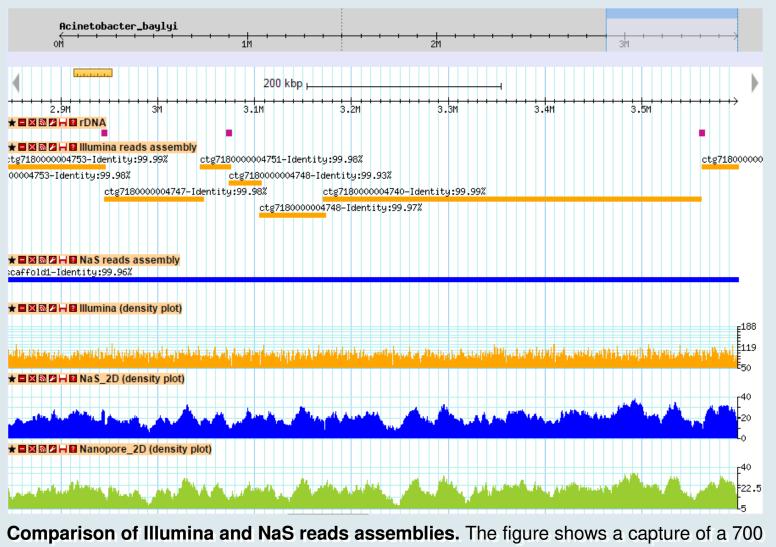
Genome assembly using Nanopore-guided Long and Error-free DNA reads Jean-Marc Aury¹, Mohammed-Amin Madoui¹, Stefan Engelen¹, Adriana Alberti¹, Caroline Belser¹, Laurie Bertrand¹, Corinne Cruaud¹, Arnaud Lemainque¹, Patrick Wincker¹ http://www.genoscope.cns.fr/nas ¹Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706 Evry, France **Overview of MinION[®] reads** Methods Instead of using Illumina short reads to correct MinION[®] reads, we propose a method that uses the MinION[®] read as a template to recruit Illumina reads, and by performing a local assembly, build a high-quality synthetic DNA library read. DNA fragment siz Step3. generate NaS read Flowcell chemist Illumina short read Number of reads input data Step4. filter NaS read Cumulative size (contig1 contig2 contig4 contig2 contig N50 size (bp) Step1. get seed reads Average size (bp) Step5. build contig graph % of 2D reads contia4 % of 2D bases Step2. recruit reads Summary statistics of the MinIO Step6. select best path Step3. generate NaS read contig4 # reads Step4. filter NaS read Illumina read # reads (>10Kb Step7. validate NaS read coverage Cumulative size

Introduction

The technology of long-read sequencing now offers different alternatives to solve genome assembly problems and haplotype phasing, which can not be resolved adequately by short-read sequencing.

In 2014, Oxford Nanopore released the MinION[®] device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments.

