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Abstract

Most traits of agronomic importance are quantitative in nature, and genetic markers have

been used for decades to dissect such traits. Recently, genomic selection has earned atten-

tion as next generation sequencing technologies became feasible for major and minor

crops. Mixed models have become a key tool for fitting genomic selection models, but most

current genomic selection software can only include a single variance component other

than the error, making hybrid prediction using additive, dominance and epistatic effects

unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for

fitting mixed models with multiple random effects that allows the user to specify the var-

iance-covariance structure of random effects has not been fully exploited. A new open-

source R package called sommer is presented to facilitate the use of mixed models for

genomic selection and hybrid prediction purposes using more than one variance compo-

nent and allowing specification of covariance structures. The use of sommer for genomic

prediction is demonstrated through several examples using maize and wheat genotypic and

phenotypic data. At its core, the program contains three algorithms for estimating variance

components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed

Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic

relationship matrices are included, along with other useful functions for genomic analysis.

Results from sommer were comparable to other software, but the analysis was faster than

Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with

missing data, combined with greater flexibility and speed than other REML-based software

was achieved by putting together some of the most efficient algorithms to fit models in a

gentle environment such as R.

Introduction

With next generation sequencing technologies (NGS) becoming cheaper and consequently

more feasible for all crops, huge genomic data sets have become available to help during selec-

tion and decision making in plant breeding programs [1,2]. The idea of using genetic markers

to accelerate and improve plant and animal breeding systems originated with Sax in 1923 who

first reported an association of a simply inherited genetic marker with a quantitative trait in

plants [3,4]. On the other hand, the development of statistical tools for breeding purposes,
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particularly, Henderson’s mixed model equations in 1949 (not published until 1963 with the

help of Searle), gave rise in animal breeding to kinship-based selection, breeding value estima-

tion, and prediction of breeding materials [5–7]. More recently, genetic markers have been

exploited in plant breeding to detect quantitative trait loci (QTL) for marker assisted selection

(MAS). However, after decades of QTL studies, the real application and value of the QTL para-

digm in plant breeding has been questioned [8,9].

With the advent of inexpensive and high-throughput genotyping technologies in the last

decade, a new plant and animal breeding selection paradigm called genomic selection has

emerged [4]. Genomic selection allows the prediction of the phenotypes of individuals based

on known marker effects or genetic relationships (kinship-based), and in plants it has been

used for predicting trait performance of hybrids and unrealized crosses. One of the first meth-

ods proposed for genomic selection was a statistical method called ridge regression (RR),

where the ridge parameter (λ) can be observed in a mixed model framework as the σ2e / σ
2
u

ratio between the residual and random effect variances. This can be applied in the genomic

context where σ2u is the genetic variance and best linear unbiased predictor (BLUP) can be

interpreted as the genomic estimated breeding values (GEBV), where the random effect refers

to genotype effects and the variance-covariance structure is the additive or genomic relation-

ship matrix (A or Ag). The genetic variance can also be interpreted in terms of marker effects

in the form of marker-based BLUPs [10–13].

The use of mixed models to estimate breeding and genetic values can be generalized to more

complex scenarios. Mixed models can be used to address general and specific combining abil-

ities in hybrid populations. In particular, they can be used to predict the performance of unrea-

lized crosses, such as single cross hybrids in species which commonly display additive and

dominance (heterosis) effects [7,14]. These effects, also called general and specific combining

abilities (GCA and SCA, respectively), can be dissected in a mixed model as random effects

with a particular variance-covariance structure (G) and with distribution:
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Here, X and Z are incidence matrices for fixed and random effects respectively, R = Iσ2e,

Ki is the variance covariance structure for the i
th random effect and σ2ui is the variance com-

ponent for the ith random effect. Such covariance structures in a general mixed model are

usually unknown, but in genomic selection theory such covariance structures are expressed

as relationships among individuals, estimated by an additive, genomic, or other type of rela-

tionship matrix [13]. Despite all the molecular and statistical advances that allow genomic

selection, there is few open source genomic selection or mixed model software that allows

the modeling of several variance components at a time and particularly the modeling of

SCA effects by likelihood methods, such as some popular R packages; regress, and EMM-

REML [13,15–19]. The purpose of this paper is to describe the R package sommer (solving

mixed model equations in R), an open-source REML-based package that can handle more

than one variance component, and at the same time allows for flexible specification of var-

iance-covariance structures of random effects and compare it to popular Bayesian and

