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Driven by competition, automation, and technology, the genomics community has far exceeded its ambition to
sequence the human genome by 2005. By analyzing mammalian genomes, we have shed light on the history of our
DNA sequence, determined that alternatively spliced RNAs and retroposed pseudogenes are incredibly abundant,
and glimpsed the apparently huge number of non-coding RNAs that play significant roles in gene regulation.
Ultimately, genome science is likely to provide comprehensive catalogs of these elements. However, the methods we
have been using for most of the last 10 years will not yield even one complete open reading frame (ORF) for every
gene—the first plateau on the long climb toward a comprehensive catalog. These strategies—sequencing randomly
selected cDNA clones, aligning protein sequences identified in other organisms, sequencing more genomes, and
manual curation—will have to be supplemented by large-scale amplification and sequencing of specific predicted
mRNAs. The steady improvements in gene prediction that have occurred over the last 10 years have increased the
efficacy of this approach and decreased its cost. In this Perspective, I review the state of gene prediction roughly 10
years ago, summarize the progress that has been made since, argue that the primary ORF identification methods we
have relied on so far are inadequate, and recommend a path toward completing the Catalog of Protein Coding
Genes, Version 1.0.

The 10 years since Genome Research began publication bracket a
complete era of genome research—an era of stunning successes
and nagging loose ends, promise exceeded and promise as yet
unfulfilled. The years 1996–2005 were characterized by tremen-
dous optimism and productivity. In 1996, the sequencing of the
human genome was scheduled to be completed in 2005 (Collins
and Galas 1993). Driven by competition, automation, and tech-
nology, the genomics community far exceeded its own sequenc-
ing ambitions. But there was another goal that we have not yet
reached—the genome was to provide a “parts list” for the human
and other major model organisms. The parts turned out to be
more varied than anticipated, and we have learned wonderful
things about the biology and history encoded in genome se-
quences (Waterston et al. 2002; Gibbs et al. 2004). But the most
fundamental parts on anyone’s list, then and now, must be the
complete set of translated open reading frames (ORFs) and the
exon–intron structures from which they are assembled. (I will use
the term ORF to denote the complete exon–intron structure of
the protein coding region of any mature mRNA. Thus, a primary
transcript that is alternatively spliced may represent more than
one ORF.) After sequencing (Lander et al. 2001; Venter et al.
2001), completing (Collins et al. 2003; The International Human
Genome Sequencing Consortium 2003), and finishing (Interna-
tional Human Genome Sequencing Consortium 2004) the hu-
man genome, we do not have even one complete, correct ORF for
each human gene locus. In fact, we do not have a complete
correct ORF for each locus in the genome of any higher eukary-
ote.

Among the things we have learned by analyzing mamma-
lian genomes are the incredible abundance of alternatively
spliced RNAs (Modrek and Lee 2002; Sorek et al. 2004; Kapranov

et al. 2005) and retroposed pseudogenes (Torrents et al. 2003;
Zhang and Gerstein 2004), as well as the importance of micro-
RNAs, siRNAs, and other non-coding RNAs in gene regulation
(Zamore and Haley 2005). We must ultimately work out all the
functional alternative splices of mRNAs with their untranslated
regions (UTRs), cis-regulatory sites, and basic functional catego-
ries. We must also identify all the functional non-coding tran-
scripts, their cis-regulatory sites, and their basic functional cat-
egories (The ENCODE Project Consortium 2004). However, the
achievement of these goals appears to be far in the future. As a
concrete and achievable, if somewhat arbitrary, milestone along
that path, I will focus on identifying at least one complete ORF
for each protein-coding gene.

It is abundantly clear that the methods we have been using
to identify ORFs for most of the last 10 years are inadequate for
finishing the job. In this perspective, I argue that we cannot rely
on any of the following to get us through the home stretch of
ORF identification:

● obtaining EST or mRNA sequences from randomly selected
cDNA clones,

● aligning expressed sequences to loci other than those from
which they were transcribed, e.g., to the loci of gene family
members or orthologs in other species,

● sequencing more genomes, or
● annotating manually by using human curators.

All of these things are valuable, but none of them is likely to get
us to a new, higher plateau in the quest for a complete ORF at
each protein coding locus. Instead, we will have to rely on large-
scale PCR amplification of specific cDNAs followed by sequenc-
ing of the amplicons. To amplify cDNAs, we need reasonably
accurate, though not necessarily perfect, gene predictions to use
for PCR primer design. The further a prediction is from a true
gene structure, the greater the likelihood that PCR primers de-
signed for it will fail. Each failure increases the cost per gene
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identified and may reduce the completeness of the resulting col-
lection of cDNA sequences. This method is feasible and in use
today (Guigó et al. 2003; Dike et al. 2004; Wu et al. 2004; Eyras
et al. 2005; Wei et al. 2005) but we must continue to drive its cost
down by (1) continuing the steady and significant improvements
in de novo gene prediction that have occurred over the last 10
years and (2) optimizing and automating both the informatics
and wet lab components of large-scale RT-PCR.

In the end, success in translating genome to ORFeome will
take the same route as success in sequencing itself—investment
in technology development, process optimization, and improved
automation. Of course, transcripts that are completely unex-
pressed except in very specific circumstances will tend to be
missed, but we can use these high-throughput methods to make
a qualitative leap in the completeness of our ORF annotation.

To provide historical context for the argument outlined
above, I will first review the state of the major gene prediction
methods roughly 10 years ago, when Genome Research began pub-
lishing. The second section below provides a brief summary of
the progress that has been made in the last decade. The third
section presents the argument that the methods used for most of
the last 10 years are not suitable for the end stages of ORF iden-
tification. The final section spells out some details of the recom-
mended path toward understanding the most basic products of a
genome.

