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Abstract

Azospirillum sp. strain Sp245T, originally identified as belonging to Azospirillum brasilense, is recognized as a plant-growth-
promoting rhizobacterium due to its ability to fix atmospheric nitrogen and to produce plant-beneficial compounds. Azospirillum 
sp. Sp245T and other related strains were isolated from the root surfaces of different plants in Brazil. Cells are Gram-negative, 
curved or slightly curved rods, and motile with polar and lateral flagella. Their growth temperature varies between 20 to  
38 °C and their carbon source utilization is similar to other Azospirillum species. A preliminary 16S rRNA sequence analysis 
showed that the new species is closely related to A. brasilense Sp7T and A. formosense CC-Nfb-7T. Housekeeping genes revealed 
that Azospirillum sp. Sp245T, BR 12001 and Vi22 form a separate cluster from strain A. formosense CC-Nfb-7T, and a group of 
strains closely related to A. brasilense Sp7T. Overall genome relatedness index (OGRI) analyses estimated based on average 
nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) between Azospirillum sp. Sp245T and its close relatives to 
other Azospirillum species type strains, such as A. brasilense Sp7T and A. formosense CC-Nfb-7T, revealed values lower than 
the limit of species circumscription. Moreover, core-proteome phylogeny including 1079 common shared proteins showed 
the independent clusterization of A. brasilense Sp7T, A. formosense CC-Nfb-7T and Azospirillum sp. Sp245T, a finding that was 
corroborated by the genome clustering of OGRI values and housekeeping phylogenies. The DNA G+C content of the cluster 
of Sp245T was 68.4–68.6 %. Based on the phylogenetic, genomic, phenotypical and physiological analysis, we propose that 
strain Sp245T together with the strains Vi22 and BR12001 represent a novel species of the genus Azospirillum, for which the 
name Azospirillum baldaniorum sp. nov. is proposed. The type strain is Sp245T (=BR 11005T=IBPPM 219T) (GCF_007827915.1, 
GCF_000237365.1, and GCF_003119195.2).

The Azospirillum genus comprise free-living, Gram-negative 
bacteria that do not form spores. Bacteria from this genus 
are able to grow under microaerophilic conditions and their 
cells are rod or spiral-shaped. The genus was proposed from 

a reclassification of a group of strains of 'Spirillum lipoferum', 
and first described as the species A. brasilense and A. lipoferum 
[1]. In 2015, the genus Azospirillum was divided and two new 
genera were created, Nitrospirillum, to which A. amazonense 
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was transferred, and Niveispirillum, which included A. irak-
ense [2]. Nowadays, a total of 21 species belonging to Azos-
pirillum are recognized and validated (http://www.​bacterio.​
net/​azospirillum.​html [3]).

Since the description of the genus Azospirillum, different 
strains aroused the interest for their potential as plant-
growth-promoters, notably because their association with 
cereals of economic importance [1, 4, 5]. As a result of 
the research conducted firstly by Johanna Döbereiner in 
Brazil in the 1970s, two main abilities are highlighted: to fix 
atmospheric nitrogen (N) [6] and produce plant-growth-
regulators like auxins, cytokinins, and gibberellins [7, 8]. 
Therefore, this genus has been one of the most studied 
plant growth-promoting-bacteria in the last decades and 
it has been used as inoculant for crops in several coun-
tries, reaching millions of hectares in South America alone 
[3–5, 9].

Azospirillum brasilense is the most studied species of the 
genus and Azospirillum sp. Sp245T can be considered a 
model strain due to the knowledge accumulated over it in 
more than 30 years [3]. This strain was isolated from surface-
sterilized roots of wheat (Triticum aestivum L.), originary 
from Rio Grande do Sul State, Southern Brazil [10, 11], and 
has been considered a promising wheat inoculant in Brazil 
since the 1980s [12]. In contrast to the rhizosphere soil isolate 
strain Sp7T, strain Sp245T is able to colonize wheat roots 
endophytically [13]. Despite the phenotypic and physiologic 
similarities with the A. brasilense type strain Sp7T, strain 
Sp245T has been indicated as a distinct species, based on 
previous DNA analyses [14]. These authors pointed out that 
the Average Nucleotide Identity (ANI) between the strains 
Sp245T and Sp7T is less than 95–96 %, the threshold for the 

