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Genome-based classification of 
micromonosporae with a focus 
on their biotechnological and 
ecological potential
Lorena Carro  1, Imen Nouioui1, Vartul Sangal2, Jan P. Meier-Kolthoff  3, Martha E. Trujillo4, 

Maria del Carmen Montero-Calasanz  1, Nevzat Sahin  5, Darren Lee Smith2, Kristi E. Kim6, 

Paul Peluso6, Shweta Deshpande7, Tanja Woyke  7, Nicole Shapiro7, Nikos C. Kyrpides7, 

Hans-Peter Klenk1, Markus Göker  3 & Michael Goodfellow1

There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type 
genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, 
draft genomes of 40 Micromonospora type strains and two non-type strains are made available through 
the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic 
tree which showed they could be assigned to well supported phyletic lines that were not evident in 
corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios 
derived from genome sequences showed that corresponding data from species descriptions were 
imprecise. Emended descriptions include precise base composition data and approximate genome 
sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have 
a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand 
biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters 
that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains 
for natural product discovery. The distribution of key stress related genes provide an insight into how 
micromonosporae adapt to key environmental variables. Genes associated with plant interactions 
highlight the potential use of micromonosporae in agriculture and biotechnology.

Prokaryotic systematics is a core scienti�c discipline that encompasses classi�cation, nomenclature, identi�ca-
tion, and evolutionary processes1. �e subject is practiced by few but its applications are relevant to most, if not 
all, microbiologists2. �e discipline began as a largely empirical science but became increasingly objective due 
to the introduction of new concepts and practices, especially the development of chemotaxonomic, numeri-
cal phenetic and molecular systematic methods3,4. �ese developments led to the concept of polyphasic taxon-
omy, that is, the integrated use of genotypic and phenotypic data to generate classi�cations of prokaryotes5, an 
approach that was dependent on rapid data acquisition and improved data handling techniques6,7. Genotypic 
data tend to be derived from analyses of nucleic acids and phenotypic characteristics from chemotaxonomic, 
cultural, morphological and other expressed features8. �e selection of methods for polyphasic studies, while 
critical, is somewhat subjective though 16S rRNA gene sequencing has proved to be a powerful tool for estab-
lishing relationships between prokaryotes at generic and suprageneric ranks9–11, but tends to be of limited use 
in distinguishing between closely related species12–14. In contrast, DNA-DNA pairing, molecular �ngerprinting, 
multilocus sequence typing and phenotypic studies provide valuable data for circumscribing such species14–18. 
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�e widespread application of polyphasic taxonomy led to marked improvements in the classi�cation of archaea 
and bacteria which, in turn, provided a sound basis for a stable nomenclature and improved identi�cation, as 
exempli�ed by the current state of actinobacterial systematics19. �e need to build upon these developments has 
been raised by those pressing for step-changes in prokaryotic systematics through “embracing the genome”20–23.

�e application of low cost whole genome sequencing (WGS) technologies and associated bioinformatic tools 
is not only providing grist to the taxonomic mill24–26, but is furthering our knowledge of developmental and 
evolutionary processes27–29, as well as underpinning the ecological, physiological and biotechnological poten-
tial of prokaryotes25,26,30–32 thereby repositioning prokaryotic systematics as a fundamental scienti�c discipline. 
However, it is essential that taxonomies based on whole genome sequence data follow sound taxonomic prac-
tice, notably by following the nomenclatural type concept and the requirement to deposit type strains in two 
public culture collections in di�erent countries33,34. In this context, the analysis of whole genome sequences of 
type strains under the auspices of the Genetic Encyclopaedia of Bacteria and Archaea (GEBA) project is greatly 
improving our understanding of phylogenetic relationships within and between these taxa, as well as generating 
an invaluable framework, technology and organisation for large scale genome sequencing of prokaryotes that 
will lead to an unprecedented coverage of prokaryotic diversity on the planet35–39. �e application of innovative 
phylogenetic and taxonomic methods is also providing new metrics for the recognition of generic and species 
boundaries20,23,40,41, as well as resolving the structure of complex prokaryotic taxa, such as the actinobacterial 
genera Amycolatopsis, Rhodococcus and Streptomyces18,25,26. Members of all of these taxa are a rich source of novel 
specialized metabolites, notably antibiotics42,43.

�is study was designed to explore the extent to which whole genome sequence data derived from type strains 
of the genus Micromonospora can be used to clarify relationships within this taxon and provide insights into 
the biological properties and biotechnological potential of micromonosporae. �e genus Micromonospora44 is 
the type genus of the family Micromonosporaceae45 of the order Micromonosporales46; the family encompasses 
31 validly named genera which can be distinguished using a combination of chemotaxonomic, morphological 
and phylogenetic criteria45,47. �e genus was proposed by Ørskov in 192348 for strains isolated from air that had 
been designated as “Streptothrix chalcea” by Foulerton49 and then reclassi�ed as Micromonospora chalcea, the 
type species of the genus. At the time of writing the genus encompasses 79 species with validly published names 
(http://www.bacterio.net/micromonospora.html)50, the majority of which have been described using polyphasic 
methods44,51 though there is evidence that the taxon remains underspeciated52,53. Initially, micromonosporae 
were associated with soil, freshwater and marine habitats44 but novel strains have been isolated from ani-
mal54–56 and plant tissues57–64, as well as from limestone65, Antarctic sandstone66 and from a nickel mining site67. 
Micromonosporae form a tight cluster within the Micromonosporaceae 16S rRNA gene tree44,51 though 16S rRNA 
gene sequences are not su�ciently divergent to distinguish between closely related strains thereby drawing upon 
the need for associated DNA-DNA relatedness studies68,69. It is now apparent that phylogenies showing greater 
resolution between Micromonospora species can be generated using gyrB sequences70 and multilocus sequence 
analysis (MLSA) of housekeeping genes53.

Despite the advances outlined above there is a clear need to devise an improved framework for the classi�ca-
tion and identi�cation of Micromonospora strains, partly because of their importance in biotechnology, biopros-
pecting and ecology42,44. Amongst actinobacteria, micromonosporae are second only to streptomycetes in their 
ability to synthesize specialized metabolites; they are a particularly rich source of antibiotics, as exempli�ed by 
the production of the aminoglycosides: gentamicin, sagamicin, sisomicin and verdamicin from Micromonospora 
purpurea71 (reclassi�ed as Micromonospora echinospora70), Micromonospora sagamiensis72, Micromonospora 
inyonensis73 and “Micromonospora grisea”74, respectively; everninomicin, an oligosaccharide antibiotic from 
Micromonospora carbonacea75; the ansamycin antibiotic halomicin from Micromonospora halophytica76; and the 
new macrolide antibiotics megalomicin77 and mycinamicin78 from Micromonospora nigra and “Micromonospora 
griseorubida”, respectively. Other specialized metabolites synthesized by micromonosporae include the anti-
tumour compounds calicheamicin and lupinacidin C, these enediyne and anthraquinone antibiotics are pro-
duced by a M. echinospora NRRL 1583979 and Micromonospora lupini80, respectively; and retymicin, galtamycin 
B, saquayamycin Z and ribofuranosyllumichrome from Micromonospora strain Tü 636881. On a broader front 
Micromonospora strains have been considered to be a potential source of biocontrol agents, biofuels, plant growth 
products and plant probiotics82–85.

�e metabolic potential of micromonosporae has been underlined in a few whole genome studies which 
show that a large proportion of the genetic potential of the tested strains code for the biosynthesis of natural 
products85–87. One of the drivers of the present study was to build upon these pioneering investigations to provide 
an insight into the potential of micromonosporae to produce new natural products thereby paving the way for 
developments in applied genomics with particular reference to genome mining88–90 and methods for activating 
silent biosynthetic gene clusters91–93. Investigations like these also highlight genomic features of potential ecolog-
ical signi�cance, as exempli�ed by the work on M. lupini strain Lupac 08, an endophyte able to colonise internal 
plant tissues94.

Here, whole genome sequences generated from 40 Micromonospora type strains and two strains related to 
Micromonospora aurantiaca and M. echinospora were generated and used to construct a phylogenomic tree 
together with the available genomes of M. aurantiaca ATCC 27029T and L587, and M. lupini Lupac 0886. �e 
resultant data were used to determine the distribution of genes considered to code for natural products and for 
environmental adaptation, including stress responses. Little congruence was found between the structure of the 
phylogenomic tree and corresponding single gene trees based on 16S rRNA and conserved housekeeping gene 
sequences but congruence considerably increased when the single genes were combined in an MLSA of the con-
served genes. �e genomes of the strains were found to be rich in biosynthetic gene clusters many of which were 
discontinuously distributed. �is study provides further evidence that the taxogenomic-approach to prokaryotic 
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systematics can clarify relationships with complex actinobacteria taxa and provide invaluable insights into the 
biotechnological and ecological potential of the de�ned groups.