Foundations of the present era

Over the last 10 years, we have relied on three fundamental
methods for identifying ORFs in genomic sequence: (1) sequenc-
ing randomly selected cDNA clones and aligning the sequences
to their genomic sources; (2) finding ORFs that could produce
proteins similar to proteins that are already in databases; and (3)
finding ORFs de novo, without reference to cDNA sequences or
their conceptual translations. Each of these methods came of age
in the middle 1990s.

Aligning cDNA and protein sequences

In 1996, Hillier et al. reported sequencing 280,000 human ESTs,
thereby increasing the size of GenBank’s human EST collection
by a factor of six (Hillier et al. 1996; Wolfsberg and Landsman
1997). The ongoing scale-up of EST sequencing created a demand
for tools to align these sequences to their genomic sources. While
local alignment tools like BLAST can give an approximate an-
swer, determining splice sites accurately in the presence of se-
quencing error requires algorithms that incorporate a stronger
model of the biological processes by which pre-mRNAs are
spliced. The simplest approach is to allow “intron gaps” of un-
bounded length with no gap extension penalty, so long as they
begin with GT and end with AG—the dinucleotides that bound
99% of all known introns. EST_GENOME (Mott 1997) imple-
mented this simple approach using an algorithm that is optimal
(guaranteed to find the highest scoring alignment). Finding the
optimal alignment is computationally demanding, but given the
inherent difficulty of the problem, the algorithm used in
EST_GENOME is quite efficient. More recent programs (Florea et
al. 1998; Wheelan et al. 2001) added heuristics that speed up the
computation but may not always return the absolute highest-
scoring alignment. They also added some detail to the scoring
system by incorporating an intron-length penalty (Florea et al.
1998) or a more accurate system of splice-site scoring (Wheelan

et al. 2001). There was no clear winner in terms of accuracy.
Lacking a theory about how to set the parameters appropriately
for a given degree of similarity between cDNA and genome, the
programs were nearly always used with the default parameters.
Perhaps as a result, each system was most accurate for some spe-
cies and some similarity levels. But the fact that EST_GENOME
returns the best alignment according to a simple, clear scoring
scheme lends it a unique appeal. Its scoring scheme turned out to
be adequate, in the sense that one could not obtain alignments
that were significantly more accurate for a broad range of situa-
tions, given the sequence quality and computing power available
at the time.

As an example of the ambiguities that arise in cDNA-to-
genome alignment, consider a short cDNA segment that can be
aligned as the 3� end of a long exon with mismatches (Fig. 1A) or
as a short independent exon without mismatches (Fig. 1B). Tra-
ditional spliced alignment programs, such as EST_GENOME
(Mott 1997) will make this decision based on somewhat arbitrary
match/mismatch scores and intron penalties that depend on
whether the intron begins with GT and ends with AG. A small
fraction of introns is known to be bounded by GC-AG (∼1%),
AT-AC (∼0.15%), and even GA-AG (1–3 known cases) (Bracken-
ridge et al. 2003). Although some AT-AC introns are spliced via
the U12 spliceosome (Tarn et al. 1995; Tarn and Steitz 1996), the
initial and terminal dinucleotides do not determine whether the
U2 or U12 spliceosome is used (Sharp and Burge 1997). In any
case, EST_GENOME does not differentiate among GC-AG, AT-
AC, or any other intron boundaries except GT-AG. Thus, it will
create introns starting with TT under certain circumstances, even
though there is no convincing evidence that such introns exist.
Compromises like this are necessary when the TT may result
from error in sequencing a GT. But when the quality of the ge-
nome sequence is high enough, the probability that an intron
will start with an apparent TT approaches zero. This illustrates
how the best approach to cDNA-to-genome alignment depends
on the quality of the sequences involved.

A related gene prediction approach is to align protein se-
quences or profiles from existing databases to a genome sequence
(Birney et al. 1996; Gelfand et al. 1996; Birney and Durbin 1997;
Birney et al. 2004b). Because most “protein” sequences in the
databases are derived by conceptual translation of cDNAs, and
because the alignment algorithms for cDNA and protein se-
quences are similar, it is tempting to treat cDNA alignment and
protein alignment as a single approach to annotation. However,
there is a difference in conception and typical application. Most
cDNA alignment programs are intended primarily for aligning
sequences to the genomic locus from which they were tran-
scribed, although these programs have been used for cross-
species alignments (Florea et al. 1998; Wheelan et al. 2001). Pro-
tein-oriented alignment programs, on the other hand, are in-
tended for more distant relationships, such as discovering new
members of a known protein family or discovering homologs in
a new species.

Philosophically, these are very different approaches. The
evidence that a cDNA sequence provides about the exon–intron
structure from which it is assembled is much more direct than
the evidence that a protein sequence provides about the loci of
putative homologs. Cross-locus protein aligners must accept a
significant degree of mismatch between the protein to be aligned
and the target locus, which can lead to difficulty in distinguish-
ing between functional homologs and nontranscribed pseudo-
genes (Birney et al. 2004b). Systems for aligning high-quality
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cDNA sequences to their genomic sources, on the other hand,
can require an almost perfect match, which often helps to dis-
tinguish their true loci from nontranscribed pseudogenes.

GeneWise (Birney and Durbin 1997, 2000; Birney et al.
2004b) is certainly the most important protein-to-genome align-
ment program, since it forms a central part of the highly influ-
ential Ensembl gene annotation pipeline. The accuracy of Gene-
Wise is determined primarily by the degree of similarity between
the protein and the locus to which it is aligned. Thus, several
investigators have tried to estimate its accuracy as a function of
protein-to-genome similarity. Guigó and colleagues (2000)
used the P-value of the BLASTP alignment between the pro-
tein and the gene locus. The P-value reflects both the length
and percent identity of the alignment, but not the fraction of the
true gene covered by it. Using their Semi-Artificial Gene set,
which was created by concatenating single gene sequences sepa-
rated by random “intergenic” sequence, they found that Gene-
Wise exceeded the accuracy of Genscan in exact exon prediction
only when aligning highly similar proteins (P < 10�50). When
aligning proteins of moderate similarity (10�50 < P < 10�6), its
overall accuracy was similar to that of Genscan, but GeneWise
was more conservative—it missed more of the real exons, but a
higher proportion of those it predicted turned out to be exactly
right.