species delimitation. In the same way, spectrophotometric 
DNA–DNA-analyses demonstrated only 54 % DNA–DNA-
hybridization between the strains Sp7T and Sp245T, which 
again indicated the necessity for a separate species [15]. In 
addition, based on spectrometry protein profiling obtained 
through MALDI-TOF MS analysis it was shown that  
A. brasilense Sp7T and Sp245T formed distinct branches [16].

Here we present a phylogenomic study based on Azospirillum 
spp. strains collected in different places around the world. 
Besides Sp245T and Sp7T, other type strains were included 
with the aim to clarify the taxonomy position of strain Sp245T. 
The results led us to propose the new species A. baldaniorum, 
which is described here.

STRAIN COLLECTION
The study included ten Azospirillum spp. isolated from 
roots, rhizosphere soil or bulk soil in different countries 
and hosts (Table  1) and A. formosense CC-Nfb-7T from 
agricultural soil in China [17]. All isolates, excepting 
Vi22, MTCC4038, and SR80 are deposited in the collec-
tion of Biological Resource Centre Johanna Döbereiner 
(WDC364), Embrapa Agrobiologia, Seropedica, Rio de 
Janeiro-Brazil (​www.​embrapa.​br/​agrobiologia/​crb-​jd). 
Sp245T is also deposited in the Bacterial Culture Collection 
at the Microbiology and Agricultural Zoology (WDCM31), 
Institute INTA-IMYZA, Castelar, Buenos Aires, Argentina, 
and in the Collection of Rhizosphere Microorganisms of 
the Institute of Biochemistry and Physiology of Plants 
and Microorganisms (WDCM1021), Russian Academy 
of Sciences (IBPPM RAS), Prospekt Entuziastov, Saratov, 
Russia (http://​collection.​ibppm.​ru/).

Table 1. Information of the strains used in the study

Strain designation Host Isolation source Year of 
collection 

(estimated)

Country Reference

Original Other

Sp245T BR 11005T, IBPPM 219T wheat (Triticum aestivum) surface disinfected roots 1980 Brazil [10]

AzB 60 BR 12001 signal grass (Brachiaria 
decumbens)

surface disinfected roots 1999 Brazil unpublished

Vi22 Vi22 sunflower (Helianthus annuus) rhizosphere 2012 Brazil [21]

Sp7T BR 11001T, ATCC 
29145T, DSM 1690T, 

LMG 13127T

digit grass (Digitaria decumbens) rhizosphere 1974 Brazil [1]

R3 BR 11017 sorghum (Sorghum vulgaris) roots 1987 Russia unpublished

R6 BR 11019 cat grass (Dactylis glomerata) roots 1987 Russia unpublished

Sp42 BR 11649 maize (Zea mays) roots 1974 Brazil unpublished

Sp Cd BR 11002, ATCC 29710 bermuda grass (Cynodon 
dactylon)

rhizosphere 1976 USA [1]

MTCC4038 – – agricultural field soil 2006 India unpublished

SR80 – wheat (Triticum aestivum) seedlings 1988 Russia unpublished
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16S rRNA AND HOUSEKEEPING GENES 
PHYLOGENETIC RECONSTRUCTION
The genomic DNA was extracted using the Bacterial 
Genomic DNA Isolation Kit (Wizard; Promega) with 
a few modifications [18]. The 16S rRNA gene was PCR-
amplified using common universal primers (27F/1492R) 
and sequenced by Sanger’s dideoxy DNA sequencing 
method. The type strain 16S rRNA sequences were retrieved 
from NCBI nucleotide database (​www.​ncbi.​nlm.​nih.​gov). 
The sequences were aligned with Muscle in mega X [19]. 
Concatenation of housekeeping genes was performed by 
Seaview [20]. The evolutionary distance was calculated 
using Jukes-Cantor model that was the best fit model. The 
maximum-likelihood (ML) trees were reconstructed using 
Mega 10.0.