Results
General genome properties. High quality dra� genomes were obtained for 40 Micromonospora type 
strains, 17 of which were completely closed. Approximate genome sizes of the investigated strains varied from 6.1 
Mbp for Micromonospora marina DSM 45555T, a strain isolated from sea sand in �ailand95 to 7.9 Mbp for M. 
carbonacea DSM 43168T, a strain recovered from a soil sample in the United States96 (Fig. 1); the average genome 
size for all of the Micromonospora strains was 7 ± 0.4 Mbp (Supplementary Table 1). In the following sections, 
we report on gene numbers indicated by IMG annotation, but these numbers need to be interpreted cautiously 
as not all of the genome sequences were complete. �e number of genes ranged from 5,550 in the genome of the 
type strain of M. marina to 7,388 in that of Micromonospora cremea DSM 45599T, a strain isolated from the rhiz-
osphere of Pisum sativum97. RNA genes represented 1–2% of the whole genome sequences ranging from 63 genes 
in the type strain of M. aurantiaca to 133 genes in Micromonospora humi DSM 45647T, a strain isolated from peat 
swamp forest soil98. An average of ten genes were identi�ed as encoding rRNA’s (from 6 to 15 genes) and an aver-
age of 58 for tRNA’s (from 48 to 87 genes). �e number of pseudogenes varied from 0 in 14 out of the 45 genomes 
up to 445 in the genome of the M. cremea type strain. �e number of genes with a predicted function averaged 
4,600, these ranged from 3,934 in the genome of M. nigra DSM 43818T to 5,266 in that of M. cremea DSM 45599T. 
Between 4 and 10% of the genes were associated with the expression of signal peptides while the percentage of 
transmembrane proteins varied from 21 to 27% (Supplementary Table 1). �e number of Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) rose from nought in the genome of Micromonospora inositola 
DSM 43819T to over ten, as exempli�ed by M. sagamiensis DSM 43912T (11), Micromonospora yangpuensis DSM 
45577T (12), Micromonospora olivasterospora DSM 43868T (16), Micromonospora peucetia DSM 43363T (17) and 

Figure 1. Micromonospora phylogeny inferred using the Genome BLAST Distance Phylogeny (GBDP) 
approach. �e tree was inferred using the FastME from the GBDP intergenomic distances calculated from 
whole proteomes. �e numbers above branches are GBDP pseudo-bootstrap support values from a 100 
replicates, only values above 50% are shown. Tip colours on the right indicate the habitats from which the 
strains were isolated, those in the middle-right indicate genomic DNA G+C content, as embedded in the 
legends. Tip colours on the le� indicate selected clades within the genus and those on the middle-le� indicate 
well-supported subgroups within this clades.
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Micromonospora viridifaciens DSM 43909T (18) with an average of �ve per genome (Supplementary Table 1). 
None of these genomic characteristics were found to be phylogenetically conserved (α = 0.01) in the tip permu-
tation test (Fig. 2, Supplementary Table 2).

More than 40% of the average number of 6,361 genes detected in the Micromonospora genomes were con-
served as the core genome. �e size of the core genome corresponded to around 50% of the smallest genome, 
as exempli�ed by M. marina DSM 45555T. Large di�erences were found in the Clusters of Orthologous Groups 
(COGs), notably in categories G (carbohydrate transport and metabolism), K (transcription), N (cell motility), S 
(function unknown), W (extracellular structures), and X (mobilome: prophages, transposons) (Supplementary 
Figure 1; Supplementary Table 3). Particularly large variations were seen in category X, ranging from 123 
genes in the M. inyonensis DSM 46123T genome, which mainly coded for transposases, to four phage related 
proteins in the genome of Micromonospora chersina DSM 44151T, none of which coded for transposases 
(Supplementary Figure 1; Supplementary Table 3); however, it is known that the number of transposases can 
increase quickly through autoreplication99. For instance, one of the largest bacterial genomes encountered up to 
date, Ktedonobacter racemifer SOSP1–21T, contains a huge number of transposases100. Among the COG counts, 
categories I (lipid transport and metabolism) and M (cell wall/membrane biogenesis) were seen to be phylogenet-
ically conserved (α = 0.01) in the tip-permutation test (Fig. 2, Supplementary Table 2).

Genome based classification. It can be seen from the phylogenomic tree (Fig. 1) that the Micromonospora 
strains form a monophyletic group supported by a 100% bootstrap value. �is taxon is clearly separated from an 
adjacent lineage that encompasses the type strains of Salinispora arenicola and Salinispora tropica. It is also evi-
dent from Fig. 1 that the Micromonospora strains fall into four well supported sublineages, groups I, II, IV, and V, 
and the less well supported strains that for the sake of clarity, have been classi�ed into group III, a taxon that may 
prove to be heterogeneous. �e largest taxon, group I, encompasses 18 strains, including M. chalcea DSM 43026T, 
the type strain of the type species of the genus Micromonospora. �ese strains were assigned to four subgroups 
that were supported by 100% bootstrap values, group Ia encompasses the three M. aurantiaca strains and the 
type strains of Micromonospora auratinigra, M. chalcea, Micromonospora chaiyaphumensis, M. chersina, M. humi,  

Figure 2. Tip permutation test analysis of Micromonospora features respect to phylogenomics. Shown are the 
p-values from the tests of individual characters arranged by kind of character. �e dotted lines represent alpha 
levels (0.01, 0.05, 0.10). With exceptions for some fatty acids, no correlation was observed between phenotypic 
data (C source: carbon sources; chemotaxonomy: other than fatty acid data; enzyme production; fatty acids; 
and growth at several temperatures, pH and percentage of salinity) and genome scale phylogeny. �e single 
genes (16S rRNA, atpD, gyrB, recA, rpoB) presented few signi�cant phylogenetically conserved characters. �e 
number of BCs (biosynthetic gene clusters) classi�ed by type of organic compounds presented no detectable 
phylogeny conservation, whereas some COGs categories and the GC content (as part of the group of other 
genomic characters) were signi�cantly conserved.



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |  (2018) 8:525  | DOI:10.1038/s41598-017-17392-0

M. marina, Micromonospora sediminicola and Micromonospora tulbaghiae, closely related organisms isolated 
from sea sand95, marine sediment101, plants59,87, peat swamp forest98,102, air49 and soil44,103,104; group Ib is composed 
of the type strains of Micromonospora eburnea, Micromonospora narathiwatensis and M. viridifaciens, also from 
soil68,105,106; group Ic includes the type strains of M. inositola and Micromonospora rhizosphaerae from soil107 and 
rhizosphere108, respectively, and group Id the type strains of Micromonospora mirobrigensis and Micromonospora 
siamensis, two highly related organisms isolated, in turn, from a pond109 and peat swamp forest soil110.

Group II encompasses the type strains of Micromonospora coxensis, M. halophytica and Micromonospora pur-
pureochromogenes, isolates from saline habitats76,111 and adobe soil44, respectively, and group III M. carbonacea 
DSM 43168T and Micromonospora haikouensis DSM 45626T, two highly related strains isolated from soil44,112, 
Micromonospora matsumotoense DSM 44100T and Micromonospora rifamycinica DSM 44983T from rhizos-
phere soil107,108, M. olivasterospora DSM 43868T from soil113 and M. yangpuensis DSM 45577T, an isolate from 
a sponge56 that lies towards the periphery of the taxon. Group IV, the second largest taxon, contains thirteen 
strains which were recovered in three subgroups, the �rst of which, IVa, contains M. lupini Lupac 08 and the type 
strains of Micromonospora coriariae, M. cremea, Micromonospora saelicesensis and Micromonospora zamoren-
sis, all of which were isolated from ecto- and endo-rhizospheres62,69,97, and Micromonospora chokoriensis DSM 
45160T and Micromonospora krabiensis DSM 45344T isolated from sandy and marine soils111,114; in turn, group 
IVb is composed of the type strains of Micromonospora citrea, Micromonospora echinaurantiaca, Micromonospora 
echinofusca and M. peucetia, isolates from soil, chukar excrement and lake mud68, respectively, while group IVc 
encompasses Micromonospora. endolithica DSM 44398T and M. nigra DSM 43818T, strains recovered from 
Antarctic sandstone44 and a saline pond, respectively. Group V was composed of the two strains of M. echinospora 
and the type strains of M. inyonensis, Micromonospora pallida and M. sagamiensis, all of which were isolated from 
soil44,68.

�e in silico DNA G+C content of the Micromonospora genomes fell within the range 71.1 to 73.8 mol % 
though narrower ranges are apparent within some groups, as exempli�ed by the group Ia strains, which showed 
values within the limit 72.8–73.6 mol % (Fig. 1). �e tip permutation test (Fig. 2, Supplementary Table 2) indi-
cated that the G+C content is phylogenetically conserved (α = 0.01) when calculated from the genome sequences. 
�e genomes of 8 strains showed di�erences of more than one percent in G+C content when the in silico data 
were compared with results derived using experimental procedures, namely M. aurantiaca ATCC 27029T (72.9% 
against 71.6%), M. coriariae DSM 44875T (71.8% against 70.2%), M. endolithica DSM 44398T (72.4% against 
70%), M. haikouensis DSM 45626T (73.7% against 71.5%), M. matsumotoense DSM 44100T (72.3% against 71%), 
Micromonospora mirobrigenesis DSM 44830T (72.4% against 70%), M. rifamycinica DSM 44983T (73.3% against 
68.6%) and M. sediminicola DSM 45794T (73.6% against 74.8%). �e in silico G+C contents of M. citrea DSM 
43903T, M. echinaurantiaca DSM 43904T, M. echinofusca DSM 43913T, M. inyonensis DSM 46123T, M. peucetia 
DSM 43363T, M. sagamiensis DSM 43912T, M. tulbaghiae DSM 45142T and M. viridifaciens DSM 43909T were 
73.8%, 73.2%, 73.3%, 71.9%, 72.3%, 72.5%, 73.0% and 72.1%, respectively; G+C contents had not been previously 
estimated for these strains.