Instead of using the P-value, Birney et al. (2004b) measured
similarity using percent identity and percent of the target gene
covered by the protein. Their most similar category of proteins
was 85%–95% identical to the target locus and aligned to within
20 amino acids of the target’s start and stop codons. On a single-
gene test set, and excluding terminal exons, they found that
GeneWise had 93% exact exon specificity and 75% exact exon
sensitivity. Thus, while most of the exons it predicted were cor-
rect, it failed to correctly predict one fourth of the real exons.
However, two caveats regarding this test are in order. First, it is
impossible to know when running GeneWise whether the protein
alignment is close enough to the ends of the target to meet the
requirements of this accuracy level, since the genes in the target
sequence are unknown. If alignments are not selected on length,
GeneWise has only 40% exact exon sensitivity using proteins in
the 85%–95% identity range. Second, this single gene set is likely
impoverished for pseudogenes, which are a major source of false
positives for GeneWise.

De novo gene prediction

De novo gene prediction, in its modern form, also appeared in
the mid-1990s. Stormo and Haussler (1994) described the first
Generalized Hidden Markov model (GHMM) for gene prediction.
GHMMs are mathematical models that can be used to define
probabilities for all possible exon–intron annotations on a given
sequence. An accurate GHMM for gene finding will assign high
probabilities to correct annotations and low probabilities to in-
correct annotations. GHMMs differ from ordinary HMMs in that
the log probabilities, or scores, of exons and introns can depend
globally on the entire sequence of the exon or intron. In ordinary
HMMs, the scores of features must be the sums of the scores of
individual bases within the feature. For example, the ability to
compute scores from the whole feature makes it possible to create
general, nonlinear models of the lengths of exons and introns.
Kulp et al. (1996) were the first to use the term GHMM in the
context of gene finding, the first to describe a fully general math-
ematical framework for all GHMM models, and the first to imple-

ment and test a GHMM-based computer program for gene find-
ing. Burge and Karlin (1997) developed Genscan, a GHMM-based
gene prediction program that could predict multiple and partial
genes on both strands. This ability made Genscan suitable for
annotating ORFs in anonymous DNA sequence such as that pro-
duced by sequencing random BAC clones. As the first GHMM
suitable for annotating anonymous genome sequence, Genscan
defined the state of the art in both technology and accuracy.
Eventually, programs like Genie were enhanced to predict mul-
tiple genes on both strands (Reese et al. 2000), but Genscan re-
mained one of the most accurate and most widely used programs
for many years.

Combining prediction methods

The genome annotations that are most visible to the public and
most widely used are created by combining predictions from all
of these methods. In the mid-1990s, the results of cDNA align-
ments, protein alignments, and de novo predictions were inte-
grated by human experts and were often followed by RT-PCR and
sequencing experiments to test the predicted exon–intron struc-
tures (Ansari-Lari et al. 1996, 1997) (RT-PCR is PCR amplification
of cDNAs made by reverse transcription from RNA). Automated
“pipelines” for integrating evidence, such as Ensembl (Birney et
al. 2004a; Curwen et al. 2004), OTTO (Venter et al. 2001), and the
National Center for Biotechnology Information (NCBI) pipeline
were not developed until shortly before the publication of the
draft human genome sequence (1999 or 2000).

Trajectory of improving accuracy

Aligning cDNA sequences

The accuracy of prediction systems based on aligning cDNA or
protein sequence depends on the sequences that are available for
alignment as well as the algorithms used to align them. There can
be no doubt that both the quantity and quality of expressed
sequences have improved dramatically in the last ten years. For
example, the human EST database has gone from 415,000 se-
quences in 1997 to over 6 million in 2005. Several projects, in-
cluding the Mammalian Gene Collection (MGC) (http://
mgc.nci.nih.gov/) (Furey et al. 2004; The MGC Project Team
2004) have produced finished sequences from large collections of
cDNA clones that appear to contain a complete ORF. Indeed, the
MGC collection now contains at least one cloned transcript from
about 13,000 human and 12,000 mouse gene loci. These se-
quences have been subjected to extremely rigorous quality con-
trol so that most produce 100% identical alignments to the ref-
erence genome, except for silent discrepancies and known poly-
morphisms (http://genes.cse.wustl.edu/mgc/) (Furey et al. 2004).

There have been improvements in alignment algorithms,

Figure 1. (A) A fragment of an alignment of a cDNA to genomic se-
quence containing 2 mismatches and a 15,907-bp intron. (B) Another
alignment of the same two sequences containing no mismatches and a
5-bp exon in the intron of alignment A. All introns are bounded by
canonical GT-AG splice sites.

An ORF in every locus
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too. Traditional cDNA-to-genome alignment programs do not ex-
plicitly model the probability of mismatches in the correct align-
ment (Fig. 1A) as compared with the probability of an additional
intron in the correct alignment (Fig 1B). In fact, mismatches in
correct alignments are either sequencing errors or differences be-
tween the reference genome and the genome from which the cDNA
was transcribed. (Occasionally, they may also result from post-
transcriptional events such as RNA editing.) Thus, the probabilities
of these events depend on both the sequence quality and the rate of
polymorphism (for within-species alignments) or divergence (for
cross-species alignments). On the other hand, the probability of an
additional intron depends on the frequency of introns in the spe-
cies at hand.