A blast search in NCBI (Standard nucleotide database) 
showed that the strains Sp245T, BR 12001, Vi22, BR 11017, 
BR 11019, BR 11649, BR 11002, beside MTCC4038 and SR80, 
present high 16S rRNA similarity with some Azospirillum 
type strain, particularly Sp7T and CC-Nfb-7T. Thereafter the 
ML reconstruction with approximately 1200 nucleotides 
comparing these strains with all Azospirillum type strains 
revealed that they clustered together with A. brasilense and  
A. formosense CC-Nfb-7T (Fig. 1). The strains Sp245T, BR 
12001, and Vi22 grouped together with A. formosense 
CC-Nfb-7T, while BR 11017, BR 11019, BR 11649, BR 11002, 
MTCC4038, and SR80 were close to A. brasilense Sp7T.

Considering the low resolution of the 16S rRNA gene for iden-
tifying Azospirillum spp., we also performed a housekeeping 
gene analyses using the sequences of the genes atpD, glnII, 

Fig. 1. Maximum-Likelihood (using Jukes-Cantor substitution model) phylogenetic tree based on 16S rRNA gene sequences showing 
relationships between the new strains and the type species (t) of the genus Azospirillum. Bootstrap values were inferred from 500 
replicates and are indicated at the tree nodes when ≥50 %. GenBank accession numbers are provided in parenthesis. Nitrospirillum 
amazonense BR 11142T was included as the outgroup. The bar represents one substitution per 100 nucleotide positions.
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recA and rpoD, focusing on the strains A. formosense CC-Nfb-
7T and A. brasilense Sp7T, the closest strains to Azospirillum 
sp. Sp245T. Individual or concatenated reconstructions using 
these genes (Figs 2 and S1, available in the online version of 
this article) returned three main clusters, joining the strains 
Sp245T, BR 12001, and Vi22 together in one cluster with over 
99 % similarity; CC-Nfb-7T was separated from the others 
with less than 98.7 % of DNA sequence similarity; and one 
group with the strains BR 11017, BR 11019, BR 11649, BR 
11002, MTCC4038, and SR80 together with Sp7T, varying in 
similarity among them from 98.9–100 %. Therefore, taking 
in account the 16S rRNA and housekeeping gene analyses 
we have an indication that Sp245T, together with BR 12001 
and Vi22, represents a species different from A. brasilense 
Sp7T and A. formosense CC-Nfb-7T, as it was firstly observed 
elsewhere [14].

GENOME ANALYSES
The genome of A. brasilense Sp7T (four genomes available), 
Azospirillum sp. Sp245T (three genomes available), and other 
Azospirillum spp. type strains were retrieved from the NCBI 
Assembly database (Table  2). A. formosense CC-Nfb-7T, 
A. melinis TMCY0552T, and strains BR 11017, BR 11019, 
BR 11649 were sequenced in this work. Total DNA was 
extracted as described by previous work [21]. Libraries were 
constructed using Nextera XT kit and sequenced with MiSeq 
Reagent Kit V3 (2×300 bp) in an Illumina Miseq platform. 
The genome of strain Sp245T (BR 11005), despite being 
available, was re-sequenced in order to check if we had in 
our collection exactly the same strain as the first sequenced 
strain. This strain together with BR 12001 and BR 11002 
were sequenced at the DOE-Joint Genome Institute (JGI) as 
part of the Genomic Encyclopaedia of Type Strains, Phase 
IV (KMG-V): Genome sequencing to study the core and 
pangenomes of soil and plant-associated prokaryotes (https://​
gold.​jgi.​doe.​gov/​studies?​id=​Gs0129091), using the Illumina 
NovaSeq 6000 platform. Draft genomes for the new strains 
were assembled using SPAdes version 3.13 (k-mer values 
equal to 21, 33, 55, 77, 99, 127) [22], and they were annotated 

using the NCBI Prokaryotic Genome Automatic Annotation 
Pipeline (PGAAP), which combines Hidden Markov Model 
(HMM)-based gene prediction methods with homology-
based methods [23]. The quality of assemblies was evaluated 
with Blobtools 1.1.1 [24] Quast v. 2.3 [25] and Checkm v. 
0.9.6 [26]. The genome features are presented in the Table 2.