Six pairs of Micromonospora type strains were considered to be closely related as their GBDP distances (the 
log-transformed ratios of the total number of non-identical amino-acids within the hits to the overall length of 
the hits in their genomes) were below 0.09; in each case digital DNA-DNA (dDDH) values were determined. 
Each pair, namely M. coriariae DSM 44875T and M. cremea DSM 45599T, M. carbonacea DSM 43168T and M. 
haikouensis DSM45626T, M. coxensis DSM 45161T and M. halophytica DSM 43171T, M. inyonensis DSM 46123T 
and M. sagamiensis DSM 43912T, M. mirobrigensis DSM 44830T and M. siamensis DSM 45097T, was found to 
share dDDH similarities values below the recommended 70% cut-o� for the delineation of species115, namely 
53.8%, 59.1%, 52.2%, 69.8% and 53.6%, respectively. Consequently, all of these strains can be considered to rep-
resent bona �de species. �e group encompassing M. aurantiaca ATCC 27029T, M. chalcea DSM 43026T and M. 
tulbaghiae DSM 45142T gave the following dDDH values: 51.5% between M. aurantiaca ATCC 27029T and M. 
chalcea DSM 43026T, 51.3% between M. chalcea DSM 43026T and M. tulbaghiae DSM 45142T, and 60.1% between 
M. aurantiaca ATCC 27029T and M. tulbaghiae DSM 45142T indicating that all of these taxa should retain their 
species status. Corresponding dDDH values were obtained for the three M. aurantiaca strains: M. aurantiaca 
DSM 45487 and L5 shared 89.8% and 89.9% dDDH values with the type strain of M. aurantiaca and a 91.6% with 
one another indicating that they all belong to the same genomic species115. Similarly, M. echinospora DSM 43816T 
and DSM 1040 are members of the same genomic species as they shared a 78.4% dDDH value.

Insights from genome sequences. Classi�cation. In general, little correlation was found between the 
groups circumscribed in the phylogenomic tree (Fig. 1) and those recovered in the trees based on single and 
concatenated gene sequences (Supplementary Figures 2–7). All of the groups were well supported in the GBDP 
analysis, apart from group III. Few of the groups delineated in the single and concatenated gene trees were sup-
ported by high bootstrap values though the �ve strains assigned to group V in the whole genome tree were sup-
ported by high bootstrap values in all of the other trees. �e two largest groups recovered in the whole-genome 
tree, I and IV, were particularly fragmented in the individual and concatenated gene trees though the initial 
six strains assigned to group Ia, M. aurantiaca ATCC 27029T, DSM 45487 and L5, M. chalcea DSM 43026T, M. 
marina DSM 45555T and M. tulbaghiae DSM 45142T, were found intact in all of the single and concatenated 
gene trees. Similarly, the type strains of M. chokoriensis, M. coriariae, M. cremea, M. lupini, M. saelicesensis and 
M. zamorensis (group IVa) were recovered with high bootstrap support in all but the 16S rRNA gene analysis. 
More importantly, it can be seen from the principal coordinates plot (Fig. 3) that there is a closer correspondence 
between the whole genome and MLSA trees than with any of the those based on individual gene sequences, 
notably with respect to the 16S rRNA gene tree. �ese results are in line with those from the tip-permutation test 
which revealed comparatively few signi�cantly phylogenetically conserved characters within these genes (Fig. 2). 
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Concatenating such moderately informative genes apparently had the expected e�ect that the signal added up 
whereas the noise cancelled out20.

Phenotypic properties. �e Micromonospora strains share similar chemotaxonomic and morphological features. 
All of them contain meso-diaminopimelic in the cell wall peptidoglycan, xylose in whole-organism hydrolysates, 
complex mixtures of iso- and anteiso- branched fatty acids with predominant proportions of iso-C15:0 and iso-C16:0 
and polar lipid patterns containing phophatidylethanolamine (diagnostic lipid), as shown in Supplementary 
Figure 8 and Supplementary Table 4. Most of the strains contain tetra- and hexa-hydrogenated menaquinones 
with ten isoprene units (MK-10 [H4, H6]), as shown in Supplementary Figure 8. In general, the strains grew at 20 
and 37 °C, at pH 8.0 and 9.0 and in the presence of 1%, w/v sodium chloride, and produced catalase, hydrolysed 
aesculin and arbutin, degraded casein, starch, Tween 20 and xylan, but do not grow at 4 °C, pH 4.4 or in the 
presence of 5%, w/v sodium chloride (Supplementary Table 5). �e tip permutation test showed that there was 
little evidence of correlation between the distribution of phenotypic features within the genus Micromonospora 
and the topology of the phylogenomic tree (Fig. 2, Supplementary Table 2). �e lowest p-value recorded was for 
iso-C17:0 (0.0394).

�ere was little sign that the distribution of phenotypic properties across the Micromonospora strains was 
in�uenced by the habitats from which they were isolated (Supplementary Figure 8, Supplementary Table 6) 
though none of the isolates from aquatic habitats contained arabinose, rhamnose or ribose in whole-organism 
hydrolysates or used trehalose or xylose as sole carbon sources (Supplementary Figure 8). �ere was some indi-
cation that strains from habitats rich in organic matter, notably from plant tissues, grew within a narrower pH 
range than those from soil samples, at 4 °C and used alanine, propionic acid and valine as sole carbon sources 
(Supplementary Figure 8). �e Chi-2-test shows that some of the phenotypic features were correlated, mainly 
due to the presence of common pathways, as exempli�ed by the utilization of cellobiose, melibiose, maltose and 
ra�nose as carbon sources (Supplementary Figure 9).

Genes potentially associated with environmental adaptation. �e genomes of M. citrea DSM 43903T, M. coxensis 
DSM 45161T M. echinofusca DSM 43913T, M. endolithica DSM 44398T, M. halophytica DSM 43171T, M. marina 
DSM 45555T, M. mirobrigensis DSM 44830T, M. nigra DSM 43818T and M. siamensis DSM 45097T, isolates from 
diverse habitats (Supplementary Table 6), contained genes associated with photosynthesis, as described for marine 
bacteria116; these genes belong to the proteorhodopsin family, which includes light-regulated transmembrane 

Figure 3. Principal coordinate analysis of topological distances. �e analysis of the bootstrap-weighted relative 
Robinson-Foulds topological distances as calculated by RAxML shows that the lowest distances were between 
the whole genome sequence phylogeny (GBDP) and the MLSA phylogenies and the highest ones between the 
16S rRNA gene phylogenies (SSU) and the GBDP tree; the distances with the other individual trees lay within 
these ranges. ML, maximum likelihood; MP, maximum parsimony; PB, partition bootstrap.
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proteins. The genomes of all of these strains contained genes associated with the production of ß-carotene 
ketolase (crtO), lycopene ß-cyclase (crtY), octaprenyl diphosphate synthase (ispB), phytoene dehydrogenase 
(crtI), phytoene synthase (crtB), proteorhodopsin (prot) and spheroidene monooxygenase (crtA). Similarly, the 
genomes of the M. coxensis, M. echinosfusca, M. halophytica and M. siamensis strains include genes that encode 
for sensory rhodopsin II (SRII). �e genomes of these organisms also contained 15 out of 25 genes implicated in 
carbon �xation in photosynthetic bacteria, 20 out of 41 genes associated with glycolysis/gluconeogenesis, 12–14 
out of 58 genes associated with dicarboxylate and glyoxylate metabolism, 19 out of 31 genes implicated in phe-
nylalanine, tyrosine and tryptophan biosynthesis and 11 out of 13 genes associated with CO2 �xation, according 
to the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database117 (Supplementary Table 10). It is 
also evident from this Table that the genomes of 23 of the strains contained a CO dehydrogenase maturation fac-
tor gene (coxF) associated with CO2 �xation. In addition, the genomes of M. aurantiaca DSM 45487 and L5, M. 
chalcea DSM 43026T and M. tulbaghiae DSM 45142T contained a coxD gene, which codes for a carbon monoxide 
oxidation accessory protein (Supplementary Table 10).

Micromonospora strains are rich in degrading enzymes (Supplementary Table 10), as exempli�ed by the ability 
of the plant endophyte M. lupini Lupac 08 to produce amylases, cellulases, chitinases, pectinases and xylanases94. 
�e genomes of all of the Micromonospora strains contained genes coding for amylases, notably α-amylases 
and glucoamylases. All of the micromonosporal genomes presented genes associated with cellulase production 
with the exception of those of M. echinaurantiaca DSM 43904T, M. inositola DSM 43819T and M. peucetia DSM 
43363T. �e genomes of M. chalcea DSM 43026T, M. chokoriensis DSM 45160T, M. eburnea DSM 44814T, M. 
echinospora DSM 1040 and DSM 43816T, M. haikouensis DSM 45626T and M. rifamycinica DSM 44983T con-
tained a gene encoding for a putative secreted cellulase. In turn, all of the genomes contained chiC genes, coding 
for chitinases, the number of these genes ranged from three in the genomes of M. pallida DSM 43817T and M. 
rhizosphaerae DSM 45431T up to 13 in the genome of M. cremea DSM 45599T. �e genomes of most of the 
Micromonospora strains contained genes associated with the production of pectate lyases, including the hrpW 
gene, which codes for a harpin secreted e�ector that elicits the hypersensitive response in plants118, this gene was 
detected in M. coxensis DSM 45161T, M. echinofusca DSM 43913T and M. yangpuensis DSM 45577T. �e genomes 
of M. aurantiaca ATCC 27029T, DSM 45487 and L5, M. carbonacea DSM 43168T, M. echinospora DSM 43816T, 
M. haikouensis DSM 45626T, M. matsumotoense DSM 44100T, M. rifamycinica DSM 44983T and M. sagamiensis 
DSM 43912T also presented genes coding for pectinesterase. Similarly, all but the type strain of M. olivastero-
spora have genomes associated with the production of xylanases, notably for endo-1,4-β-xylanase A precursors 
with an average of 21 genes per genome. All of the micromonosporal genomes contained genes that code for 
ß-phosphoglucomutases, enzymes associated with starch degradation, as well as those that encode for trehalose 
phosphorylases, enzymes associated with trehalose degradation94. �e genomes of the type strains of M. carbo-
nacea, M. chokoriensis, M. haikouensis, M. humi, M. lupini, M. matsumotoense, M. rifamycinica, M. saelicesensis 
and M. zamorensis contained the trehalase gene (treA) while that of M. pallida DSM 43817T was alone in coding 
for trehalose 6-phosphate hydrolase (treC).