Likelihood-based software. Sommer is especially useful for hybrid prediction of species dis-

playing strong heterotic or specific combining ability effects. The package relies on three

algorithms based on maximum likelihood (ML) and restricted maximum likelihood
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(REML); efficient mixed model association (EMMA) [20], direct average information (AI)

[21,22], and expectation maximization (EM) [23,24]. In addition, sommer includes other

kernels for calculating additive, dominance and epistatic relationship matrices [25] and per-

form genome wide association studies (GWAS) (the software can be found and downloaded

at https://cran.rstudio.com/web/packages/sommer/ [verified 10 May 2016]). The key fea-

tures of the package are demonstrated using wheat data (Triticum aestivum L.) for genomic

prediction of species displaying small or null heterotic effects where only the additive kernel

is required (a single random effect), and prediction of single-cross maize hybrids (Zea mays

L.), which require the use of additive and dominance kernels (multiple random effects), and

can be extended to any species displaying heterotic effects.

Materials and Methods

Algorithms

The sommer package solves the mixed model equations proposed by Henderson [6], and it has

been implemented to work with incidence matrices and known variance covariance matrices

for each random effect through the use of themmer function and a ASReml-type version

namedmmer2. If an incidence or a variance-covariance matrix is omitted, the software

assumes an identity matrix. Currently, three algorithms for variance component estimation are

supported; efficient mixed model association (EMMA) [18], average information (AI) [21,22],

and expectation maximization (EM) [23,24]. The EMMAmethod is useful when only one var-

iance component other than the error variance component (σ2e) is estimated [25]. When more

than one variance component needs to be estimated, the AI and EM algorithms should be

used. The AI algorithm is the default, similar to other commercial software such as ASReml

[21].

Genomic breeding value estimation in a wheat population

We performed genomic breeding value estimation (GEBV) and hybrid prediction with wheat

data, and the results were compared to other genomic selection and mixed model software,

including rrBLUP [13], ASReml [21], regress (used by synbreed as well) [17,18], EMMREML

[19], MCMCglmm [15], and BGLR [16]. We used the wheat data contained in the R package

BGLR consisting of 599 inbred lines genotyped with 1279 diversity array technology (DArT)

markers [16]. Phenotypic data consisted of grain yield (GY) for the 599 lines from the historical

CIMMYT's Global Wheat Program evaluated in four mega-environments.

From the 599 wheat lines, 179,101 distinct single crosses can be performed. Kinship-based

BLUP prediction for the 599 lines were obtained using rrBLUP (ridge regression), ASReml

(average information), regress (Newton-Raphson), EMMREML (modified EMMA), BGLR

(using the Reproducing kernel Hilbert space [RKHS] kernel), MCMCglmm (Gibbs sampling)

and the three algorithms implemented in sommer (AI, EM, and EMMA). Similarity among

BLUPs using all software was performed in R and displayed in tables and figures [26]. The

genomic estimated breeding values (GEBV) for each of the 599 inbred lines was used to predict

the performance of possible crosses as the average among the breeding value of the parental

lines. The mixed model fitted has the form:

y ¼ Xbþ Zuþ ε

with variance:

VðyÞ ¼ VðZuþ εÞ ¼ ZGZ
0 þ R
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and the mixed model equations for this model are:
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Here, G = Kσ2u, is the variance covariance matrix of the random effect u, from a multivari-

ate normal distribution u ~MVN(0,Kσ2u), K being, in the genomics context, the additive or

genomic relationship matrix (A or Ag).X and Z are incidence matrices for fixed and random

effects respectively, and R is the matrix for residuals (here Iσ2e). A mixed model with a single var-

iance component other than the error (σ2e) can be used to estimate the genetic variance (σ2u)

along with genotype BLUPs to exploit the genetic relationships between individuals coded inK

(A). The genomic relationship matrix was constructed according to VanRaden where K = ZZ’/

2Spi(1-pi) [27]. Genotype BLUPs were calculated and considered equal to the GEBV and these

were used to predict the performance of the 179,101 possible crosses as the average of parental

genomic breeding values. We fitted this model using the sommer package by specifying the inci-

dence and variance-covariance matrices and using the three algorithms implemented (AI, EM,

EMMA). In addition, a five-fold cross validation was performed to calculate the predictive corre-

lation for grain yield in the four mega environments available for the wheat data using the som-

mer package. In addition, heritability was estimated as h2 = σ
2
u / σ

2
u + σ

2
e.