ANI values based on blast and Mummer alignments from 
all pairwise genome comparisons were calculated using 
Pyani version 0.2.7, a python module for calculating genomic 
metrics (https://​github.​com/​widdowquinn/​pyani [27]), gANI 
(ANI based on whole genome), and AF (alignment fraction) 
based on the Microbial Species Identifier (MiSI) method [28]. 
Digital DNA–DNA hybridization (dDDH) was estimated 
using GGDC (Genome Distance Calculator for Genome; 
http://​ggdc.​dsmz.​de/​ggdc.​php) and OrthoANI were calcu-
lated using OAT version 1.30 (​www.​ezbiocloud.​net/​tools/​
orthoani [29]).

Ortholog protein groups were defined using bidirectional 
best hits algorithm implemented in Get_homologues build 
20 170 609 following [30]. Briefly, the core-proteome was 
compiled using minimum blast searches and clusters with 
inparalogs were excluded. Each of the single-copy proteins 
was aligned with muscle using default parameters and the 
alignments were concatenated with MegaX (https://​pubmed.​
ncbi.​nlm.​nih.​gov/​29722887/). Subsequently, the phyloge-
netic tree of the core-proteome was reconstructed using 
Neighbour-Joining approach with Jones-Taylor-Thornton 
substitution model, deleting positions containing gaps.

We employed a clustering method using the genomic related-
ness values to better visualize the groups of strains. Procedures 
with the same goal were described before [28, 31]. Here, the 
genomes were grouped according to a connection criterion of 
≥95 % of identity with ≥70 % of alignment coverage for ANIb, 
ANIm and OrthoANI analysis; and ≥96.5 % of gANI with 
≥0.6 of AF. We use an approach similar to the procedure of 
community detection from the network science. For ANIm 
and ANIb approaches that generate an output of a two way 
calculation, we generate a triangular form of the coverage and 

Fig. 2. Unrooted Maximum-Likelihood (using Jukes-Cantor methods) phylogenetic tree based on four concatenated sequences (atpD, 
glnII, recA and rpoD) showing relationships between Sp245T-cluster, Sp7T-cluster and CC-NFb-7T. The sequences of the genes were 
extracted from the genome listed in Table 2. Bootstrap values were inferred from 500 replicates and are indicated at the tree nodes when 
≥50 %. The bar represents one estimated substitution per 100 nucleotide positions.
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identity matrices considering the higher value and the mean 
value from the two way calculation, respectively. Then, for all 
different ANI methods, identity and coverage/AF matrices 
had their values above the respective connecting criterion 
replaced by 1, otherwise they were replaced by 0. The two 
matrices generated for each method were then multiplied 
and the distances were obtained. Nodes were connected using 
the graph_from_adjacency_matrix function from igraph R 
package [32] and visualized with forceNetwork function from 
networkD3 R package [33]. The formed groups have nodes 
corresponding to genomes and edges corresponding to ANI 
values above the cutoff for species delineation with a coverage 
or AF value reflecting a reliable alignment between the set of 
genomes. A detailed tutorial for the clustering steps on R can 
be found at https://​osf.​io/​h25wv/​wiki/​home/?​view_​only=​58af​
ccd2​aa00​4d19​884c​5102​c8b92e95.

The G+C % content of the strains Sp245T, BR 12001 and Vi22 
varied from 68.4 to 68.6 (Table 2). These values are similar to 
A. brasilense Sp7T and A. formosense CC-Nfb-7T. ANI (ANIm, 
ANIb, OrthoANI, gANI) or dDDH were first estimated for the 
new genome that was sequenced for strain Sp245T (assembly 
GCF_007827915.1) with the two already deposited in NCBI 
(assembly GCF_000237365.1 and GCF_003119195.2). 
We observed all values close to 100 % confirming that the 
different assemblies came from the same strain. Therefore, in 

the subsequent analyses, we used GCF_003119195.2, because 
it was the most finalised assembly. Similarly, we compared 
different assemblies available for Sp7T and we verified that they 
also came from the same strain, since the genomes available 
(GCF_008274945.1, GCF_001315015.1, GCF_007827425.1, 
GCA_002027385.1) were close to 100 % in ANI values.