�e Micromonospora strains have the capacity to produce plant-related hormones (Supplementary Table 10). 
�e genomes of all of the strains contained genes predicted to code for indole-3-glycerol phosphate synthase 
(trpD), an intermediate in the tryptophan synthetic pathway associated with the production of indol-acetic acid 
(IAA) which stimulates plant growth119. In addition, the genomes of most of the strains contained genes that 
coded for acetoin synthesis, which induces systemic resistance in Arabidopsis120, exempli�ed by the acetolactate 
synthase large and small subunit genes, as well as for a gene enconding for acetoin dehydrogenase; M. auran-
tiaca L5, M. citrea DSM 43903T, M. coriariae DSM 44875T, M. cremea DSM 45599T, M. nigra DSM 43818T, M. 
olivasterospora DSM 43868T, M. rhizosphaerae DSM 45431T, and M. yangpuensis DSM 45577T lack this gene. 
�e genomes of the group V strains (M. echinospora DSM 1040 and DSM 43816T, M. inyonensis DSM 46123T, 
M. pallida DSM 43817T and M. sagamiensis DSM 43912T) included genes predicted to produce 2,3-butanediol 
dehydrogenase, an enzyme associated with the plant growth promoting hormone 2,3-butanediol and acetoin 
production121. However, only M. coriariae DSM 44875T and M. krabiensis DSM 45344T have genes predicted to 
encode for 1-aminocyclopropane-1-carboxylate (ACC) deaminase, a plant-growth promotor associated with the 
reduction of ethylene levels which lead to a reduction in plant stress122. Other characteristics involved in plant 
growth promotion include the ability to solubilize phosphates and the production of siderophores that scavenge 
phosphate and iron from soil making them available for plants122; genes coding for the production of phos-
phatases and siderophores were detected in all of the Micromonospora genomes. In contrast, none of the genomes 
contained genes associated with the ability to �x atmospheric nitrogen.

�e Micromonospora strains produced a well-developed substrate mycelium that carried single spores either 
directly or on short sporophores. None of the strains formed aerial hyphae though the genomes of almost half of 
them showed the presence of a predicted surface active peptide cluster (sapB) that encodes for a lantabiotic-like 
peptide which has been considered to trigger the formation of aerial hyphae when strains are grown on rich 
media123. Other genes related to sporulation were found in all of the strains, namely whiB and whiD genes, which 
are required for the di�erentiation of aerial hyphae into mature spores in Streptomyces124. Another characteristic 
of Micromonospora strains is their ability to produce a range of pigments at the onset of spore production. �e 
genomes of all of the tested strains, apart from M. cremea DSM 45599T, contained whiE-ks, whiE-clf, whiEI, 
whiEII, whiEVI, and whiEVII genes which are associated with spore pigment production in Streptomyces125. All of 
the strains contained genes coding for the production of pigments, as well as biosynthetic gene clusters associated 
with the production of carotenoid, isorenieratene and sioxanthin compounds (Supplementary Table 7). Between 
the genes implicated in carotenoid production pathway detected in most of the Micromonospora genomes were 
the putative genes encoding for β-carotene ketolases, phi-carotenoid synthases, geranylgeranyl pyrophosphate 
synthetases, lycopene cyclases, phytoene synthases and squalene-hopene cyclases (Supplementary Table 10).
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�e genomes of the Micromonospora strains contained a range of genes associated with DNA repair sys-
tems (Supplementary Table 10). All of the genomes included at least one copy of excinuclease subunits A, B and 
C (uvrA, uvrB, uvrC genes) and three copies of ATP-dependent DNA helicase (uvrD), one of which has only 
been associated with actinobacteria (uvrD-actino). �e Micromonospora genomes were also rich in rec genes, 
implicated in recombination, in the production of helicases, and for general DNA repair, but only the genome 
of M. nigra DSM 43818T presented the recB gene, which codes for an exodeoxyribonuclease. Similarly, all of the 
genomes contained exodeoxyribonuclease genes (xseA, xseB, and exoIII), as well as genes associated with the 
production of several exo- and endonucleases, namely sbcC, sbcD, end1, endoIV, endoV.

Genes associated with stress responses. �e genomes of Micromonospora strains annotated by RAST126,127 and 
analyzed through the SEED viewer128 showed between 115 and 144 putative genes known to be associated with 
stress responses, notably those encoding for carbon starvation, heat shock responses, osmoregulation and oxi-
dative stress (Supplementary Table 10). �e genomes of all of the strains contained cspA and cspC genes, which 
encode for families of proteins that respond to cold shock129, and dnaK, grpE and hrcA genes involved in heat 
shock responses130. In contrast, cspG genes, that encode for a cold shock protein associated with cellular SOS 
repair systems131, were restricted to the genomes of M. aurantiaca DSM 45487, M. echinospora DSM 43816T and 
M. krabiensis DSM 45344T. All of the Micromonospora genomes contained betC and proU genes which govern 
the uptake of betaine and choline, metabolites that contribute to responses to oxidative stress132,133. Other uni-
versally distributed stress related genes include those that encode for alkyl hydroperoxidase reductases134 (ahpC 
genes), redox sensitive transcriptional regulators135,136 (rex and sox genes), iron-stress related fur genes137, and 
the nitric oxide dioxygenase gene (hmpX), which is induced by the presence of NO and prevents the inhibi-
tion of growth caused by nitrosative stress138; around half of the genomes showed the presence of superoxide 
dismutase genes (sod). Genes associated with ectoine biosynthesis (ect) for osmoregulation were found in the 
genomes of six Micromonospora strains (Supplementary Table 10); genes encoding for diaminobutyrate-pyruvate 
aminotranferases (ectB genes) were present in the genomes of M. chersina DSM 44151T, M. echinospora DSM 
43816T, M. endolithica DSM 44398T, M. matsumotoense DSM 44100T and M. peucetia DSM 43363T, the genome 
of the remaining strain, M. eburnea DSM 44814T contained ectC genes that encode for L-ectoine synthases. �e 
genomes of most of the Micromonospora strains contained rspA genes that code for starvation sensing protein 
A which may help them to survive in low carbon habitats by activating peptide uptake139–141; these genes were 
not detected in the genomes of the type strains of M. auratinigra, M. coxensis, M. halophytica, M. inyonensis, M. 
marina, M. nigra, M. olivasterospora, M. sagamiensis, M. sediminicola or M. siamensis (Supplementary Table 10).

Biosynthetic gene clusters coding for specialized metabolites. All of the Micromonospora genomes were screened 
for candidate biosynthetic gene clusters using the specialized metabolite identi�cation pipeline antiSMASH. �e 
number of such putative bioclusters ranged from 7 in the genomes of M. cremea DSM 45599T and M. rhizos-
phaerae DSM 45431T to 48 in that of M. matsumotoense DSM 44100T; the genomes of the type strains of M. 
carbonacea, M. echinospora, M. haikouensis, M. marina, M. pallida and M. sagamiensis were also rich in such 
biosynthetic gene clusters (Fig. 4). �e average numbers of biosynthetic gene clusters detected in the genomes 
of the Micromonospora strains was twenty, most of which seem to be related with antibiotic, siderophore and 
terpene production (Fig. 4, Supplementary Table 7). Just over 22% of the biosynthetic gene clusters present in 
the micromonosporal genomes (206 out of 915) lacked any homology with known bioclusters; these biosynthetic 
gene clusters belong to several cluster types, notably terpenes (82), non ribosomal peptides (27), lantipeptides 
(26) and polyketide synthases (16) (Fig. 4, Supplementary Table 7). �e remaining bioclusters showed similarities 
to a greater or lesser extent for known compounds though most of them (85%) showed less than 75% similar-
ity of their genes with known bioclusters. A total of 172 di�erent bioclusters were detected in all the genomes, 
most of them related to antibiotic production though only 33 presented a similarity of over 50% with known 
compounds (Supplementary Table 7). �irteen of these compounds were related to known antibiotics (actinor-
hodin, chloramphenicol, diazepinomicin, leucanicidin, livipeptin, lobosamide, micromonolactam, rishirilide B, 
salinilactam, sibiromycin, streptazone tiacumicin B, TLN-05220) with similarity values of their genes over 75% 
(Supplementary Table 7).

Two biosynthethic gene clusters were found in the genomes of all of the Micromonospora strains, one related 
to the production of alkyl-O-dihydrogeranyl-methoxyhydroquinone (with ~70% similarity) and the other with a 
bacteriocin-terpene related to the production of lymphostin (with ~40% similarity). Similarly, the sioxanthin bio-
synthetic gene cluster was found in all of the Micromonospora strains, apart from M. inositola DSM 43819T and M. 
pallida DSM 43817T. In contrast, most of the biosynthetic gene clusters had a limited distribution, 83 were found 
in a single genome, as exempli�ed by the one related to the carotenoid biosynthetic gene cluster present in the M. 
pallida genome; 34 biosynthetic gene clusters were detected in just two of the Micromonospora genomes, as illus-
trated by the chlorothricin biosynthetic gene cluster present in the genomes of the type strains of M. eburnea and 
M. endolithica. �e sequences of �ve biosynthetic gene clusters, apart from the one encoding for sioxanthin, were 
identical to ones known to code for geosmin142 as found in the genome of M. pallida DSM 43817T; leucanicidin, a 
potent nematocide143, as seen in the genome of M. carbonacea DSM 43168T; livipeptin, an aldehyde peptide144, as 
detected in the genomes of M. echinofusca DSM 43913T and M. peucetia DSM 43365T; micromonolactam, a poly-
ene macrolactam145, as found in the genome of M. haikouensis DSM 45626T while SapB, which is associated with 
aerial hyphae formation123, was found in almost half of the Micromonospora genomes (Supplementary Table 7).