A new generation of cDNA-to-genome alignment programs
models all these things using pair hidden Markov models with
parameters estimated from the specific cDNA collection and the
genome sequence to be aligned (M. Arumugam and M.R. Brent,
in prep.). For example, such systems can easily model the fact
that sequencing errors are much less likely when aligning an
MGC cDNA sequence to the finished human genome than when
aligning a single-pass EST sequence to the draft dog genome. For
70%–80% of high-quality cDNA sequences, these more precise
models will result in the same alignment as a program like
EST_GENOME. In many of the remaining cases, however, they
produce better alignments. For example, they are better able to
distinguish small exons from sequencing errors. This accuracy
improvement is made possible by the availability of very high
quality sequences to align and the availability of sufficient com-
puting power to run the pairHMM algorithms in a reasonable
amount of time.

Single-genome de novo gene prediction

Perhaps the best indicator of how the accuracy of de novo gene
prediction has changed in the last ten years is the change in how
accuracy is measured. Shortly before the publication of Genscan,
Burset and Guigó (1996) published the first comprehensive com-
parison of vertebrate prediction programs. Their test set consisted
of 570 genomic sequences no longer than 50 Kb, each with a
single gene on the positive strand. Burset and Guigó found that
the most accurate de novo system of that time, FGENEH (So-
lovyev et al. 1994), predicted just 61% of the known exons cor-
rectly, GeneID (Guigó et al. 1992) got 51%, and all the rest got
well below 50% of exons right. The fraction of ORFs predicted
correctly was not reported, presumably because it was near zero.

Genscan (Burge and Karlin 1997) represented a break-
through in accuracy that led to a long, slow shift in the evalua-
tion paradigm. When tested on Burset and Guigó’s single-gene
set, it predicted 78% of the exons correctly, compared with just
61% for the best previous system. Furthermore, Burge and Karlin
(1997) reported that Genscan predicted 43% of the ORFs in that
test correctly. They also presented an analysis of Genscan’s pre-
dictions on a contiguous sequence of 117 Kb containing multiple
experimentally determined gene structures (Ansari-Lari et al.
1996). Although the number of genes was too small for reliable
estimation of accuracy, it is interesting that only one of eight
Genscan-predicted ORFs matched the annotation exactly (12%),
though most were quite similar.

As test sets became more realistic, estimates of Genscan’s
accuracy at predicting complete human ORFs dropped. Guigó et
al. (2000) published an evaluation based on simulated human
genomic sequence that they created by concatenating single-

gene sequences padded by randomly generated pseudo-
intergenic sequence. In this new test set, only 2.3% of the nucleo-
tides were protein-coding, much closer to the overall average
(now thought to be under 2%) than the 15% in Burset and
Guigó’s 1996 set. As expected, they found that prediction accu-
racy is much lower on contiguous sequences with typical coding
density than on single-gene sequences with high coding density.
However, they did not report the percentage of ORFs predicted
correctly. Korf et al. (2001) tested Genscan on 7.6 Mb of mouse
genome consisting of 68 contiguous sequences with an average
length of 112 Kb. In this test, Genscan predicted only about 15%
of annotated ORFs exactly—much lower than the 43% reported
for Burset and Guigó’s single-gene set. However, even this esti-
mate turned out to be optimistic. When Genscan was finally
evaluated on the entire human genome, it predicted a correct
ORF at only 10% of loci containing a known ORF (9% of known
ORFs, Flicek et al. 2003).

Currently, gene prediction programs are used primarily for
whole genome annotation. As described above, their accuracy
when evaluated on a whole genome is typically much lower than
their accuracy when evaluated on isolated genes or artificially
concatenated sets of single genes. Even whole chromosomes can
be deceptive. For example, human chromosome 22, besides be-
ing the smallest autosome, is also unusually gene dense, with
smaller than average introns and intergenic regions and above
average GC content. Most gene prediction programs, including
Genscan, tend to perform best on high GC, gene-dense regions.
Thus, evaluation on chromosome 22 systematically overesti-
mates the accuracy of most systems. In the current environment,
the minimal standard for evaluation of gene prediction programs
must be based on whole genome annotation runs. Some may
argue that, since we do not know all the exon-intron structures
for the human or any other genome, we cannot know the accu-
racy of a prediction set for the whole genome. This is true, but it
should not be an impediment to evaluating whole genome an-
notations. Sensitivity estimates based on the subset of genes
whose structures are known should be an unbiased estimate of
sensitivity on all genes, to the extent that the sets of known genes
and unknown genes do not differ in ways that greatly affect
accuracy. While it is possible that unknown genes are radically
different from known genes in this way, there is no reason to
believe that they are. Specificity will be systematically underes-
timated when the predictions are compared to known genes
rather than to all genes. Under the same assumption described
above, dividing by the fraction of genes that are known (or the
fraction of exons that are known, for exon-level specificity) cor-
rects the underestimate. The exact value of that correction factor
does not matter when comparing the specificities of two pro-
grams—the one with the higher raw estimate will also have the
higher corrected estimate. Another approach, which seems to
always give qualitatively similar results, is to use only gene pre-
dictions that overlap known genes by at least one nucleotide
when computing specificity (Wei et al. 2005).

Determining gene boundaries is one of the most challenging
aspects of ORF prediction—much more so than predicting the
boundaries of exons with splices on both sides—and so it is also
the area in which the potential for improvement is greatest.
Many improvements to gene prediction algorithms have a large
effect on accuracy as measured by exact ORF prediction, even
though they have little effect on the accuracy of exon prediction.
Thus, it is critical to include measures of exact ORF prediction in
comparative evaluations of gene prediction programs.
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Statistics on the exact-ORF accuracies of programs are im-
portant, but there is a legitimate argument that the value of
these programs is not in predicting known genes but in predict-
ing novel genes. Thus, the most convincing evaluation of a pro-
gram or a set of programs is the extent to which its novel pre-
dictions can be verified experimentally. The trend toward pub-
lishing experimental evaluations of prediction sets (Wu et al.
2004; Brown et al. 2005; Eyras et al. 2005; Wei et al. 2005) there-
fore represents a significant step forward for the field of gene
prediction.