Single cross hybrid prediction in corn

Genotypic data was simulated consisting of 511 SNP markers in 40 inbred lines belonging to

two heterotic groups (20 in each). Phenotypic data was simulated consisting of grain yield

(GY) and plant height (PH) for the 40 parents and 100 out the 400 possible hybrids produced

from the single-cross of both heterotic groups allowing for heterosis. Genotypes of the 40 par-

ents were used to estimate the genomic relationship matrices as K = ZZ’/2Spi(1-pi) [27] for

both heterotic groups (K1 and K2), and the genomic relationship matrix for the 400 possible

hybrids was obtained as the Kronecker product of the parental genomic relationship matrices

K1 � K2 (K3). Given that the phenotypic data for the possible crosses was not masked, the

hybrids were predicted by estimating the BLUPs for general combining abilities in males and

females (GCAfemale, GCAmale) and specific combining abilities (SCA) of crosses along with

their variance components (σ2GCA1, σ
2
GCA2, σ

2
SCA). The model has the form:

y ¼ Xbþ Z
1
uGCA1 þ Z

2
uGCA2 þ Z

3
uSCA þ ε

The mixed model equations for this model are:
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where β is the vector of fixed effects, uGCA1, uGCA2, uSCA are the BLUPs for GCAfemale, GCAmale,

and SCA effects, X and Zs are incidence matrices for fixed and random effects respectively, R is the

matrix for residuals (here Iσ2e), and G
-1
1, G

-1
2, G

-1
3 are the inverse of the variance-covariance

matrices for random effects. The BLUPs uGCA1, uGCA2, uSCA were used to predict the rest of the sin-

gle-crosses as the sum of their respective GCA and SCA effects.

We fitted this model using the sommer package by specifying the incidence and variance-

covariance matrices and using the AI and EM algorithms, given that EMMAmethod cannot
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estimate more than one variance component. The model could not be implemented in rrBLUP

which is also limited to a single variance component. In the BGLR package the Reproducing

kernel Hilbert space [RKHS] kernel was used, in ASReml and MCMCglmm the ‘ginverse’ argu-

ment was used to specify the variance-covariance structures, and in the regress package the

multiple random effects model using the ZKZ’ kernel was fitted. EMMREML uses a similar

syntax than sommer. Results from other software were compared with sommer. In addition, a

five-fold cross validation was performed to calculate the prediction accuracy for plant height

and grain yield in this population.

In order to show the advantage of fitting a model including dominance (SCA) compared to

a pure additive models (GCA) with respect to the prediction ability for species displaying het-

erotic effects, two additional models were fitted including only GCA effects; 1) both parents

having the same variance component and 2) each parent from a different heterotic group hav-

ing a different variance component:

G ¼ ½Ks2
u � and G ¼

K1s
2
u1 0

0 K2s
2
u2

2

4

3

5

Models were compared with respect to their prediction ability after 500 runs of a five-fold

cross validation for plant height and grain yield. Models were fitted using sommer with the

default AI algorithm. In addition, heritability for both trait was estimated as; h2 = (σ2GCA1 +

σ
2
GCA2) / (σ

2
GCA1 + σ

2
GCA2 + σ

2
e).

Capabilities with big data sets and comparison with other software

In order to test the capabilities of sommer compared with other software, posterior analysis

were performed with REML-based counterparts: rrBLUP, regress, ASReml, EMMREML, and

Bayesian-based: BGLR (iterations = 13000, burn-in = 2000), and MCMCglmm (itera-

tions = 13000, burn-in = 2000; default parameters). Such comparisons were performed using

bigger data sets. We simulated phenotypic and genotypic data for 5000 individuals with 10000

markers for a single trait and single additive kernel, with heritability h2 = 0.5 and GEBVs were

estimated. Computing time as a function of the population size (N) for the different ML/REML

algorithms found across software packages for a single variance component scenario was

recorded. We recorded elapsed times for population sizes from 500 to 5000 in intervals of 500

increments and plotted using R.

The phenotypic and genotypic data available from Technow et al. [28] was used to predict

the genetic value (GV) of 10578 possible single cross hybrids from the cross of the Flint by

Dent heterotic groups, which included additive and dominance effects (three variance compo-

nents). The same model was fitted with sommer counterparts when possible for time and flex-

ibility comparison purposes. Flint and Dent lines were genotyped with 35,432 SNP markers.