�e genomes of several Micromonospora strains assigned to taxa de�ned in the whole genome tree (Fig. 1) 
included speci�c biosynthetic gene clusters associated with the synthesis of known bioactive compounds. �is 
was particularly so with the group V strains, namely M. echinospora DSM 1040 and DSM 43816T, M. inyonensis 
DSM 46123T, M. pallida DSM 43817T and M. sagamiensis DSM 43912T. �e genomes of these strains contain 
bioclusters which show similarities against (i) feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 
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11171146 that inhibits HIV cell to cell transfer147 (this biosynthetic gene cluster was also detected in the genome of 
M. rifamycinica DSM 44983T); (ii) gentamicin produced by M. echinospora NRRL 2953 and NRRL 2985T 71 (this 
biocluster was also found in the genomes of M. carbonacea DSM 43168T, M. haikouensis DSM 45626T, M. mat-
sumotoense DSM 44100T, M. peucetia DSM 43363T and M. yangpuensis DSM 45577T; (iii) herbimycin, isolated 
from Streptomyces sp. RM-7–15148, which shows activity against herbs and heat shock protein 90, this biosynthetic 
gene cluster was present in the genome of M. narathiwatensis DSM 45248T, and (iv) TLN-05220, a product of 
M. echinospora NRRL 1225, which shows activity against methicillin-resistant strains of Staphylococcus aureus, 
vancomycin-resistant enterococci and several human cell lines149. Further, apart from the type strain on M. iny-
onensis, the genomes of the group V strains had a biosynthethic gene cluster related to crocacin, an electron trans-
port inhibitor isolated from Chondromyces crocatus CM c3 that inhibits Gram-positive bacteria and fungi150 while 
the genomes of M. echinospora DSM 1040 and M. sagamiensis DSM 43912T contain a biocluster associated with 
the production of muraymycin, a nucleoside-lipopeptide antibiotic synthesized by Streptomyces sp. LL-AA896 
that inhibits peptidoglycan biosynthesis151.

�e genomes of the initial six strains of the group 1a strains, namely M. aurantiaca ATCC 27029T, DSM 45487 
and L5, M. chalcea DSM 43026T, M. marina DSM 45555T, and M. tulbaghiae DSM 45142T, include biosynthetic 
gene clusters with the potential to synthesize known specialized metabolites. �ese strains, apart from M. chalcea 
DSM 43026T, contain a biocluster which present some similarity with the biocluster responsible of leinamycin 
production, a potent antitumor antibiotic produced by Streptomyces strains152 (this biosynthetic gene cluster is 
also present in the genomes of M. haikouensis DSM 45626T, M. matsumotoense DSM 44100T and M. purpureo-
chromogenes DSM 43821T). In turn, the genomes of all but the M. marina strain contain a biocluster related to 
nocathiacin, a thiazole peptide antibiotic produced by Nocardia sp. WW-12651153, derivatives of which have 
been used to treat multidrug-resistant bacterial infections154 although in this instance the similarity between the 
two bioclusters is low (this biocluster is also present in the genomes of M. coxensis DSM 45161T, M. humi DSM 
45647T, M. peucetia DSM 43363T and M. sediminicola DSM 45794T). �e genomes of the three M. aurantiaca 
strains have a biocluster associated with the production of dynemicin, a 1,5-diyn-3-ene-containing antibiotic 
produced by M. chersina155 with antibacterial and antitumor activities (this biocluster was also detected in the 
genomes of M. chersina DSM 44151T and M. yangpuensis DSM 45577T). However, none of the di�erent types 
of biosynthetic gene clusters appeared to be phylogenetically conserved (α = 0.01) in the tip permutation test 
(Fig. 2, Supplementary Table 2). �e distribution of bioclusters was not related either to the origin of the strains, 
though there was an average of 21 bioclusters in the genomes of the strains isolated from soil, sediment and liquid 

Figure 4. Biosynthetic gene clusters found in the Micromonospora genomes using antiSMASH 3.0. Highly 
variable pro�les were found between the strains. �e genomes of the Micromonospora strains were found to 
be especially rich in NRPS, PKS and terpene clusters; whereas there was also an abundance of bacteriocin, 
lantipeptide and siderophores clusters.
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environments strains and 17 in the genomes of those isolated from organic material. In contrast, only the genome 
of M. marina DSM 45555T contained the kiamycin biosynthetic cluster which has been detected in marine-related 
organisms156.

With a single exception all of the genomes showed the capacity to synthesize the seven enzymes (DAHP syn-
thase, 3-dehydroquinate synthase, 3-dehydroquinate dehydratase, shikimate dehydrogenase, shikimate kinase, 
EPSP synthase, and chorismate synthase) implicated in the shikimate pathway, which has been previously related 
to the production of aromatic antibiotics157; the exception was the type strain of M. auratinigra, which do not have 
the ability to produce shikimate kinase (Supplementary Table 10). Similarly, almost half of the genomes have the 
capacity to encode 3-amino-5-hydroxybenxoic acid (AHBA) synthase, involved in the synthesis of the precursor 
of mD7N units in several antibiotics158 (Supplementary Table 10).

Discussion
�e results of this study provide further evidence that data generated in whole genome sequencing studies pro-
vide an essential framework for the reclassi�cation of taxonomically complex prokaryotic taxa previously de�ned 
from analyses of relatively few taxonomic features25,26,159. It is evident from the Micromonospora phylogenomic 
tree that the tested strains not only form a monophyletic group but fall into several well supported phyletic lines, 
only two of which were recognised in their entirety in the corresponding trees based on single gene sequences. 
�e six initial members of group 1a, namely M. aurantiaca ATCC 27029T, DSM 45487 and L5, M. chalcea DSM 
43026T, M. marina DSM 45555T and M. tulbaghiae DSM 45142T, were de�ned in the atpD, gyrB, recA, rpoB 
and 16S rRNA gene trees, as well as in the MLSA tree based on all of the individual gene sequences. Similarly, 
the group V strains, M. echinospora DSM 1040 and DSM 43816T, M. inyonensis DSM 46123T, M. pallida DSM 
43817TT, and M. sagamiensis DSM 43912T, was recovered in all the phylogenetic trees.

Genomic DNA G+C content, that is, the proportion of cytosine and guanine moieties over the overall number 
of nucleotides in the genome, feature prominently in the description of prokaryotic genera and species8,160,161. 
DNA base composition values based on the application of conventional methods are considered to be indirect 
values as they do not count nucleotides, but estimate genomic G+C content from physical properties drawn from 
analyses of extracted and/or digested DNA162. However, it is becoming increasingly apparent that estimates of 
G+C content taken directly from whole genome sequences are of higher quality than those derived from well 
known experimental methods163. Indeed, these workers have shown that strains within a species have G+C val-
ues within a 1% range. It is, therefore, encouraging that in the present study a statistically sound relationship was 
found between in silico G+C values and the distribution of the Micromonospora strains within the phylogenomic 
tree. Moreover, in silico G+C values of the tested type strains fell within the range 71.1–73.8 mol % with narrower 
ranges found for strains assigned to well supported phyletic lines, as exempli�ed by the group 1a and IVa strains 
which showed values of 72.8–73.6 and 71.1–72.0 mol %, respectively. �e genomes of eight of the Micromonospora 
type strains showed more than a 1% di�erence when in silico G+C values where compared with corresponding 
results found using conventional laboratory based methods. It is important to resolve such discrepancies between 
G+C values so that di�erences between closely related species are not obscured159,164. Emended descriptions are 
given for these Micromonospora species and for an additional eight species that previously lacked estimates of 
DNA G+C values.

DNA-DNA hybridization (DDH) is still widely used to estimate genetic relatedness between closely related 
bacteria as it is seen to be the “gold standard” for species delineation between prokaryotes165. Indeed, the rec-
ommendation of Wayne and his colleagues that a DDH of 70% for the prokaryotic species boundary has been 
widely followed by the systematic community115. It is now evident that dDDH methods based on comparisons 
of whole genome sequences provide better quality data for discriminating between closely related strains than 
corresponding values derived from the application of experimental methods that are well known to be expensive, 
labour-intensive and prone to experimental error166–168. dDDH values estimated from the genomes of the six pairs 
of closely related type strains showed that they fell below the 70% threshold115 indicating that M. coriariae62 and 
M. cremea97, M. carbonacea96 and M. haikouensis112, M. coxensis111 and M. halophytica76, M. mirobrigensis109 and 
M. siamensis110, M. inyonensis68 and M. sagamiensis68 are validly named species.

Kroppenstedt and his colleagues68 recognised that the type and only representatives of M. inyonensis and M. 
sagamiensis were closely related but could be distinguished based on cultural and phenotypic properties, by their 
fatty acid and MALDI-TOF mass spectrometric pro�les and by a DDH value of 61.3%115. In the present study, 
these strains were found to share a dDDH value marginally below the recommended cut-o� point, but were dis-
tinguished readily by the number and type of their biosynthetic gene clusters, by the presence of di�erent stress 
genes in their genomes and by di�erences in the composition of nine of the COG groups, notably those belonging 
to the categories G, R and X. In light of all of these data it can be concluded that M. inyonensis and M. sagamiensis 
strains belong to di�erent, but closely related species.

�e family Micromonosporaceae encompasses several genera, such as Salinispora169,170, that are di�cult to 
distinguish from Micromonospora strains using conventional genotype and phenotype procedures45,171. �e 
phylogenomic classification of the representative Micromonospora type strains not only provides a frame-
work for clarifying relationships with those from related genera but also allows the taxonomic provenance of 
Micromonospora strains to be established. It is interesting that the genera Micromonospora and Salinispora are 
quite sharply separated, albeit closely related, in the phylogenomic tree though the genomes of additional repre-
sentatives of these taxa need to be examined to underscore precise relationships between them. It is encouraging 
that the authenticity of M. aurantiaca DSM 45487 and L5, and M. echinospora DSM 1040 were con�rmed in the 
present study.