Dual- and multi-genome de novo predictors

Historically, Genscan represents the apogee in the arc of improv-
ing accuracy for mammalian gene predictors using a single ge-
nomic sequence as their only input (but see Stanke and Waack
2003 for improvements on Drosophila). No other system robustly
outperformed Genscan on large, contiguous human genomic se-
quences until the advent of dual-genome de novo systems,
which use alignments between two genomes as a rough indicator
of which nucleotides are under negative selection and hence are
likely to have a function that contributes to fitness. Several such
systems required that orthologous stretches of mouse and human
DNA be identified in advance, or were tested only on single-gene
sets that were preselected to have clearly identifiable orthologs
(Bafna and Huson 2000; Batzoglou et al. 2000; Alexandersson et
al. 2003). However, TWINSCAN (Korf et al. 2001; Flicek et al.
2003) and SGP2 (Parra et al. 2003) could both be run on entire
human chromosomes, using alignments generated by simple, ro-
bust procedures. Neither program requires that an ortholog be
present in the other genome—they can just as easily exploit simi-
larity to paralogs, or even fragments of several genes from the
same family. Flicek et al. (2003) reported that TWINSCAN was
able to predict 14% of known ORFs in the human genome cor-
rectly. Although SGP2 was tested only on chromosome 22, which
is unusually gene dense compared with the whole genome, the
accuracies of the two systems were similar. Over the last few
years, incremental improvements to TWINSCAN, along with bet-
ter training and testing sets, have improved its accuracy to the
point where it can predict a correct ORF at about 25% of human
loci with known ORFs.

A new level of accuracy was achieved this year by N-SCAN,
a version of TWINSCAN with a new, phylogenetic conservation
model that is capable of considering alignments among multiple
genomes (Gross and Brent 2005, 2006). N-SCAN is able to predict
a correct ORF at about 35% of human loci with known ORFs. It
is also notably more accurate than previous systems at the exon
level, predicting 85% of known human coding exons correctly,
whereas previous systems predicted fewer than 75% correctly.
Furthermore, it is the first program to accurately predict the
boundaries of long introns—it correctly predicts about 50% of
introns in the 50- to 100-Kb length range.

Many of the challenges of de novo gene prediction that
have been observed over the years remain challenges today. Even
the best prediction programs tend to split and fuse genes, and
they have difficulty accurately predicting stop codons and espe-
cially start codons. They only predict a single isoform at
each locus, even though a large fraction of human genes are
alternatively spliced. Yet there has been enormous progress. We
have moved from predicting a correct ORF at one tenth of
the human loci to predicting a correct ORF at one third. We can
now predict long introns (Gross and Brent 2005), and we can

predict spliced 5� UTRs with reasonable accuracy (Brown et al.
2005). Gene predictors are generally more accurate on more com-
pact genomes such as those of Caenorhabditis elegans and D. me-
lanogaster (GeneFinder: P. Green, unpubl.; Burge and Karlin
1997), but the last ten years have seen substantial progress there,
too (Stanke and Waack 2003; Gross and Brent 2005; Wei et al.
2005).

Combining prediction methods

In the run-up to the initial publications on the human genome,
it became clear that manual integration of evidence from various
prediction methods would not be fast enough to provide an
analysis of the entire genome in a reasonable amount of time. As
an alternative, several automated “pipelines” for integrating evi-
dence, such as OTTO (Venter et al. 2001), Ensembl (Birney et al.
2004a; Curwen et al. 2004), and the NCBI pipeline were devel-
oped. OTTO was used primarily by the team at Celera Genomics
that developed it. Ensembl annotations have been used to pro-
duce the primary gene sets in many of the publications that
describe the first analysis of a new vertebrate genome sequence
(e.g., Lander et al. 2001; Aparicio et al. 2002; Waterston et al.
2002; Gibbs et al. 2004; Hillier et al. 2004). The NCBI annotation
pipeline is also very influential because its predictions appear in
GenBank as RefSeq mRNAs and proteins with “XM” and “XP”
accessions, respectively. The NCBI pipeline was originally based
on GenomeScan (Yeh et al. 2001), an enhancement of Genscan
that modifies the scores of potential exons depending on
whether they have high-scoring alignments to proteins in the
databases. More recent versions of the NCBI pipeline use an un-
published method called Gnomon (http://www.ncbi.nlm.nih-
.gov/genome/guide/build.html#gene). Although every pipeline
works differently, both Ensembl and NCBI rely heavily on align-
ing protein sequences generated from one gene to the genomic
loci of other genes, either within or between species. In the fol-
lowing discussion, I will focus on Ensembl as a representative of
such annotation pipelines.

Most Ensembl gene predictions are ultimately created by
GeneWise, a protein-alignment program, although Genscan is
used to help identify the best proteins to align from other species
(Curwen et al. 2004). Thus, GeneWise has determined the struc-
tures of a large fraction of the predicted genes used in the initial
analyses of numerous vertebrate genomes. The goal in these
analyses was to obtain a conservative set of predicted exons and
genes—one containing few false positives. Genscan, the best
available de novo gene predictor until 2003, predicts numerous
false positive exons, so choosing a protein alignment method
such as GeneWise made sense. Even TWINSCAN, as published in
2003, predicted only 75% of known exons correctly, as compared
to 85% for Ensembl (Flicek et al. 2003).