Computing time as a function of the population size (N) was recorded for population sizes

from 1000 to 8000 in intervals of 1000 increments using sommer and other REML-based soft-

ware with ability to fit multiple random effects.

All genotypic and phenotypic information used in this research is freely accessible and can be

found in the R package documentation. The maize data can be accessed as data(cornHybrid),

data(wheatLines), and data(Technow_data). The script for all analysis can be found in S1 File.

Results and Discussion

At the core of the sommer package is the function ‘mmer’ which solves the mixed model equa-

tions proposed by Henderson [6], and it has been implemented to work directly with incidence

Genomic Prediction Using sommer
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and variance covariance matrices for each random effect. The function returns the variance

components, the maximized log-likelihood, best linear unbiased estimators (BLUEs) for fixed

effects and the BLUP solutions for random effects, along with other information of interest

such as residuals, Akaike information criterion (AIC), Bayesian information criterion (BIC),

etc.

In addition to the mixed model solver able to fit genome wide association (GWA) models in

diploid and polyploidy organisms based on Yu et al. [29] and Rosyara et al. [30], the sommer

package has been equipped with kernels to estimate additive relationship matrices based on

Endelman [13] and VanRaden [27], and dominance and epistatic relationship matrices based

on Su et al. [31] and Muñoz et al. [25], calculated respectively as:

A ¼ ZZ
0

2
Pm

j¼1
pjð1� pjÞ

D ¼ ZZ
0

Pm

j¼1
2pjqjð1� pjqjÞ

E
aa
¼ A#A ðadditive by additive interactionsÞ

E
dd

¼ D#D ðdominance by dominance interactionsÞ
E
ad
¼ A#D ðadditive by dominance interactionsÞ

Denoting # the Hadamard product between matrices, Z being the scaled marker matrix, p

and q the allelic frequencies for the jth marker (j = 1. . .m). Markers are coded -1, 0, 1 with

respect to a reference allele for the null homozygous, heterozygote, and positive homozygote

respectively, for the additive relationship matrix A. On the other hand, markers are coded as

0 and 1’s for homozygotes and heterozygotes respectively for the dominance relationship

matrixD.

Additional functions to 1) draw genetic maps, 2) convert letter format to numeric data, and

3) design matrices for half diallel designs, have been included in the package as well and are

documented within the software.

Genomic breeding value estimation in wheat

Given that the realized genomic relationship matrix enters as a special case of the covariance

structure for a random effect in a mixed model, and its incidence matrix represents the geno-

types of such relationship matrix, the BLUPs of random effects are equal to the GEBV of the

genotypes. In order to show the capabilities of the sommer package to predict the progeny per-

formance when crossing lines without heterotic effects, such as in wheat lines, we used the

dataset available in the BGLR package consisting in 599 lines which can be crossed hypotheti-

cally to produce 179,101 possible hybrids. We estimated the GEBV for the 599 lines for grain

yield. Wheat, a self-pollinated crop, is usually bred by developing inbred lines by continuous

cycles of selfing. Crosses among such lines usually do not display heterosis. This feature makes

the prediction of a cross straight forward as the average among breeding values of the parental

lines. On the other hand, predicting a maize cross which is known by being an outcross specie,

heterosis needs to be taken into account. Therefore, is not possible to predict crosses by using

the average breeding value among parental lines. Instead, independent general combining abil-

ities are assumed for each parent and a specific combining ability is required to predict a maize

cross (see [7,14] for a review of prediction in self pollinated and outcross species). In Fig 1 the

two methods of kinship-based genomic prediction used in this investigation are shown. The

Genomic Prediction Using sommer
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model is easily fitted by specifying the variance-covariance structure G = Kσ2u, with K being

the additive or genomic relationship matrix (A or Ag) among genotypes.