All ANI calculations returned values above 98.54 and 
98.79 %, respectively, between strains inside the Sp245T-
cluster (i.e. Sp245T, BR 12001 and Vi22) and 98.18 % a 
99.98 % for the Sp7T-cluster (i.e. Sp7T, BR 11017, BR 11019, 
BR 11649, BR 11002, MTCC4038 and SR80) (Table  3). 
Moreover, dDDH calculations showed values above 81.0 
inside each cluster, proving the strains in each cluster repre-
sented the same species (Table 3). Thereafter, we compared 
strain Sp245T with strains from the Sp7T-cluster and vice 
versa, and both strains Sp245T and Sp7T against CC-NFb-7T 
(Table 3). OGRI estimate with ANIm, ANIb, OrthoANI 
between Sp245T and Sp7T-cluster or with CC-NFb-7T were 
less than 94.60; similarly, Sp7T against Sp245T-cluster or 
CC-NFb-7T were less than 94.76 (Table 3). Calculations 
with gANI proved to be more conservative, showing values 
slightly above 95.0 in all comparison (Table 3). dDDH esti-
mation were always below 60.0 when we compared Sp245T 
with the Sp7T-cluster or vice versa and both Sp245 and Sp7T 
with CC-NFb-7T (Table 3).

Table 3. Genomic metrics of A. baldaniorum (Sp245T), A. brasilense (Sp7T) and CC-Nfb-7T with related strains

Strain Sp245T Sp7T

ANIm
(%)

ANIb
(%)

OrthoANI
(%)

gANI
(%)

dDDH 
(mol%)

ANIm
(%)

ANIb
(%)

OrthoANI
(%)

gANI
(%)

dDDH (mol%)

BR 12001 98.63 98.55 98.63 98.76 87.50 94.58 94.22 94.55 95.2 56.80

Vi22 98.65 98.54 98.65 98.79 87.80 94.60 94.23 94.48 95.2 57.00

BR 11017 94.59 94.25 94.43 95.12 56.70 98.62 98.44 98.61 98.73 87.10

BR 11019 94.40 93.73 94.26 94.26 54.80 98.18 97.68 98.25 98.39 81.50

BR 11649 94.59 94.23 94.39 95.13 56.70 98.60 98.35 98.59 98.72 87.20

BR 11002 94.61 94.35 94.60 95.17 57.00 99.98 99.90 99.97 99.98 99.60

MTCC4038 94.62 94.38 94.50 95.16 57.10 99.97 99.85 99.96 99.98 99.50

SR80 94.59 94.32 94.45 95.11 56.70 98.62 98.47 98.61 98.74 87.50

CC-Nfb-7T 94.45 94.17 94.44 95.12 56.00 94.76 94.52 94.69 95.40 57.70

TMCY0552T 85.45 79.63 79.20 80.94 23.80 85.29 79.30 79.04 80.68 23.30

59b T 85.41 79.38 79.00 80.79 23.40 85.33 79.20 78.82 80.53 23.20

DSM 3675T 84.29 77.94 77.09 81.67 21.80 84.26 77.87 77.05 81.23 21.60

GSF71T 85.52 80.29 79.92 81.61 23.60 85.45 80.12 79.79 81.48 23.40

COC8T 85.40 79.73 79.30 80.98 23.40 85.27 79.52 79.14 80.77 23.20

DSM 21654T 85.35 79.62 79.26 80.88 23.50 85.32 79.57 79.27 80.92 23.40

B2T 85.51 79.67 79.46 81.16 23.80 85.41 79.39 70.14 80.91 23.60

SgZ-5T 85.43 79.58 79.22 80.98 23.40 85.38 79.45 79.08 80.78 23.20

Bold, values within the species circumscription limits. Species circumscription thresholds, ANIm, ANIb, OrthoANI and gANI (96%), dDDH (70%). Access number of reference 
strain deposited in NCBI genome database: Sp245T(GCF_003119195.2), Sp7T(GCF_008274945.1) and CC-Nfb-7T(GCF_013340925.1).