Given the recent progress in de novo gene prediction, it is
worth asking whether GeneWise is still more accurate, or even
more conservative, than the best de novo predictors. A direct
comparison would be most informative, but the data set that
Birney et al. (2004b) used to assess the accuracy of GeneWise has
been lost. However, some inferences can be drawn by comparing
published results on different test sets. Gross and Brent (2005)
reported that N-SCAN, when run on the whole human genome,
predicts 85% of all known exons correctly; estimated specificity
based on the assumption that the genome contains 200,000 ex-
ons is 86%. Considering only internal exons, as in Birney et al.
(2004b), N-SCAN’s estimated exon-level specificity rises to 93%.
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Considering that these numbers are based on whole-genome an-
notations, whereas the estimated 93% for GeneWise is based on
a single-gene set, it is likely that predictions based on protein
homology are no longer more “conservative” (i.e., specific) than
de novo predictions except when the protein is nearly identical
to the target locus. Furthermore, the sensitivity of de novo meth-
ods is much higher.

A direct comparison was recently made among integrated
annotation pipelines as part of the E-GASP community evalua-
tion (Guigó and Reese 2005; http://genome.imim.es/gencode/
workshop2005.html). Pipeline predictions were compared to
manual annotation by the HAVANA group (see below) on the
human ENCODE regions (The ENCODE Project Consortium
2004). Among entrants were Ensembl and a simple ad hoc pipe-
line with two stages. The first stage was to align full-ORF cDNA
sequences from the MGC project and the RefSeq collection using
a cDNA aligner called Pairagon, which is based on a strong prior
model designed for highly accurate sequences (M. Arumugam
and M.R. Brent, in prep.). The second stage, applied to regions
not covered by cDNA alignments, was to exploit BLAT align-
ments of spliced human ESTs to guide de novo predictions by
N-SCAN. These predictions, made by N-SCAN_EST (C. Wei and
M.R. Brent, in prep.), are generally consistent with the EST align-
ments but may extend them with additional exons or link
nonoverlapping ESTs into a single transcript. The results showed
that the Pairagon+N-SCAN_EST pipeline was substantially more
specific than Ensembl, and equally sensitive, in both the exact
exon and exact transcript measures. Ensembl predicted more
transcripts per locus than Pairagon+N-SCAN_EST, so it could pre-
dict at least one correct transcript at a higher percentage of the
loci where it made predictions (gene specificity). Thus,
Pairagon+N-SCAN_EST, which uses only human cDNA sequence
aligned to its native locus, is at least as accurate as Ensembl,
which uses cross-locus and cross-species protein alignment. How-
ever, cross-species protein homology is likely to contribute more
to the annotation of species for which fewer cDNA sequences are
available.

A more recent approach to integrating predictions is to score
each potential exon using a weighted combination of evidence
from alignment-based predictions and de novo predictions
(Allen et al. 2004). The weights are derived from estimates of the
accuracy of each prediction source. Thus, if several predictors
that have proven accurate in the past agree on an exon, it will
receive a high score. In the case of disagreement among predic-
tors the score will generally be lower, but more weight will be
given to more accurate predictors. This approach performs well
in practice, especially when there are multiple evidence sources
with roughly similar accuracy—empirically, it seems that differ-
ent methods make different errors. Indeed, JIGSAW, a descen-
dent of COMBINER (Allen et al. 2004), was slightly more sensi-
tive than the Pairagon+N-SCAN_EST pipeline at the exon level in
the EGASP evaluations, although Pairagon+N-SCAN_EST was
more accurate in predicting exact ORFs. To achieve the accuracy
it did, JIGSAW was run on 13 sources of evidence using genome
coordinates provided by the UCSC browser, including Ensembl,
RefSeq, Genscan, SGP, TWINSCAN, Human mRNAs, TIGR Gene
Index, and UniGene (Wheeler et al. 2004).

Manual annotation has also progressed over the last 10
years. In 2000, the Drosophila community held an annotation
“jamboree,” in which fly biologists and bioinformaticians gath-
ered at Celera Genomics for two weeks to create an initial anno-
tation of the Drosophila genome (Pennisi 2000). This annotation

has since been systematically revised and updated (Misra et al.
2002; Drysdale and Crosby 2005). In 2002, the Sanger Institute
held two Human Annotation Workshops (known as Hawk meet-
ings). A number of groups involved in human annotation gath-
ered at these meetings and compared their annotations on des-
ignated sequences to “define a standard of annotation” and
“draw up guidelines to help achieve the standard” (http://
www.sanger.ac.uk/HGP/havana/hawk.shtml). These meetings
led to the annotation standards that are used by the Sanger In-
stitute’s Human and Vertebrate Analysis project (HAVANA,
http://www.sanger.ac.uk/HGP/havana/docs/guidelines.pdf).
HAVANA annotators integrate information from alignments of
expressed sequences and de novo predictions by Genscan and
FGENESH (http://www.sanger.ac.uk/HGP/havana/). The
HAVANA team has annotated human chromosomes 1, 6, 9, 10,
13, 20, 22, and X; mouse chromosomes 2, 4, 11, and X; and the
entire zebrafish genome. Their annotation of the human
ENCODE regions appears to have been quite complete, since
RT-PCR and sequencing experiments have verified only a small
handful of exons not annotated by HAVANA (R. Guigó, pers.
comm.).

The current turning point

Limits of sequencing random cDNA clones

Improving the accuracy of annotations based on expressed
sequences depends, to a large extent, on improving the col-
lection of sequences that are available to align. The vast major-
ity of ESTs and cDNA sequences currently in databases were ob-
tained by sequencing clones selected at random from cDNA li-
braries. However, this method has been found to saturate
well short of the full gene set (The MGC Project Team 2004).
For example, the MGC project sequenced 5� ESTs from more
than 110 human and 80 mouse cDNA libraries and screened
them for clones that appeared likely to contain a complete ORF
not already in the collection. Promising clones were then se-
quenced to high accuracy. This produced full-ORF clones at
approximately 13,000 human and 12,000 mouse gene loci—
about 50%–60% of all the genes, according to current estimates.
Aligning the human ESTs to the genome produced a total of
about 62,000 nonoverlapping clusters, but most of these ap-
peared not to include the 5� end of an ORF. EST projects for other
animals have yielded qualitatively similar results (e.g., Wei et al.
2005), although the number of clones sequenced has generally
been less. Thus, we cannot expect to complete the annotation
of any animal genome by simply sequencing deeper into cDNA
libraries.