The BLUPs obtained by sommer were compared with rrBLUP [13], ASReml [21], regress

[17], EMMREML [19], BGLR [16], and MCMCglmm [15]. We found all statistics such as

BLUPs (u), BLUEs (βs), and variance components (σ2s) to be equal, showing that all software

provided similar and sometimes identical results. Similar results were obtained using all the

algorithms implemented in sommer (EMMA, EM, AI) to estimate variance components and

Fig 1. Examples of genome-assisted prediction performed using sommer. In the first row of the figure, genomic prediction of general performance

(cross performance prediction) is summarized; in the 1st square, the model to predict crosses with a single additive kernel (wheat example) is depicted. In
the 2nd square the prediction including additive, dominance and epistatic kernels is shown (single cross hybrid example). In the second row, genomic
prediction of specific performance (within cross performance prediction) is shown; in the 1st square, prediction within a biparental cross is shown using a
single additive kernel for species displaying small or null heterotic effects whereas in the 2nd square prediction within biparental populations is shown
using additive, dominance and epistatic kernels (examples are included in the package).

doi:10.1371/journal.pone.0156744.g001
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other parameters. However, the EM and AI algorithms converged slower than EMMA when

only one variance component was estimated due to the iterative procedure used with EM and

AI. We found prediction accuracies of 0.51, 0.48, 0.38 and 0.46 for grain yield in the 4 mega-

environments, respectively, which was consistent with the expected predictability upper bound

expected for the prediction accuracy, which is the square root of heritability, h2 = 0.21 and
ffiffiffiffiffi

h2
p

= 0.46 (Table 1) in the kinship-based prediction.

Single cross hybrid prediction in corn

One of the strengths of the sommer package is the ability to specify more than one random

effect and their variance-covariance structure, which is usually necessary when genomic selec-

tion needs to be performed in species displaying heterotic effects. The model requires the esti-

mation of GCA effects for parents and SCA effects for specific crosses. We used the simulated

data for crosses between different heterotic groups that displayed heterotic effects for grain

yield. We estimated the genomic relationship matrix (Ag) for both groups of lines (K1 and K2)

and calculated the Kronecker product of both matrices to obtain the SCA relationship matrix

(K3), in order to predict the other 300 hybrids. We fitted the following model specifying the

variance-covariance matrices with sommer and compared with ASReml [21], regress [17],

EMMREML [19], BGLR [16] and MCMCglmm [15]. In sommer the model can be fitted in the

following manner:

libraryðsommerÞ
dataðcornHybridÞ
A ¼ cornHybrid＄K

y ¼ cornHybrid＄Yield

X1 ¼ model:matrixð� Location; data ¼ cornHybridÞ
Z1 ¼ model:matrixð� GCA1� 1; data ¼ cornHybridÞ
Z2 ¼ model:matrixð� GCA2� 1; data ¼ cornHybridÞ
Z3 ¼ model:matrixð� SCA� 1; data ¼ cornHybridÞ
K1 ¼ A½levelsðcornHybrid＄GCA1Þ; levelsðcornHybrid＄GCA1Þ�
K2 ¼ A½levelsðcornHybrid＄GCA2Þ; levelsðcornHybrid＄GCA2Þ�
K3 ¼ kroneckerðK1;K2Þ
ETA ¼ listðGCA1 ¼ listðZ ¼ Z1;K ¼ K1Þ;GCA2 ¼ listðZ ¼ Z2;K ¼ K2Þ; SCA ¼ listðZ ¼ Z3;K ¼ K3Þ
ans ¼ mmerðy ¼ y;Z ¼ ETA;method ¼ AIÞ

Table 1. Cross-validation of prediction accuracies using sommer (5-fold) for wheat andmaize populations.

Wheat† Maize†

Env1 Env2 Env3 Env4 h2 A(1) A(2) A-D(3) h2

Accuracy grain yield 0.51±.09 0.48±.10 0.38±.10 0.46±.09 0.21 0.18±0.14 0.21±0.16 0.37±0.16 0.18

Accuracy plant height ‡ ‡ ‡ ‡ ‡ 0.41±0.12 0.43±0.13 0.68±0.06 0.62

Prediction accuracies for grain yield were obtained for each of the 4 mega environments available for the 599 lines of wheat. Prediction accuracies for

grain yield and plant height were obtained for a maize population consisting of 100 hybrids tested in 4 locations using only additive (GCA) effects with a

single variance component for both parents [A(1)], one variance component for each parent (GCA1 and GCA2; A(2)), and additive (GCA) and dominance

(SCA) effects [A-D(3)].

† Accuracy values are averages over 500 runs of a 5-fold cross validation.