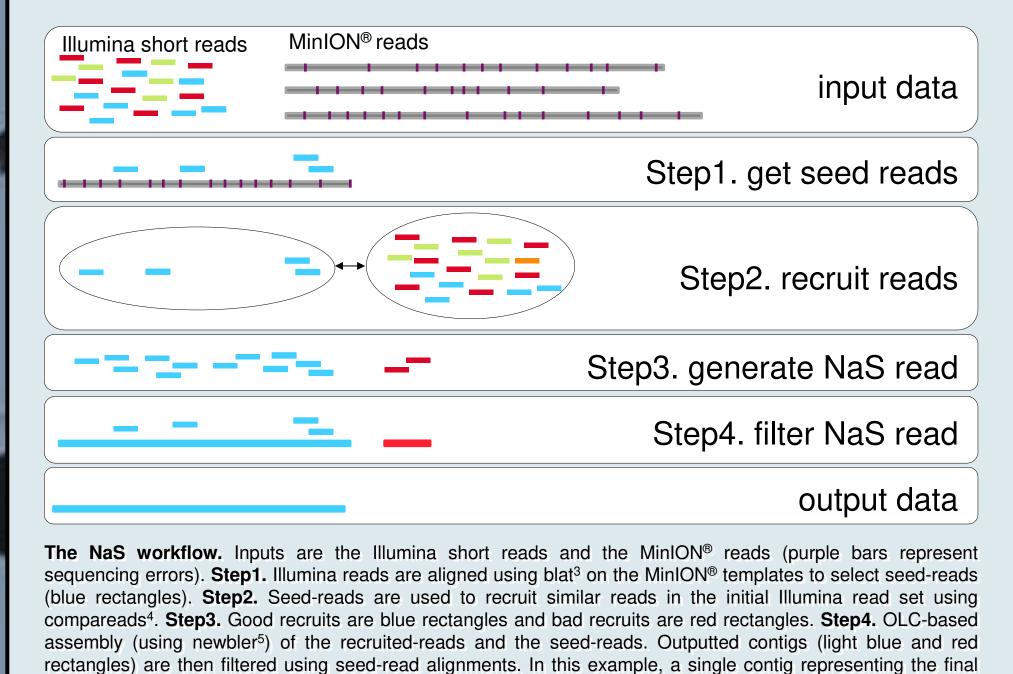

Here, we present a hybrid approach developed to take advantage of data generated using MinION[®] device. Our method is able to generate NaS (Nanopore Synthetic-long) reads up to 60kb with no error and that spanned repetitive regions. We applied NaS on a well-known bacterium (Acinetobacter baylyi ADP1) and a small eukaryotic genome (S. cerevisae strain W303), and compared NaS reads and NaS assemblies with two other existing tools : Nanocorr¹ and ECtools².

Acinetobacter baylyi ADP1 dataset

We combined ~57X of MinION[®] reads with 50X of Illumina 250bp paired-end reads to produce high quality synthetic reads. To demonstrate the utility of the NaS workflow, we attempted synthetic reads assembly using the Celera asembler. Moreover, we compared NaS and two recent tools: Nanocorr¹ and ECTools².

Summary statistics of the MinION [®] , Nanocorr	r, ECtools and NaS reads	. Reads were aligned	using bwa mem ⁷

Read set	MinION [®] reads	NanoCorr	ECtools	NaS
# reads	66 492	11 836	4 867	11 476
# reads >10Kb	7 475	2 915	2661	3 077
Cumulative size (coverage)	204 951 379 (57X)	67 636 754 (19X)	55 473 374(15X)	79 900 983 (22X)
Average size	3 082	5 714	11 398	6 962
N50 size	11 670	12 166	12 698	11 331
Max size	123 135	58 414	54 615	59 864
Aligned reads	16 763 (25.2%)	11 802 (99.71%)	4 867 (100%)	11 476 (100%
Aligned bases	123 416 224 (60.2%)	67 135 095 (99.25%)	55 293 130 (99,67%)	79 838 313 (99.92%
Mean identity percent	66.3747%	96.5665%	99.9636%	99.9847%
Perfect reads	0 (0%)	2 117 (17.93%)	4 456 (91.55%)	11 015 (95.98%
Coverage of the reference sequence	3 598 621 (100%)	3 598 621 (100%)	3 598 621 (100%)	3 598 621 (100%