https://osf.io/h25wv/wiki/home/?view_only=58afccd2aa004d19884c5102c8b92e95
https://osf.io/h25wv/wiki/home/?view_only=58afccd2aa004d19884c5102c8b92e95
http://doi.org/10.1601/nm.825
http://doi.org/10.1601/nm.23025
http://doi.org/10.1601/nm.825


7

dos Santos Ferreira et al., Int. J. Syst. Evol. Microbiol. 2020

Complete genome comparison has been shown to be 
reproducible, reliable and informative to infer phylogenetic 
relationships among prokaryotes to replace the classical 
wet-lab-methods, like DNA hybridization, leading to a 
taxonomy subcommittee to establish the genome publica-
tion as a mandatory for species description [34]. Different 
ANI calculation methods based on pairwise genome analysis 
have been proposed, such as ANIm, ANIb, OrthoANI, and 
gANI, or even other metrices to compare genomes, like 
dDDH. Details regarding ANI methods and requirement of 
gDNA for the calculation were recently published [35, 36]. 
ANI value of 95–96 % and dDDH 70 % have been recom-
mended as threshold as these values correlate well with 
70 % similarity estimated by classical DNA–DNA method 
and with 5 °C melting temperature differences based on 
denaturation method [36–38]. Considering that the ANI 
values between different Azospirillum species are around the 
grey zone (94–96 %), in order to have more confidence on 
the species groups, we established an ANIb value of 96 % as 
species circumscription limit. In a recently published paper, 
it was concluded that more than one ANI method must be 
used to stablish the cut-off, not only use 95–96 % arbitrarily 
[36]. Therefore, based on different methods applied we have 
the confirmation that the strain Sp245T, together BR 12001 
and Vi22, represents a new species of the Azospirillum genus 
with A. brasilense Sp7T and A. formosense CC-NFb-7T as the 
closest neighbours.

In order to get a better resolution of the genome analysis we 
also used the core-proteome analysis to infer the phylogenetic 
position of the new species. The size of the proteomes utilized 
in this analysis varied between 3847 to 6920 proteins (median 
6351). The core-proteome was composed of 1079 proteins, 
and the concatenated alignment contained 338 791 posi-
tions. The phylogenetic reconstruction of the core-proteome 
demonstrated that the strains Sp245T, Vi22, and BR 12001 
form a distinct group, separate from the A. brasilense Sp7T-
cluster and the strain A. formosense CC-NFb-7T (Fig. 3).

Finally, the genome clustering analysis corroborated the find-
ings of the phylogenetic reconstruction of the core-proteome 
and housekeeping phylogeny, i.e. strain Sp245T was grouped 
together to BR 12001 and Vi22, while A. brasilense Sp7T was 
grouped with BR 11017, BR 11019, BR 11649, BR 11002, 
MTCC4038, and SR80 (Fig. 4). A. formosense CC-NFb-7T did 
not cluster with any of the genome clusters where the groups 
Sp245T and Sp7T were located (Fig. 4).

PHENOTYPE AND PHYSIOLOGY OF NEW 
SPECIES
Strain Sp245T is one of the most studied plant-growth-
promoting bacteria worldwide, especially considering its 
potential as plant inoculant [12]. The knowledge accu-
mulated over the years lead this strain to be considered a 