‡ Trait not evaluated in wheat.

doi:10.1371/journal.pone.0156744.t001
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or using a data frame

ans ¼ mmer2ðy � 1; random ¼� GCA1þ GCA2þ SCA;G ¼ listðGCA1 ¼ K2;GCA2
¼ K2; SCA ¼ K3Þ; data ¼ cornHybridÞ

The BLUPs for uGCA1, uGCA2, and uSCA effects obtained by sommer and ASReml were the

same (Fig 2) since they use by default the AI algorithm. On the other hand, sommer performed

faster due to the use of the direct inversion AI algorithm compared to the mixed model equa-

tion based AI algorithm found in ASReml, based on the mathematical properties found by Lee

et al. [22] when multiple random effects with dense covariance structures are present, and the

use of an eigen decomposition on the G structure when there is a simple random effect [32]

(please refer to the cites for more details on the differences between the two AI algorithms).

Slight differences were found when comparing BLUPs from sommer with BGLR and

MCMCglmm. However, this was expected due to the fact that Bayesian methods are based on

Gibbs sampling, and require a high number of iterations to achieve the same parameters than

likelihood software. In addition, sommer, regress and EMMREML were the fastest taking ~5

seconds to estimate the variance components and perform all calculations, but regress overesti-

mated the error variance and returned some negative variance components, indicating that

some constraints have not been implemented yet. EMMREML handles multiple random effects

but does not return the variance components other than the first one. On the other hand,

BGLR (iterations = 13000, burn-in = 2000) took 2 minutes and 2 seconds (sommer was 25

times faster), and MCMCglmm (iterations = 13000, default) took 7 minutes and 13 seconds

(sommer was 87 times faster), showing that speed is one of the strengths of using REML-based

software in dense genetic models.

Given that phenotypic data was masked for the corn hybrids, cross validation was con-

ducted in order to assess the prediction accuracy of hybrids for plant height and grain yield

using the hybrid prediction method stated above. The estimated heritability (h2) for grain yield

was 0.18, and 0.62 for plant height in this population. According to selection theory, these

values for grain yield set the upper bound for prediction to 0.43 for grain yield and 0.79 for

plant height (
ffiffiffiffiffi

h2
p

). We found consistent results by using five-fold cross validations, which

resulted in an average of 0.37±0.16 prediction accuracy for grain yield and 0.67±0.061 for plant

height (Table 2; Fig 3). As expected, hybrids resulting from different heterotic groups were

Fig 2. Best linear unbiased prediction (BLUP) comparisons for general and specific combining ability effects (GCA and SCA) using
sommer versus ASReml. BLUPs for GCA and SCA related to grain yield were computed in a corn population with 400 individuals evaluated in 4
locations using sommer and ASReml. Sommer estimates are shown on the y axis and are similar to results from the ASReml estimates shown on
the x axis.

doi:10.1371/journal.pone.0156744.g002
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predicted taller and more productive than predicted hybrids resulting from a cross within the

same heterotic group.

Additive vs additive-dominance models

We found an increase in prediction ability when models fitted included additive and domi-

nance effects (GCA+SCA) relative to a pure additive model (GCA) under the two assumptions

that both parents have the same additive variance or each parent from a different heterotic

group has its own additive variance. For grain yield the prediction accuracy changed from

~0.18–0.20 for the purely additive models to 0.52 in a model including GCA and SCA effects,

whereas for plant height the prediction accuracy changed from 0.41–0.43 for the additive mod-

els to 0.85 for the model including additive and dominance effects (GCA+SCA; Table 2). This

highlights the importance of considering dominance effects in addition to the only-additive

models. The package provides kernels to calculate additive, dominance, and epistatic

Table 2. Comparison of sommer versus the most commonmixedmodel software available for genomic selection.

Feature SAS ASReml lme4 rrBLUP MCMC-
glmm

BGLR sommer regress EMM-REML

Open source ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ability to specify var-cov structures for random effects ✓ ✓ † ✓ ✓ ✓ ✓ ✓ ✓

Estimation of more than one variance component ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Basic expertise § ✓ ✓ ✓ ✓ § § ✓ ✓ ✓

Platform independent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ability to specify var-cov structures for residual
structures

✓ ✓ ✓

Use of sparse methods ✓ ✓ ‡ ‡ ‡ ✓ ‡ ‡

Handles missing data ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Advantages and disadvantages of each software with check marks indicating whether they possess the stated feature.