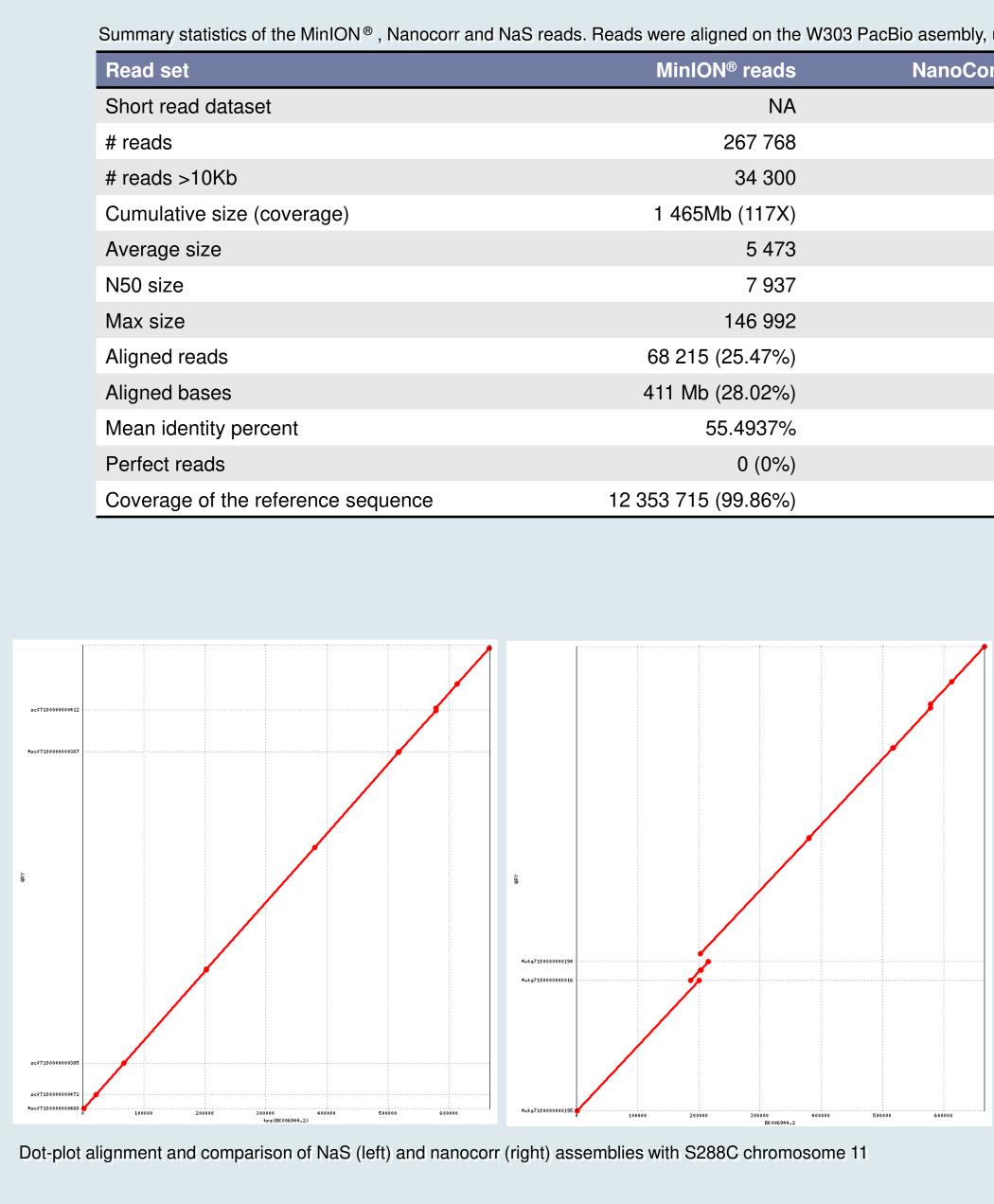

Metrics (Quast)
#contigs
Assembly size
N50
L50
N90
L90
MinContigSize
MaxContigSize
ID%
Max aln
NA50
NA75
Genome fraction (%)
misassemblies
local misassemblies
mismatches per 100
indels per 100 kbp

kb genomic region from Acinetobacter baylyi ADP1. The first track contains rDNA clusters 5, 6 and 7 (purple rectangles). The orange rectangles represent alignments of contigs from the Illumina-only assembly, whereas blue rectangle represents the alignment of the NaS assembly contig. The three plots represent respectively the coverage of Illumina, Nas 2D and MinION[®] 2D reads. We observed that breakpoints of the Illumina assembly coincide in part with rDNA clusters, in contrast with the NaS assembly which exhibits a perfect

1. Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande, Michael Schatz, W Richard McCombie: Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome. *bioRxiv* doi: http://dx.doi.org/10.1101/013490 2. https://github.com/jgurtowski/ectools 3. Kent WJ: BLAT--the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664.

4. Maillet N, Lemaitre C, Chikhi R, Lavenier D, Peterlongo P: Compareads: comparing huge metagenomic experiments. BMC bioinformatics 2012, 13 Suppl 19:S10.

NaS read is produced.


Untangling complex regions. In the case of repetitive regions (represented by dark blue rectangles), the NaS per MinION[®] template (Step3 and coverage of the given contig. Contig2, which represents the repetitive region is linked to four different contigs. **Step6.** The contigs present in the path with the highest weight (contig1 – contig2) - contig3) are selected, using the Floyd-Warshall algorithm, and assembled to generate the final NaS read. Step7. The consistency of the synthetic NaS read is checked by aligning the initial Illumina reads set and detecting gap of coverage

Summary statistics of genome assemblies produced using Celera assembler⁸. Metrics were computed using

ECtools	Nanocorr	NaS	Illumina
4	6	3	20
3 616 882	3 620 823	3 635 796	3 592 537
2 468 787	3 604 474	3 609 416	326 117
1	1	1	5
954 595	3 604 474	3 609 416	140 386
2	1	1	11
54 816	1 458	9 380	3 547
2 468 787	3 604 474	3 609 416	520 993
99.97	99.98	99.99	99.99
1 701 411	1 825 329	1 442 823	520 993
954 061	2 598 906	1 212 310	290 660
496 599	681 989	953 958	194 326
99.971	100	100	99.735
3	2	2	4
6	8	2	3
9.37	4.95	0.78	bp 6.49
6.75	3.11	0.44	0.33

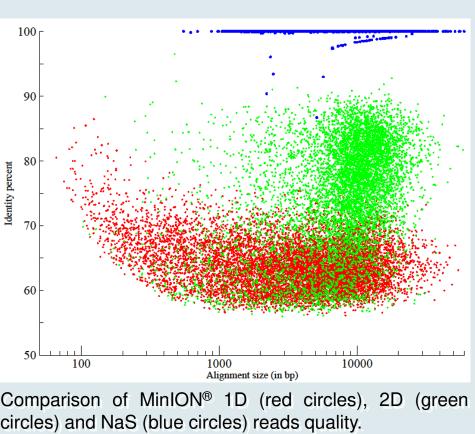
Yeast dataset

We used the dataset provided with the nanocorr¹ tool, based on the W303 strain of *S. cerevisae*, in combination with Illumina paired-end reads and compared our results with the one obtained with Nanocorr¹.