�ere were few signs of concordance between the distribution of chemotaxonomic and other phenotypic 
markers drawn from the original descriptions of the Micromonospora type strains and their assignment to taxa in 
the phylogenomic tree. �is lack of congruence can be attributed to factors such as the use of such a small sample 
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of strains and tests, reliance on inappropriate and/or unreliable phenotypic tests and failure to use appropriate 
reference material. Sutcli�e and his colleagues have stressed the need to address such issues. A better under-
standing of the relationship between genotype and phenotype can be expected to provide a way forward on such 
matters. In sharp contrast to the issues raised above, all of the type strains produced whole organism hydrolysates 
rich in meso-diaminopimelic acid and xylose, major amounts of saturated and unsaturated fatty acids, notably 
iso-C15:0 and iso-C16:0, a polar lipid pattern containing phosphatidylethanolamine (diagnostic lipid) and usually 
diphosphatidylglycerol and phosphatidylinositol (phospholipid pattern 2 sensu Lechevalier et al.172) and tetra- 
and hexa- hydrogenated menaquinones with either nine or ten isoprene units as predominant isoprenologues. 
Such genus speci�c properties are of particular value in distinguishing Micromonospora from most of the other 
genera classi�ed in the family Micromonosporaceae45. Similarly, many of the Micromonospora strains share pheno-
typic features, as exempli�ed by their ability to hydrolyse aesculin and arbutin and degrade casein, starch, Tween 
20 and xylan. In contrast, very few of the Micromonospora strains grew at 4 °C, pH 4.4 or in the presence of 5% 
w/v sodium chloride.

In general, Micromonospora species have been associated with aquatic and terrestrial habitats across diverse 
geographical regions thereby underscoring their adaptability44. More recently, they have been recovered from 
the tissues of a broad range of plants173–175. In the present study, little correlation was found between the source 
of the Micromonospora strains and their distribution to taxa delineated in the phylogenomic tree. However, it is 
interesting that all of the strains isolated from ecto- or endo-rhizospheres, namely M. coriariae DSM 44875T from 
a root nodule of Coriaria myrtifolia, M. lupini Lupac 08 and M. saelicesensis DSM 44871T from root nodules of 
Lupinus angustifolius, and M. cremea DSM45599T and M. zamorensis DSM 45600T from the rhizosphere of Pisum 
sativum were recovered in the well delineated subgroup IVa. Associations such as these would be much easier to 
establish if more details were given on the sources of strains in species description of prokaryotes. Indeed, such 
information is a prerequisite for data-driven prokaryotic systematics176.

It is now well known that micromonosporae are associated with roots of diverse plant species173–175, nota-
bly nodules of healthy leguminous plants53,57,69,94,177. The discovery that Micromonospora strains occupy 
nitrogen-�xing nodules poses several intriguing questions such as whether they are in transition from a sap-
rophytic to a facultatively endophytic lifestyle and whether they have a bene�cial e�ect on the plant. In general, 
deductions drawn from the genomes of the tested strains underpin key genome features captured by Trujillo and 
her colleagues for M. lupini strain Lupac 0894. Some, if not all of the genomes of the Micromonospora strains, like 
the M. lupini strain, have putative genes that encode for acetoin, 2,3-butanediol dehydrogenase and indol-3-acetic 
acid, auxinic phytohormones implicated in phytostimulation119,122,178,179. Along similar lines, the genomes of all of 
these strains are rich in putative genes that code for antibiotics, chitin degradation and siderophores, compounds 
that may contribute to the defence of the host plant against root infecting fungi. It is also interesting that the 
genomes of a few Micromonospora strains, including M. lupini strain Lupac 08, contained genes encoding tre-
halase, an enzyme that degrades trehalose and is implicated in nodule growth regulation180,181. All of these obser-
vations indicate that micromonosporae confer protection to the plant. It has also been shown that inoculation of 
strain Lupac 08 into legumes contributes to the welfare of the host plant94. An important conclusion drawn from 
this study is that micromonosporal genomes lack nifH-like fragments, despite early claims to the contrary174,177.

It is still too early to draw far reaching conclusions about the ecological roles of facultatively endophytic 
micromonosporae, as their genomes have an array of putative genes that code for degradative enzymes involved 
in the turnover of plant polymers, notably amylases, cellulases, chitinases, pectinases and xylanases. Indeed, 
Micromonospora strains may have the capacity, proven in the case of strain Lupac 08, to produce a range of degra-
dative enzymes that are characteristic of saprophytic bacteria. �is picture is clouded even further as the genomes 
of the Micromonospora strains isolated from diverse habitats encoded for much the same traits as the endophytic 
strains. It could be that micromonosporae have the capacity to colonize multiple ecological niches though addi-
tional studies are required to address this point.

�ere are several reports that Micromonospora strains can form sterile aerial hypahe45,182–185 and one which 
presented evidence that on certain nutrient media micromonosporae from marine sediments form aerial 
mycelia that can be used to propagate fresh colonies186. Baldacci and Locci187 found that strains designated as 
“Micromonospora melanosporea” formed aerial mycelia with short branching sporophores bearing single 
spores. In light of these observations it is interesting that the genomes of many of the Micromonospora type 
strains showed the presence of putative genes associated with aerial hyphae formation and spore maturation in 
streptomycetes123,125,188 though whiB and whiD like genes have been shown to have a role as transcription factors 
in mycobacteria189. �e whiE genes detected in the genomes of all of the Micromonospora strains, apart from M. 
cremea DSM 45599T, are associated with the �nal stage of sporulation, when polyketide pigments are formed in 
the spore coat125. It is possible that the whiE genes may be involved in the formation of black pigments that are 
produced towards the end of the micromonosporal growth cycle. It is also plausable that over evolutionary time 
micromonosporae have lost the capacity to form spores on aerial hyphae.

�e genomes of most of the Micromonospora strains contained a broad range of genes associated with the syn-
thesis of pigments, notably, carotenoids, isorenieratene and sioxanthin. Although the biosynthetic cluster associ-
ated with the production of carotenoids was only found in the genome of M. pallida DSM 43817T, the biocluster 
for the synthesis of sioxanthin has been associated with the production of a novel glycosylated carotenoid in 
Salinispora strains190. �is sioxanthin biosynthetic gene cluster was found in all of the Micromonospora genomes, 
apart from those of the type strains of M. pallida and M. inositola; only the M. inositola strain was shown to have 
the capacity to produce isorenieratene, an aromatic carotenoid produced by green photosynthetic bacteria and a 
few actinobacteria191. All of the Micromonospora genomes contained genes implicated in carotenoid biosynthesis, 
as exempli�ed by those coding for the production of ß-carotene ketolases, phi-carotenoid synthases and lycopene 
ß-cyclases192,193. �e presence of such compounds in non-photosynthetic organisms has been associated with UV 
protection194 and in the case of photosynthetic bacteria with light harvesting complexes195. Additional work is 
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needed to account for the presence of genes associated with photosynthesis that were detected in the genomes of 
strains assigned to groups Id (M. mirobrigensis DSM 44830T and M. siamensis DSM 45097T), II (M. coxensis DSM 
45161T and M. halophytica DSM 43171T), IVb (M. citrea DSM 43903T and M. echinofusca DSM 43913T) and IVc 
(M. endolithica DSM 44398T and M. nigra DSM 43818T).

It was particularly interesting that the genome of most, if not all, of the Micromonospora strains were replete 
with genes relevant to their ability to adapt to low levels of carbon139–141, temperature �uxes129,130, and changes 
in the osmotic environment132,133, a combination of key environmental variables that lend further weight to the 
suggestion that micromonosporae may be able to colonise multiple microhabitats45. In addition, the micromono-
sporal genomes included genes associated with protection against UV-radiation and for repairing DNA damage. 
Indeed, all of the strains were found to have the potential to protect and repair damage caused by UV radiation as 
they have genes associated with the synthesis of Uvr ABCD proteins, excision proteins that have been reported in 
several bacteria196. Further, mutations in uvr ABC genes have been associated with UV sensitivity in Rhodobacter 
sphaeroides197. Genes associated with desiccation were not detected in the genomes of the Micromonospora strains 
though several genes involved in the biosynthesis and uptake of trehalose were seen, trehalose has been linked 
with tolerance to heat and desiccation in bacteria198.

Since the discovery of gentamicin from “M. purpurea” INMI 632 in 196371 hundreds of bioactive molecules 
with diverse properties and structures have been isolated from Micromonospora species83,199–202. Major classes of 
clinically signi�cant specialized metabolites synthesized by micromonosporae include aminoglycosides (gen-
tamicins), anthracyclines (daunorubicin), ansamycins (rifampicins), macrolides (erythromicins), as well as 
enediyne (calichenomicins) and oligosaccharide (everninomicins) antibiotics. It is not surprising in light of these 
observations, those drawn from earlier whole genome studies on micromonosporae85–87 and from corresponding 
work on other �lamentous actinobacteria39,203 that the genomes of the tested strains were rich in biosynthetic 
gene clusters encoding for known and predicted specialized metabolites, notably antibiotics, siderophores and 
terpenes. �e analysis of the micromonosporal genomes also con�rmed the relationship between presence of 
the aminoshikimate pathway and the capacity of Micromonospora strains to synthesize ansamycins; the genomes 
of all the rifamycin-like producers contained the AHBA synthase-like gene, a key enzyme of this variant of the 
shikimate pathway implicated in the production of aromatic antibiotics. It is particularly interesting that many 
of the bioclusters were found only in a few of the micromonosporal genomes, an observation that underlines the 
merit of selecting representatives of novel actinobacterial taxa in the search for new specialized metabolites204,205, 
thereby providing further evidence that comparative analysis of actinobacterial genomes can be used to select 
gi�ed strains for gene mining and natural product discovery30,206,207. In contrast, it was not possible to detect any 
relationship between the phylogeny of Micromonospora strains and their source through such an association 
has been found for Salinispora species208–211. Indeed, strains assigned to most of the clades and subclades were 
isolated from diverse geographical regions. It can also be concluded from the analyses of the genomes generated 
in this study that micromonosporae have a very much greater potential to synthesize specialized metabolites, 
notably antibiotics, than previously realised. Consequently, Micromonospora and other genera classi�ed in the 
family Micromonosporaceae45 should feature much more prominently in the search for new classes of bioactive 
compounds that are urgently needed to control drug resistant pathogens.