Fig. 3. Core-proteome phylogeny of Azospirillum species. The core-proteome rooted tree was constructed using the Neighbour-Joining 
method. *Bootstrap values 100 %. Bar indicates the number of nucleotide substitution.
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model for studies on plant-bacteria interactions [3, 39, 40]. 
Cells of strains Sp245T are Gram-negative, slightly curved 
rods, spiral, 1.6–2.1 µm long and 0.5–0.7 µm wide. Motile 
with long polar flagellum and several lateral ones shorter in 
length [41, 42]. The strain Sp245T is able to grow between 
20 and 38 °C with an optimum temperature around 30 °C 
depending of the culture medium [43]. As for A. brasilense 
Sp7T, the closest species, it has been demonstrated that 
Sp245T is a nitrogen-fixing bacterium, and produces high 
number of plant-growth-regulators, such as IAA and nitric 
oxide [3, 21, 39, 40, 44]. Sp245T is able to denitrify and 
possess the entire pathway for the denitrification process, 
i.e. nap, nir, nor and nos genes [44, 45].

We additionally investigated some carbon source utilization 
of the strains Sp245T and BR 12001 (both new species), 
Sp7T (A. brasilense) and CC-NFb-7T (A. formosense), as well 
as the enzyme activity using Biolog GN II and API 20NE 
test kit following method previously described [46]. We 
also tested the resistance to antibiotic, using impregnated 
discs (Oxoid). For that, the strains were grown on Dyg’s 
liquid medium [47], and after 24 h the cultures (100 µl) were 
inoculated over solid Dyg’s medium in Petri dishes, and the 
antibiotic discs were laid on the agar in three repetitions.

The strains Sp245T and BR 12001 were able to grow using 
the same carbon source, but not α-keto valeric acid and 
d-serine (Table 4). In general, these strains present more 
ability to growth in the carbon source in Biolog GNII kit 
than the closest strains Sp7T and CC-NFb-7T (Tables 4 and 
Table S1). Sp245T and BR 12001 differentiate from CC-NFb-
7T in the usage of five C-source and from Sp7T in the usage 
of 15 different sources; l-rhamnose was only used by the 
strains Sp245T and BR 12001 (Tables 4 and S1). All the four 
strains tested presented sensitivity to gentamicin (10 µg per 
disc), kanamycin (30), rifampicin (30), streptomycin (25) 
and tetracycline (30), and only BR 12001 was resistance/
tolerant to chloramphenicol (30) and erythromycin (15). 
Enzymatic tests using API 20NE showed that Sp7T and 
CC-NFb-7T, as well as Sp245T and BR 12001 are able to 
reduce nitrate and nitrite; urease is negative in Sp245, BR 
12001 and CC-NFb-7T, but active in Sp7T.

DESCRIPTION OF AZOSPIRILLUM 
BALDANIORUM SP. NOV.
Azopirillum baldaniorum (​bal.​da.​ni.o’rum. N.L. gen. pl. 
n. baldaniorum of the Baldanis’s, named in honour of Dr. 
José Ivo Baldani and Dr. Vera Divan Baldani, Brazilian 

Fig. 4. Genome clustering analysis of the ANIb values. Species clusters 
were defined according to a linkage criterion of ≥95 % of ANIb with 
≥70 % of alignment coverage.

Table 4. Differential characteristics of strains A. baldaniorum (Sp245T 
and BR 12001) and related species of the genus Azospirillum:  
A. brasilense (Sp7T) and A. formosense (CC-NFb-7T)

Characteristics Strains

Sp245T BR 12001 Sp7T CC-NFb-
7T

l-Arabinose + + + +

d-Arabitol + + - +

d-Fructose + + - +

l-Fucose + + - +

d-Galactose + + - +

Gentioniose + + - +

α-d-Glucose + + - +

d-Mannitol + + + +

d-Mannose + + + +

Melibiose + + - +

d-Picose + + - +

l-Rhamnose + + - -

Formic Acid + + - +

d-Galactonic Acid Lactone + + - +

d-Galacturonic Acid + + - +

d-Glucosaminic Acid + + + -

α-Keto butyric + + + -

α-Keto valeric + − − +

Glucuronamide + + - +

d-Serine + − + +

Thymidine + + + -

Phenyethylamine + + + -

Glucose-6-Phosphate + + - +

Nitrate and nitrite 
reduction

+ + + +

Indol production + + - +

Urease - − − −

Protease - + + −

All phenotypic characteristics were determined in this study. +, 
Positive; −, Negative.

http://doi.org/10.1601/nm.825
http://doi.org/10.1601/nm.825
http://doi.org/10.1601/nm.23025
http://doi.org/10.1601/nm.822
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microbiologists, for their pioneering contributions to Azos-
pirillum research.