Limits of protein alignment

Some genes for which we cannot obtain a full-ORF cDNA se-
quence can nonetheless be annotated by aligning homologous
proteins to the genome. However, it appears that this approach is
no more accurate than de novo prediction except when the
aligned protein is nearly identical to the one encoded by the
target locus. Improvements in protein alignment methods—
particularly the use of alignment models that do not accept
frame shifting errors—may extend this accuracy horizon some-
what. In the end, though, annotation by protein alignment will
be limited by the cDNA collection from which most “proteins”
are derived.
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Limits of combiners

Systems that combine predictions from many sources seem to
provide at least a slight edge over the best single source. However,
the accuracy of these systems is limited by the accuracy of the
underlying prediction sources.

Limits of manual annotation

Inspection by human curators seems to be an effective method of
integrating evidence from alignments of expressed sequences,
alignments among genomes, and de novo predictions. Among
the strengths of the human curators is the ability to detect sus-
picious annotations, such as pseudogenes. At bottom, though,
their accuracy is still limited by the accuracy of the evidence they
are given to integrate. Furthermore, manual annotation is time
consuming and may not be updated rapidly in response to new
evidence. Most importantly, though, it is very expensive com-
pared with automated integration of evidence. As a result, it
seems unlikely that extensive manual annotation will be done
beyond the genomes of D. melanogaster, human, zebrafish, and
possibly mouse.

Limits of comparative genomics

Although the accuracy of de novo gene prediction has improved
dramatically since 1996, one major source of expected improve-
ment has not yet panned out. It has been widely anticipated that
the availability of multiple genomes within a fairly narrow phy-
logenetic clade would lead to dramatic improvements in gene
prediction accuracy. By aligning multiple mammalian genomes,
we should be better able to characterize the patterns of selection
operating on small sections of genomes. These patterns should be
indicative of specific functions. For example, regions that con-
tain a number of substitutions all separated by multiples of three
are more likely to be coding, since the third position of a codon
can often be changed without changing the amino acid it en-
codes. The expectation that multi-genome alignments would
lead to more accurate gene prediction than alignments among
two genomes is quite reasonable and such improvements may
yet be achieved. However, no method for improving gene pre-
diction accuracy by using multi-genome alignments has yet been
found, despite several serious efforts. For example, EXONIPHY
(Siepel and Haussler 2004), an exon prediction system based on
a phylogenetic generalization of HMMs, does not exceed the ac-
curacy of dual-genome systems like TWINSCAN or SGP2 in exact
exon prediction, although it does exceed them by a few percent
in nucleotide specificity (Gross and Brent 2005). N-SCAN, which
is based on a different phylogenetic generalization of generalized
HMMs, represents a substantial improvement in accuracy over
TWINSCAN and SGP2. However, running N-SCAN on multi-
genome alignments has not yet produced results that are sub-
stantially better than those obtained by running it on only two
genomes (Gross and Brent 2005).

There are several possible reasons for the failure, so far, to
achieve substantial accuracy improvements by using multi-
genome alignments. It may be that we do not yet have the right
combinations of genomes sequenced to sufficiently high qual-
ity—draft sequence may not be good enough. Or, it may be that
we simply cannot align these genomes precisely enough to draw
accurate inferences about selection. If these are the reasons, then
finished sequences from more mammals, especially primates
(Boffelli et al. 2003) may lead to the anticipated improvements.
Another potential explanation is that exons and splice sites con-

served throughout the mammalian lineage may be less common
than originally thought. Anecdotally, it has been observed that
alignments among many mammalian genomes often show that
a given exon does not appear in one of the species. On the other
hand, it may be that the designers of de novo gene prediction
algorithms have simply not been clever enough to come up with
the right methods yet. In any case, it seems that we cannot count
on the availability of more genome sequences to yield substantial
accuracy improvements in the immediate future.

Looking forward

It is my conviction that a finished genome sequence should re-
veal the set of ORFs it encodes. Therefore, I believe we must
develop a cost-effective technology for translating a genome to a
set of exon–intron structures and the proteins they encode. The
outlines of this technology are now becoming clear, but its cost
must still be reduced through automation and optimization.

The current gold standard of evidence for gene structures is
cDNA sequence aligned to the genomic locus from which it was
transcribed. This leaves something to be desired, in that one must
still infer the exon-intron structure by alignment and the protein
product by conceptual translation of the most likely-looking
open reading frame. Both of these inferences are subject to error,
so one might hope for confirmation by direct experimental evi-
dence. However, there is as yet no economical, high-throughput
method for obtaining such evidence. In particular, there is no
analog of RT-PCR for proteins—an economical method of di-
rectly amplifying or purifying hypothesized, low-abundance
proteins. Since we must rely on computational inference of
protein products that aren’t easily picked up by high-throughput
proteomics, it is possible that incorrectly processed pre-mRNAs,
such as those with retained introns, would yield incorrect
inferences about functional proteins. The best approach to flag-
ging such cases may be to screen for cDNAs that are likely can-
didates for nonsense-mediated decay—those with splice junc-
tions more than 50–55 nt 3� of the inferred ORF (Lejeune and
Maquat 2005).