Revision to descriptions of Micromonospora species. Emended description of Micromonospora auran-
tiaca Sveshnikova et al. 1969. �e species description is as given by Sveshnikova et al.212 with the following 
changes: �e approximate genome size of the type strain is 7.03 Mbp and its genome G+C content is 72.9%.

Emended description of Micromonospora auratinigra �awai et al. 2004. �e species description is as given by 
�awai et al.102 with the following changes: �e approximate genome size of the type strain is 6.76 Mbp.

Emended description of Micromonospora carbonacea Luedemann and Brodsky 1965. �e description is as given 
by Luedemann and Brodsky96 with the following changes: �e approximate genome size of the type strain is 7.94 
Mbp and its genome G+C content is 73.8%.

Emended description of Micromonospora chaiyaphumensis Jongrungruangchok et al. 2008. �e species descrip-
tion is as given by Jongrungruangchok et al.104 with the following changes: �e approximate genome size of the 
type strain is 6.74 Mbp.

Emended description of Micromonospora chalcea (Foulerton 1905) Ørskov 1923. �e species description is as 
given by Genilloud44 with the following changes: �e approximate genome size of the type strain is 6.99 Mbp.

Emended description of Micromonospora chersina Tomita et al. 1992. �e species description is as given by 
Tomita et al.103 with the following changes: �e approximate genome size of the type strain is 6.68 Mbp and its 
genome G+C content is 73.6%.

Emended description of Micromonospora chokoriensis Ara & Kudo 2007. �e species description is as given by 
Ara and Kudo111 with the following changes: �e approximate genome size of the type strain is 6.89 Mbp.

Emended description of Micromonospora citrea Kroppenstedt et al. 2005. �e species description is as given by 
Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 7.21 Mbp and 
its genome G+C content is 73.8%.
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Emended description of Micromonospora coriariae Trujillo et al. 2006. �e species description is as given by 
Trujillo et al.62 with the following changes: �e approximate genome size of the type strain is 6.93 Mbp and its 
genome G+C content is 71.8%.

Emended description of Micromonospora coxensis Ara & Kudo 2007. �e species description is as given by Ara 
and Kudo111 with the following changes: �e approximate genome size of the type strain is 6.77 Mbp.

Emended description of Micromonospora cremea Carro et al. 2012. �e species description is as given by Carro 
et al.97 with the following changes: �e approximate genome size of the type strain is 7.76 Mbp.

Emended description of Micromonospora eburnea �awai et al. 2005. �e species description is as given by 
�awai et al.105 with the following changes: �e approximate genome size of the type strain is 7.18 Mbp.

Emended description of Micromonospora echinaurantiaca Kroppenstedt et al. 2005. �e species description is as 
given by Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 7.20 
Mbp and its genome G+C content is 73.2%.

Emended description of Micromonospora echinofusca Kroppenstedt et al. 2005. �e species description is as given 
by Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 7.00 Mbp 
and its genome G+C content is 73.3%.

Emended description of Micromonospora echinospora Luedemann and Brodsky 1964 emend. Kasai et al. 2000. �e 
species description is as given by Kasai et al.70 with the following changes: �e approximate genome size of the 
type strain is 7.78 Mbp and its genome G+C content is 72.3%.

Emended description of Micromonospora endolithica Hirsch et al. 2004. �e species description is as given by 
Hirsch et al.66 with the following changes: �e approximate genome size of the type strain is 7.03 Mbp and its 
genome G+C content is 72.5%.

Emended description of Micromonospora haikouensis Xie et al. 2012. �e species description is as given by Xie 
et al.112 with the following changes: �e approximate genome size of the type strain is 7.58 Mbp and its genome 
G+C content is 73.7%.

Emended description of Micromonospora halophytica Weinstein et al. 1968. �e species description is as given 
by Weinstein et al.76 with the following changes: �e approximate genome size of the type strain is 6.27 Mbp and 
its genome G+C content is 73.0%.

Emended description of Micromonospora inositola Kawamoto et al. 1974. �e species description is as given by 
Kawamoto et al.107 with the following changes: �e approximate genome size of the type strain is 6.71 Mbp and 
its genome G+C content is 72.2%.

Emended description of Micromonospora inyonensis Kroppenstedt et al. 2005. �e species description is as given 
by Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 6.92 Mbp 
and its genome G+C content is 71.9%.

Emended description of Micromonospora krabiensis Jongrungruangchok et al. 2008. �e species description is as 
given by Jongrungruangchok et al.114 with the following changes: �e approximate genome size of the type strain 
is 7.07 Mbp.

Emended description of Micromonospora marina Tanasupawat et al. 2010. �e species description is as given 
by Tanasupawat et al.95 with the following changes: �e approximate genome size of the type strain is 6.06 Mbp.

Emended description of Micromonospora matsumotoense (Asano et al. 1989) Lee et al. 1999. �e species descrip-
tion is as given by Lee et al.213 with the following changes: �e approximate genome size of the type strain is 7.75 
Mbp and its genome G+C content is 72.3%.

Emended description of Micromonospora mirobrigensis Trujillo et al. 2005. �e species description is as given by 
Trujillo et al.109 with the following changes: �e approximate genome size of the type strain is 6.17 Mbp and its 
genome G+C content is 73.3%.

Emended description of Micromonospora narathiwatensis �awai et al. 2008. �e species description is as given 
by �awai et al.106 with the following changes: �e approximate genome size of the type strain is 6.61 Mbp and its 
genome G+C content is 72.6%.

Emended description of Micromonospora nigra (Weinstein et al. 1968) Kasai et al. 2000. �e species description 
is as given by Kasai et al.70 with the following changes: �e approximate genome size of the type strain is 6.36 Mbp 
and its genome G+C content is 72.6%.
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Emended description of Micromonospora olivasterospora Kawamoto et al. 1983. �e species description is as 
given by Kawamoto et al.113 with the following changes: �e approximate genome size of the type strain is 7.07 
Mbp and its genome G+C content is 72.5%.

Emended description of Micromonospora pallida (Luedemann and Brodsky 1964) Kasai et al. 2000. �e species 
description is as given by Kasai et al.70 with the following changes: �e approximate genome size of the type strain 
is 7.76 Mbp and its genome G+C content is 71.9%.

Emended description of Micromonospora peucetia Kroppenstedt et al. 2005. �e species description is as given by 
Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 7.37 Mbp and 
its genome G+C content is 72.3%.

Emended description of Micromonospora purpureochromogenes (Waksman and Curtis 1916) Luedemann 
1971. �e species description is as given by Luedemann214 with the following changes: �e approximate genome 
size of the type strain is 6.67 Mbp and its genome G+C content is 73.0%.

Emended description of Micromonospora rhizosphaerae Wang et al. 2011. �e species description is as given by 
Wang et al.108 with the following changes: �e approximate genome size of the type strain is 7.18 Mbp.

Emended description of Micromonospora rifamycinica Huang et al. 2008. �e species description is as given by 
Huang et al.215 with the following changes: �e approximate genome size of the type strain is 7.01 Mbp and its 
genome G+C content is 73.0%.

Emended description of Micromonospora saelicesensis Trujillo et al. 2007. �e species description is as given by 
Trujillo et al.69 with the following changes: �e approximate genome size of the type strain is 7.10 Mbp.

Emended description of Micromonospora sagamiensis Kroppenstedt et al. 2005. �e species description is as given 
by Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 6.93 Mbp 
and its genome G+C content is 72.5%.

Emended description of Micromonospora sediminicola Supong et al. 2013. �e species description is as given by 
Supong et al.101 with the following changes: �e approximate genome size of the type strain is 6.89 Mbp and its 
genome G+C content is 73.6%.

Emended description of Micromonospora siamensis �awai et al. 2006. �e species description is as given by 
�awai et al.110 with the following changes: �e approximate genome size of the type strain is 6.25 Mbp.

Emended description of Micromonospora tulbaghiae Kirby and Meyers 2010. �e species description is as given 
by Kirby and Meyers59 with the following changes: �e approximate genome size of the type strain is 6.49 Mbp 
and its genome G+C content is 73.0%.

Emended description of Micromonospora viridifaciens Kroppenstedt et al. 2005. �e species description is as 
given by Kroppenstedt et al.68 with the following changes: �e approximate genome size of the type strain is 7.07 
Mbp and its genome G+C content is 72.1%.

Emended description of Micromonospora yangpuensis Zhang et al. 2012. �e species description is as given by 
Zhang et al.56 with the following changes: �e approximate genome size of the type strain is 6.52 Mbp.

Emended description of Micromonospora zamorensis Carro et al. 2012. �e species description is as given by 
Carro et al.97 with the following changes: �e approximate genome size of the type strain is 7.09 Mbp.