† The pedigreemm package which is an extension of lme4 allows the user to introduce pedigrees, but it does not allow the user to provide the variance-

covariance matrices directly. Examples available in the pedigreemm package were run using sommer obtaining similar results, but sommer ran 4 times

faster than pedigreemm. Examples are included in sommer documentation.

‡ Information not available.

§ These packages are based on Bayesian methods requiring the user to have a more advanced statistical background to decide the correct number of

iterations, burn-in length and ability to analyze trace plots, and therefore the feature was defined as ‘Basic expertise’.

doi:10.1371/journal.pone.0156744.t002

Fig 3. Prediction accuracy results using sommer in corn hybrids with a 5-fold cross validation.Cross validation results for plant height in a
corn population of 400 individuals evaluated in 4 locations are shown in blue, whereas grain yield cross validation results for the same population is
shown in red. Each dot represents the average of one run of a 5-fold cross validation.

doi:10.1371/journal.pone.0156744.g003
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relationship matrices and examples of their use in the documentation, which have been shown

to increase prediction accuracies in certain scenarios and family structures [31].

Mixed model software availability and big data sets

There is limited open-source and user-friendly mixed models software that allow flexible speci-

fication of variance-covariance structures for random effects. We compared sommer and some

of the most popular mixed model software available to highlight the strengths of this new soft-

ware (Table 2). This software represents a valuable resource for genomic selection and GWAS

studies, but it can also be used as any other mixed model software for analysis of non-plant and

animal breeding experiments.

Although we have shown genomic selection applications using a kinship-based estimation

of GEBV, some models depend on knowing marker effects, such as marker × environment

interactions [33–35], which can be implemented as well using the sommer package. Half diallel

designs and genome wide association studies (GWAS), and general mixed model analysis, can

Table 3. Time comparison among different software for densest genomicmodels tested in the study.

No.Var.Comp. Time sommer ASReml § rrBLUP regress BGLR MCMCglmm EMMREML

One Var. User 232.34 438.43 765.27 1679.88 1104.16 529527.09 610.85

Component System 7.69 3.59 0.94 2.79 181.89 3715.65 0.18

N = 5000 Elapsed 240.04 # 442.73 766.43 1683.94 1291.71 533556.1 611.10

Three Var. User 352.71 6860.85 ‡ 1858.99 11712.25 > 1058886 † 1130.92

Components System 59.7 6.35 ‡ 3.53 5610.17 > 7431 † 4.89

N = 10585 Elapsed 425.96 6873.60 ‡ 1868.25 17364.27 > 1067112 † 1136.63 ¶

Time consumption for a GBLUP model with a single variance component (additive) with 5000 individuals and 10000 markers is shown in the first row. A

GBLUP model with 3 variance components (additive, dominance, epistasis) with 10,585 hybrids to be predicted genotyped with 35,432 SNPs is displayed

in the second row. The two models represent the biggest population sizes used in the study to highlight the differences when big data is encountered.

‡ No more than one variance component other that the error can be estimated.

† Work stopped after 12 days running the model.

§ In both models ASReml returned a warning message of abnormal termination.

¶ Although EMMREML can handle multiple random effects does not return the value for the variance components and cannot handle missing data.

# Using the average information with eigen decomposition proposed by Lee et al. [22].

doi:10.1371/journal.pone.0156744.t003

Fig 4. Time performance for different algorithms. In A) different color lines represent the different likelihood-based algorithms tested for
populations sizes from 500 to 5000 in steps of 500 as a function of population size (N) for a single random effect. In B) the different color lines
represent the algorithms able to deal with multiple random effects for a model with different population sizes (N), from 1000 to 8000 individuals for 3
random effects (GCA1, GCA2, and SCA).

doi:10.1371/journal.pone.0156744.g004
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be performed in sommer as well, and examples are included in the documentation of the

package.