The most efficient way to obtain cDNA sequence for every
protein-coding gene is to combine standard EST sequencing,
gene prediction, and RT-PCR using primers designed to amplify
predicted transcripts. A small to moderate collection of ESTs
should be developed first by the standard method—sequencing
randomly selected cDNA clones. This will produce sequence from
transcripts that are relatively abundant, and will completely de-
termine the exon-intron structures of abundant transcripts that
are shorter than two read lengths (currently about 1400–1800
bp). The cost per transcript will remain relatively low as long as
a fairly high proportion of sequences produced are new. By cal-
culating the number of clones that must be sequenced to obtain
a new EST and multiplying by the cost per clone one can estimate
the cost per new cDNA read. When this cost exceeds the esti-
mated cost per new read by RT-PCR, EST sequencing should be
stopped. The resulting ESTs should be aligned to the genome
using cDNA-to-genome alignment tools based on strong models
of gene structure, and those that do not align well should be
discarded or set aside for manual inspection if time permits.
High-quality EST alignments that overlap one another must then
be grouped together and computational techniques used to de-
termine which groups are likely to contain a complete ORF.
Those that do form the core set of genes in the annotation.

Once the core set has been determined, the rest of the genes
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must be identified by a series of RT-PCR and sequencing steps,
starting with the most confident predictions and progressing to-
ward the less confident (Fig. 2). Considering the analyses de-
scribed above, predictions based on cross-locus and cross-species
protein alignments are more reliable than de novo predictions
only when the aligned protein is highly similar to the predicted
one (probably >95% identity). Such predictions should be used to
design primers for the first round of RT-PCR and sequencing
experiments. After each RT-PCR and sequencing step, the result-
ing cDNA sequences should be aligned, grouped, and sorted by
completeness of the predicted ORF as described above. Aligning
the experimental sequences to the genome may confirm parts of
the predicted gene structure, but it may also reveal errors in other
parts of the predicted structure.

The updated set of full-ORF gene structures can now be used
to train a de novo gene prediction algorithm. Typically, clusters
of genomes within a clade are sequenced at once, so it is usually
possible to use dual- or, potentially, multi-genome de novo pre-
diction methods. The EST alignments that do not cover a full
ORF can be used to guide the prediction algorithms, which will
predict complete structures that are consistent with the align-
ments, but may extend them with additional exons and/or link
several ESTs together into a single predicted transcript (C. Wei
and M.R. Brent, in prep.) The unconfirmed regions of predictions
that extend or link EST alignments can then be tested in the next
round of RT-PCR. After aligning the resulting sequences to the
genome, the gene structures they define can be used as additional
examples for retraining the gene predictor and as additional
guidance around which the gene predictor can build models. If
this process is taken to convergence, where all gene models have
been tested, the result will be an annotation of exon–intron
structures that is more complete than any we have now and that
is fully verified by native cDNA sequences.

Several variants of this approach are also being developed.
One is to use Rapid Amplification of cDNA Ends (RACE) PCR, a
method in which a universal primer at one end of the cDNA is
paired with a single gene-specific primer inside the predicted
cDNA. Certain RACE methods selectively amplify 5� complete

mRNAs with a 7 methyl guanine cap, allowing amplification of
the 5� end without knowing a sequence in the 5� end. Only the
sequences of one or more internal exons are needed for the de-
sign of the gene specific primer. Since only one exon needs to be
predicted correctly, this method can be more sensitive than or-
dinary RT-PCR. Specificity is often a problem with RACE, but this
can be ameliorated by a second round of PCR using a nested pair
of universal and gene specific primers. McCombie and colleagues
(Dike et al. 2004) have done this using mouse predictions by
TWINSCAN (Flicek et al. 2003) and GenomeScan (Yeh et al.
2001), while Gingeras and colleagues have done it using genomic
tiling arrays for both exon prediction and sequencing of RACE-
PCR products (Cheng et al. 2005; Kapranov et al. 2005).

Of course, some transcripts are expressed transiently during
development, or only under rare environmental conditions. We
can increase the number of detectable transcripts by pooling RNA
from many tissues. Cloning artifacts can be reduced by amplify-
ing reverse-transcriptase products directly rather than using
cloned cDNA libraries and by sequencing PCR products directly
rather than sequencing clones. But there will still be rare tran-
scripts that cannot be verified by a high-throughput annotation
system. In the end, these will have to be identified on a case-by-
case basis using traditional biochemical or genetic approaches.
Nonetheless, we can use high-throughput methods to get much
closer than we have so far to determining the most basic ele-
ments on the parts list of an organism.

To make this vision a reality, we must bring the cost of the
RT-PCR and sequencing experiments down as far as possible. This
means relying on end-to-end automation. Much of the necessary
automation consists of software pipelines for selecting predic-
tions to test, designing primer pairs to test them, and analyzing
the resulting sequences to determine new gene structures. The
physical processes of setting up PCR and sequencing reactions
must also be optimized and automated. Finally, the accuracy of
the gene predictions will be a central determinant of the cost and
completeness of the resulting annotation. Prediction errors may
lead to one or more PCR experiments that fail to amplify their
targets and produce no useful sequence, thus raising the cost per
transcript annotated. Therefore, we must continue to improve
the accuracy of gene prediction by developing more complete
and more realistic models of the signals in the genome sequence
that guide the transcription and processing of mRNA.

The genomics community is used to rapid progress and
headline-making excitement, so the temptation to “declare vic-
tory and move on” is understandable. I have heard it said nu-
merous times that the identification of protein-coding genes is
well understood, and the real challenges now are identifying
transcription factor binding sites, non-coding RNA genes, and
other exciting sequence elements. While these are important
challenges, we must resist the temptation to leave the identifica-
tion of protein-coding genes incomplete while we chase after the
hottest new features. We must not forget that the defining char-
acteristic of genomics is the all-out effort to view an organism
globally by analyzing data sets that are as complete as we can
possibly make them.
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