,126 bean unique proteins which led to

28,075 (92.34 %) and 26,304 (96.97 %) reconstructed

single trees, respectively. We used these two add-

itional phylomes to predict orthology relationships

among proteins from both genomes. One-to-one

orthologs were used to compute the level of similarity

in terms of gene content among bean genomes.

Additional gene pairs were added in cases (1) where

identical sequences were found in both genomes, (2)

with perfect gene order conservation in terms of link-

age group/chromosomal placement and surrounding

genes, and (3) of single genes which have more than

one orthologous gene in the counterpart genome

without those genes being linked to any other genes.

We aligned those gene pairs using MAFFT v6.712b

[98] and analyzed those for which the sequence iden-

tity was lower or equal to 0.95 before and after

removing gaps. Analyzing only homologous sites, e.g.,

without gaps, avoids any bias introduced by the

different gene annotation strategies followed in each

project.

To identify regions in the Andean genome absent in the

Mesoamerican one, we mapped the BAT93 genomic Illu-

mina reads into the G19833 genome. Reads were aligned

with BWA-mem v0.7.12 [106] using default parameters.

Read coverage was computed for each base in G19833

(i.e., the number of reads overlapping a given base). We

found 10,193 regions ranging from 1 to 1130 kb with con-

tinuous zero coverage. These regions contained 314 genes

and were distributed equally across all chromosomes and

some unplaced scaffolds.

Single-gene trees from BAT93 phylomes were scanned

to detect and date duplication events using a previously de-

scribed algorithm [26]. Duplications events were assigned

to four different relative evolutionary periods: basal to P.

vulgaris, basal to legumes, basal to rosids, and basal to the

split of rosids and asterids. Only events including the seed

protein of each gene tree were considered for downstream

analyses. Expression data for pairs of duplicated bean pro-

teins together with their assigned relative age were used for

computing the PCC and the TEC scores. The number of

paralogous sequences to the seed protein of each single

tree was also computed. The mean coefficient of variation

(CV) for the expression data was computed grouping pro-

teins according to the number of paralogs detected. Finally,

speciation events detected for single-gene trees in the

BAT93 phylome were used to date bean proteins. The

furthest orthologous sequence, according to the previously

mentioned ages, was selected as the age of each seed pro-

tein. We dated 24,098 proteins (~79 %) using this

approach. For the remaining proteins, the relative age was

assigned after detecting the most distant homologous

sequence among the BLAST results. In this particular ana-

lysis, the limit of 150 sequences was ignored.

Data availability

Raw sequence reads and quality scores were deposited

in the Sequence Read Archive (SRA) of the National
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Center for Biotechnology Information (NCBI). Primary

accession numbers: PRJNA221782 (BioProject ID);

SRS488731 (genomic 454, SOLiD and HiSeq reads);

SRS488023, SRS488025, SRS489191-255 (GBS HiSeq

reads); and SRS498664, SRS498673-76, SRS498904-933

(RNA-Seq HiSeq reads). The P. vulgaris BAT93 genome

assembly is available at NCBI Whole Genome Shotgun

database under accession number LPQZ00000000. Add-

itionally, unmasked sequence data and annotations are

available at the CoGe database (https://genomevolution

.org/CoGe/SearchResults.pl?s=20365) under Genome ID

20365. The BAT93 genome and transcriptome can be

accessed and browsed at http://denovo.cnag.cat/genomes/

bean. The entire set of the linkage groups with anchored

markers can be viewed at http://phasibeam.crg.eu/wiki/

LinkageGroups. All phylogenetic trees and alignments of

the three P. vulgaris phylomes are publicly available

through phylomeDB (http://www.phylomedb.org/, phylome

ids 8, 9, and 10).
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