A bigger data set with 5000 individuals genotyped with 10000 markers each, was simulated

in order to test the performance of sommer against their counterparts under a bigger data set

scenario with a single random effect. Sommer took 4 minutes to estimate all parameters for

N = 5000 whereas, ASReml took 7.37 minutes, rrBLUP took 12.8 minutes, regress took 28.06

minutes, EMMREML 10.18 minutes, BGLR 21.5 minutes, and MCMCglmm 148 hours (using

the default parameters specified in the M&M section. All calculations performed in a PC-Dell

with processor 3.4 GHz Intel Core i7 and a 16 GB RAMmemory). For a model with 3 variance

components (GCA1, GCA2, SCA) with dense covariance structures consisting in 10578 hybrids

sommer took 7.1 minutes to estimate all parameters, rrBLUP cannot estimate more than one

variance component, regress took 31.13 minutes, ASReml took 114.56 minutes, EMMREML

15.61 minutes, BGLR took 289.4 minutes, and MCMCglmm took more than 12 days. This

shows an important time reduction using sommer selected algorithms in comparison with

other genomic prediction software in the magnitude of minutes for REML-based, and hours to

days compared to Bayesian-based software (Table 3).

We use the simulated dataset with 5000 individuals and 10000 markers to show how the

computing time behaves as a function of the population size (N) for the different ML/REML

algorithms found across software packages. We recorded the elapsed time for different popula-

tion sizes from 500 to 5000 in intervals of 500. We found all algorithms to have a similar com-

putation time for small population sizes (Fig 4A). As the problem increased in complexity (i.e.

above 2000 individuals) we found the EMMA and AI algorithm using the eigen decomposition

(AI-eig) to perform better than other algorithms such as EM and NR and AI-D. The time

increment followed a quadratic behavior which exemplifies the issue of dealing with big popu-

lations (Fig 4B). The use of sparse methods such as the eigen decomposition on covariance

matrices proposed by Lee and van der Werf [32] and Zhou and Stephens [36] constitute an

important alternative to confront the population size increment that the researcher should take

advantage of. On the other hand, when dealing with multiple random effects and more com-

plex structures, we found the AI-D and NR algorithms to perform better than EM and RKHS

sampling method.

The efficiency of sommer compared to most software relies on the use of the direct average

algorithm (AI) proposed by Lee et al. [22], which surpasses in performance most algorithms

when multiple random effects and dense covariance structures are present, the use the EMMA

algorithm [20] or the use of an eigen decomposition in theG component when a single random

effect is present [32], and the capability to switch to the expectation maximization algorithm

(EM) [23] when covariance structures are rather sparse.

In addition, packages such as BGLR and regress require to form the kernel product ZKZ’

for each random effect as an input. This becomes an expensive operation as the model increase

in size and complexity, although the Newton-Raphson algorithm performs quite fast, once this

kernel has been formed. In the same way, packages such as MCMCglmm and ASReml-R

require the inversion of the covariance matrix for the ‘ginverse’ argument, becoming quite

computationally expensive as the covariance structures of the model increases in complexity.

This was reflected in the computation time for the three random effects model, where inverting

a 10,585 x 10,585 matrix (SCA matrix), corresponded to most of the computation time

reported in Table 3 for those programs.

The most important strengths of the sommer package can be summarized as great flexibility

to use different methods (algorithms), fast execution, and a friendly and intuitive interface that

will help researchers to perform fast and easy genome wide association studies, and genomic

selection strategies in research and breeding programs.

Genomic Prediction Using sommer

PLOSONE | DOI:10.1371/journal.pone.0156744 June 6, 2016 12 / 15



Conclusion

The purpose of this paper was to describe and make available a general and flexible mixed

model solver with popular and efficient algorithms in order to fit genomic selection models,

genome wide association studies (GWAS) in diploid and polyploidy organisms, and other

non-genetic analyses. Efficient mixed model association (EMMA), expectation-maximization

(EM) and average information (AI) algorithms along with kernel methods for estimating addi-

tive, dominance and epistatic relationship matrices were developed and presented for plant

breeders and scientists through the new R package sommer. At the core of the package, the

‘mmer’ function allows specification of flexible variance-covariance structures and can be used

to solve marker-based and kinship-based versions of the genomic prediction and selection

models. Examples using maize data illustrated the strengths of sommer to increase prediction

accuracy in species displaying heterotic effects, which require the estimation of GCA and SCA

effects with covariance structures for such random effects. We also showed the functionality of

sommer in species with null or small heterotic effects and mainly additive effects by analyzing a

dataset of wheat lines and obtaining similar results at a smaller computation time, and greater

flexibility compared to those obtained with other popular software for genomic selection,

based on Bayesian statistics and other REML-based software. Future implementations in som-

mer will include the addition of residual structures (R structures) to allow users to model spa-

tio-temporal trends or longitudinal data, and other popular algorithms to provide more

flexibility.

Supporting Information
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