Cells are slightly curved rods, spiral, 1.6–2.1 µm long 
and 0.5–0.7 µm wide. Motile with long polar flagellum 
and several lateral ones shorter in length. Positive for 
nitrogen fixation in the environment and cells can grow 
on nitrogen-free medium. Grows at 20 and 38 °C with a 
maximum around 30 °C depending on the culture medium. 
With Biolog GN II, the strains grown in a variety of carbon 
source, differentiating from the closest related strain Sp7T 
by using: d-arabitol, d-fructose, l-fucose, d-galactose, 
gentioniose, α-d-glucose, melibiose, d-picose, l-rhamnose, 
formic acid, d-galactonic acid lactone, d-galacturonic acid, 
α-keto valeric, glucuronamide, glucose-6-phosphate; and 
from CC-NFb-7T by using l-rhamnose, d-glucosaminic 
acid, α-keto butyric, α-keto valeric, d-serine, thymidine, 
and phenylethylamine. With API 20NE, the strains were 
clearly positive to nitrate and nitrite reduction, indole 
production, β-glucosidase, β-galactosidase, but not to 
urease and protease. The average nucleotide identity 
between strains of the new species is above 98.6 %. The type 
strain is Sp245T (=BR 11005T=IBPPM 219T), a diazotrophic 
plant growth-promoting bacterium isolated from surface-
disinfected wheat roots in Brazil. The DNA G+C content 
of the type strain based on genome is 68.4 %.

16S rRNA AND GENOME NCBI ACCESSION
Accession numbers for 16S rRNA – Sp7T (AB681745), 
CC-Nfb-7T (GU256444), LMG 23617T (HM636063), 
IMMIB AFH-6T (AM419042), ww 10T (EU747318), DSM 
13131T (AJ238567), CC-HIH038T (KR296799), CFH 70021T 
(MH265951), L-25–5 w-1T (MH997485), BV-S (EU678791), 
IMMIB TAR-3T (AM922283), SgZ-5T (JX274435), ATCC 
29707T (FJ871055), N7T (DQ682470), M2T2B2T (GQ246693), 
COC8T (AB185396), LMG 24250T (GU256442), ACM 2041T 
(X90759), B2T (DQ787330), CC-LY788T (KC297124), DSM 
3675T (Z29618), CC-LY743T (JX843282), BR11142T (Z29616)

Accession numbers for Genome - Sp245T (NZ_CP022253, 
GCF_003119195.2), BR 12001 (NZ_VITE01000000, 
GCF_007827765.1), Vi22 (VSRJ00000000, GCF_013341015.1), 
Sp7T (NZ_CP033312, GCF_008274945.1), BR 11017 (WFKA
00000000, GCF_013340975.1), BR 11019 (WFKB00000000, 
GCF_013340985.1), BR 11649 (WFKD00000000, GCF_ 
013340915.1), BR 11002 (NZ_VITX00000000, GCF_ 
007828115.1), MTCC4038 (NZ_CP032339, GCF_005222145.1), 
SR80 (NZ_QXHE01000000, GCF_003584185.1), CC-Nfb-7T  
(WHOR00000000, GCF_013340925.1), TMCY0552T (WHOS
00000000, GCF_013340935.1), 59bT (NZ_VTTN01000000, 
GCF_008364955.1), DSM 3675T (NZ_AUCF01000000, 
GCF_000429625.1), GSF71 (NZ_RZIJ01000000, GCF_ 
003989665.1), COC8 (NZ_VTTM01000000, GCF_008364795.1), 
DSM 21654T (NZ_LAEL01000000, GCF_000960825.1), B2T 
(NZ_PDKW01000000, GCF_002573965.1), SgZ-5T (NZ_
CP015285, GCF_001639105.2), ATCC51521T (NC_011420, 
GCF_000016185.1).
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