5. http://www.454.com/products/analysis-software/ 6. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC: Adaptive seeds tame genomic sequence comparison. Genome Res 2011, 21(3):487-493. 7. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595. 8. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA et al: A whole-genome assembly of Drosophila. Science 2000, 287(5461):2196-2204. 9. Gurevich A, Saveliev V, Vyahhi N, Tesler G.: QUAST: quality assessment tool for genome assemblies_ Bioinformatics. 2013 Apr 15;29(8):1072-5. doi: 10.1093/bioinformatics/btt086. Epub 2013 Feb 19.

output data

	MinION [®] reads	NanoCorr (all MinION [®] reads)	NaS (template and 2D reads only)
	NA	30X of PE @ 300bp	50X of PE @ 250bp
	267 768	105 281	71 793
	34 300	12 254	6 141
	1 465Mb (117X)	488 Mb (39X)	426 Mb (34X)
	5 473	4 636	5 938
	7 937	8 294	7 085
	146 992	72 936	45 745
	68 215 (25.47%)	104 094 (98.87%)	71 614 (99.75%)
	411 Mb (28.02%)	475 Mb (97.27%)	424 Mb (99.47%)
	55.4937%	97.5005%	99.9246%
	0 (0%)	3 334 (3.2%)	56 991 (79.58%)
nce	12 353 715 (99.86%)	12 336 482 (99.72%)	12 196 844 (98.6%)


Summary statistics of genome assemblies produced using Celera assembler. Metrics were computed using Quast.

Metrics (Quast)	Illumina	Nanocorr
# contigs	6 953	204
Assembly size	14 910 895	14 000 895
GC (%)	38.71	38.64
Reference GC (%)	38.21	38.21
N50	53 444	334 484
L50	80	15
N90	544	20 612
L90	3 137	98
# misassemblies	72	161
# misassembled contigs	52	107
# local misassemblies	22	44
Genome fraction (%)	97.0	92.2
Duplication ratio	1.18	1.23
# mismatches per 100 kbp	91.11	72.65
# indels per 100 kbp	9.20	34.17
average id%	99.79	99.69

VinION runs on Acinetobacter baylyi ADP1					
	Run1	Run2	Run3	Run4	Run5
	1	2	3	4	4
e	8 kb	20 kb	20 kb	20 kb	20 kb
у	R7	R7	R7.3	R7.3	R7.3
	9,241	3,990	6,052	11,957	35,252
Mb)	21.4	19.3	40.8	34.5	88.9
	5,388	11,288	10,217	12,729	13,967
1	2,314	4,830	6,746	2,886	2,523
	6.5%	13.6%	43.3%	11.6%	9.7%
	14.6%	27.1%	57.1%	42.7%	44.6%

	1D reads	2D reads
# reads	57,911	8,581
# reads (>10Kb)	3,609	3,866
Cumulative size (Mbp)	118.9	86.1
Average size (bp)	2,052	10,033
N50 size (bp)	11,058	12,141
Max size (bp)	123,135	58,704
Aligned reads	9,623 (16.6%)	7,140 (83.2%)
Mean identity percent	56.6%	74.5%
Max alignment size	54,158	58,656
Error-free reads	0	0

Conclusion

The approach we present here is an efficient method to sequence genome by combining advantages of Illumina and the new Oxford Nanopore These sequencing technologies. technologies are commercialized through two desktop instruments, the MinION[®] device and the MiSeq sequencer respectively, that have the advantage to be small and relatively low cost

Our method offers the opportunity to sequence microbial or small eukaryotic genomes in a very short time, even in small facilities.

This hybrid approach presents an interesting alternative compared with standard strategies, such as SMRT of Pacific BioSciences and Illumina TruSeq Synthetic long reads. For approach is example, our straightforward in terms of library preparation, as well as laboratory and information technology infrastructure requirements.

Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.

MinION

aligned

using LAST⁶

reads

	NaS
	125
11	845 583
	38.14
	38.21
	148 384
	21
	45 795
	75
	83
	51
	13
	91.5
	1.04
	36.65
	7.23
	99.93