Conclusions
�e results of this and corresponding taxonomic analyses based on a comparison of whole genome sequences 
of bacterial taxa159,216,217 are a timely reminder that classi�cation and identi�cation of prokaryotes are markedly 
data dependent and hence are in a constant state of development due to the introduction of new technologies3. 
To date, much of the emphasis in the GEBA project has been on the analysis of genomic sequences generated 
from the type strains of diverse taxa in order to expand coverage of the tree of life35–39 while other sequence based 
studies have been focused on many representatives of individual clinically signi�cant bacterial species in order 
to enhance understanding of pathogenesis218–220. It is evident from the present study that the analysis of genome 
sequences of taxonomically complex genera o�ers a halfway house between these contrasting approaches to phy-
logenomics, one which has led to substantial improvements in the classi�cation of the genus Micromonospora. In 
addition, the associated wealth of biological information provides a unique platform for the search and discovery 
of novel natural products, using genome mining and genetic engineering procedures, while providing leads to 
unravelling the ecological roles of micromonosporae.

Methods
Strains and DNA isolation. To cover the ecologic diversity of micromonosporae, strains of forty 
Micromonospora species (40 type and 2 non-type strains) were obtained from the DSMZ collection 
(Supplementary Table 8). All of the strains were grown in DSM medium 65 at 28 °C for 7 days when the biomass 
was harvested. Genomic DNA was extracted from the biomass preparations using a MasterPure™ Gram Positive 
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DNA Puri�cation Kit (Epicentre MGP04100) following the instructions of the manufacturer, albeit with modi�-
cations, namely incubation overnight on a shaker with 10 mg proteinase K, 7.5 units achromopeptidase, 7.5 µg/µl 
lysostaphin, 1050 units lysozyme, and 7.5 units mutanolysin to improve cell lysis.

Genome sequencing and assembly. �e genome sequences of all of the Micromonospora strains, apart 
from the type strain of M. chalcea, were generated under the auspices of two “GEBA” projects, namely KMG-II, 
“From individual species to whole genera” and ACTINO 1000 “Exploiting the genomes of the Actinobacteria: 
plant growth promoters and producers of natural products and energy relevant enzymes united in a taxonomi-
cally unresolved phylum”; details on these projects are given in Supplementary Table 9. �e genome of M. chalcea 
DSM 43026T was sequenced, trimmed and assembled at Northumbria University using Illumina technology and 
protocols described by Sangal et al.25. General aspects related to library construction and sequencing can be 
found at the JGI website (https://img.jgi.doe.gov/); the number of sca�olds and assembly methods are shown in 
Supplementary Tables 1 and 9.

Genome annotation. All of the genomes were annotated through the pipeline developed by the Joint 
Genome Institute (JGI) at the Department of Energy (DOE) using the Integrated Microbial Genomes Expert 
Review (IMG-ER) then compared with publicly available genomes of M. aurantiaca strains ATCC 27029T and L5 
and M. lupini Lupac 08. �e JGI genome annotation pipeline, which includes Prodigal221, was used followed by 
manual curation using GenePRIMP222 for �nished genomes and dra� genomes. �e predicted translation of pro-
teins were analyzed using the National Center for Biotechnology Information (NCBI) non-redundant database, 
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG and InterPro databases. RNA gene identi�cation was realised 
using the tRNAscanSE 21.23223 and HMMER 3.0rcl224 programs. Prediction of non-coding genes was determine 
under INFERNAL 1.0.2225. �e Integrated Microbial Genomes – Expert Review (IMG-ER) platform226 permitted 
additional gene prediction analysis and functional annotation. CRT227 and PILER-CR228 allowed CRISPR element 
detection.

Genome analyses. �e core genome was determined through the JGI tool Phylogenetic Pro�ler for Single 
Genes using the default options. CRISPRFinder229 was used to compare the analysis of CRISPR elements. antiS-
MASH 3.0230 was used to determine and compare biosynthetic gene clusters. Presence of other genes was ana-
lyzed through the SEED viewer128 a�er RAST annotation126,127 of the genomes.

Phylogenetic analyses. Genome-scale phylogenies were inferred from whole proteomes using the Genome 
BLAST Distance Phylogeny (GBDP) method, as previously described159. Individual gene trees and multilocus 
sequence analysis (MLSA) trees were inferred using the phylogenies and gene similarities platform at the GGDC 
web server166 available at https://ggdc.dsmz.de/ phylogeny-service.php through the DSMZ phylogenomics 
pipeline163 adapted to single genes. Multiple sequence alignments were generated using MUSCLE so�ware231, 
maximum-likelihood (ML) and maximum-parsimony (MP) trees were inferred from the alignments with 
RAxML232 and TNT233, respectively. For ML, rapid bootstrapping in conjunction with the autoMRE bootstrap-
ping criterion234 was followed by a search for the best tree; for MP, 1000 bootstrapping replicates were used in 
conjunction with tree-bisection-and-reconnection branch swapping and ten random sequence replicates. �e 
sequences were checked for compositional bias using the Χ² test, as implemented in PAUP*235. For the MLSA 
data set, the partition bootstrap (PB) was applied in addition to ordinary bootstrap236.

Phenotypic tests. All of the type strains were examined for a broad range of phenotypic properties 
known to be of value in Micromonospora systematics44, namely catalase and oxidase production62; degradation 
of organic compounds109; carbon substrate utilization237; growth at di�erent temperatures (4, 10, 20, 28, 37 
and 45 °C), NaCl concentrations (1, 3, 5, 7 and 9%, w/v) and pH values (4.5, 5.5, 6.5, 8.0 and 9.0) using SA1 
agar109 as the basal medium; pH values were determined using appropriate bu�ers, as previously described97. 
Chemotaxonomic properties of the strains were drawn from species descriptions, as indicated in Supplementary 
Tables 4 and 5.

Habitat classification. �e strains were classi�ed in groups according to the substrates from which they 
were isolated following the ENVO B classi�cation (https://bioportal.bioontology.org/ontologies/ENVO).

Statistical analysis. A tip-permutation test in conjunction with the calculation of maximum-parsimony 
scores was carried out as previously described236 to evaluate the phylogenetic conservation of phenotypic and 
genotypic features of the Micromonospora strains with respect to the GBDP tree. To this end, the tips of the 
tree reduced to the Micromonospora clade were permuted 10,000 times (including the original arrangement) 
and maximum-parsimony scores of the selected characters and each of the trees determined with Tree analysis 
using New Technology (TNT). �e number of times the score of a permuted tree was as low or lower than the 
score of the original tree yielded the p-value. More sophisticated tests are available for phylogenetic conservation, 
particularly for continuous characters, but our approach allowed an easy comparison of binary and continuous 
characters as TNT deals with both. Proportion and count data were brought to the same scale using opm238, 
which generates TNT input �les.

A principal coordinate analysis of bootstrap-weighted relative Robinson-Foulds distances between trees was 
calculated with RAxML. �e distances were visualized as principal coordinates, as implemented in R239. �e 
Chi-2 test, as implemented in R, was used to determine correlations between binary phenotypic features of the 
Micromonospora strains.

https://img.jgi.doe.gov/
https://ggdc.dsmz.de/
https://bioportal.bioontology.org/ontologies/ENVO
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Data availability. All data generated or analyzed during this study are included in this published article 
(or in the Supplementary Information �les), the genomes are available at the JGI website and with the follow-
ing accession codes at the NCBI database: M. aurantiaca DSM 45487: FMHX01000001-FMHX01000004; M. 
auratinigra DSM 44815T: LT594323-LT594323; M. carbonacea DSM 43168T: FMCT1000001-FMCT01000051; 
M. chaiyaphumensis DSM 45246T: FMCS01000001-FMCS01000023; M. chalcea DSM 43026T: MAGP00000000; 
M. chersina DSM 44151T: FMIB01000001-FMIB01000002; M. chokoriensis DSM 45160T: LT607409-LT607409; 
M. citrea DSM 43903T: FMHZ01000001-FMHZ01000002; M. coriariae DSM 44875T: LT607412-LT607412; M. 
coxensis DSM 45161T: LT607753-LT607753; M. cremea DSM 45599T: FSQT00000000; M. eburnea DSM 44814T: 
FMHY01000001-FMHY01000002; M. echinaurantiaca DSM 43904T: LT607750-LT607750; M. echinofusca 
DSM 43913T: LT607733-LT607733; M. echinospora DSM 43816T: LT607413-LT607413; M. haikouensis DSM 
45626T: FMCW01000001-FMCW01000097; M. halophytica DSM 43171T: FMDN01000001-FMDN01000064; 
M. humi DSM 45647T: FMDM01000001-FMDM01000037; M. inositola DSM 43819T: LT607754-LT607754; M. 
inyonensis DSM 46123T: FMHU01000001-FMHU01000004; M. krabiensis DSM 45344T: LT598496-LT598496; 
M. marina  DSM 45555T:  FMCV01000001-FMCV01000074; M. matsumotoense  DSM 44100T: 
FMCU01000001-FMCU01000057; M. mirobrigensis DSM 44830T: FMCX01000001-FMCX01000022; M. narathi-
watensis DSM 45248T: LT594324-LT594324; M. nigra DSM 43818T: FMHT01000001-FMHT01000003; M. pallida 
DSM 43817T: FMHW01000001-FMHW01000004; M. peucetia DSM 43363T: FMIC01000001-FMIC01000002; 
M. purpureochromogenes  DSM 43821T:  LT607410-LT607410; M. rhizosphaerae  DSM 45431T: 
FMHV01000001-FMHV01000003; M. rifamycinica DSM 44983T: LT607752-LT607752; M. saelicesensis DSM 
44871T: FMCR01000001-FMCR01000011; M. sediminicola DSM 45794T: FLRH01000001-FLRH01000005; M. 
siamensis DSM 45097T: LT607751-LT607751; M. tulbaghiae DSM 45142T: FMCQ01000001-FMCQ01000019; M. 
viridifaciens DSM 43909T: LT607411-LT607411; M. yangpuensis DSM 45577T: FMIA01000001-FMIA01000002; 
M. zamorensis DSM 45600T: LT607755-LT607755.

References for Supplementary Tables 4 and 5240–245.
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