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Abstract

A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us
to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are
typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides.
Further recombinant protein production triggers a global cellular stress response which feedback inhibits both
growth and product formation. Countering this requires a system level analysis followed by a rational host cell
engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to
divert the metabolic flux away from biomass formation and towards recombinant protein production. This would
require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional
or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins
inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies
that can be used for the construction of such improved host cell platforms for recombinant protein expression is
the focus of this review.
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Introduction

Host cell engineering has emerged as a powerful tool for

designing microbial platforms targeted at improved me-

tabolite production. Major successes in this area include

improved production of isoprenoids, shikimic acid, iso-

butanol, amino acids, synthesis of artemesin, lycopene

and many such metabolites [1-7]. The basic goal has

been to redesign the complete pathway for the biosyn-

thesis of these metabolites by simultaneously engineering

multiple steps in the pathway. This has been achieved by a

combination of many techniques such as gene knock-ins

and knock-outs, promoter engineering, supplementing

the expression of critical genes, enzyme engineering

and modulation of the regulatory pathways. The com-

monly used strategies to enhance the metabolite flux

through a pathway can be clubbed under the follow-

ing categories a) Increase the flux through rate limit-

ing steps in the pathway; b) Increase the supply of

precursors; c) Block branched chain pathways which

lead to by-product formation and d) Remove feedback

controls in the pathway (Figure 1).

It is possible to extend the same philosophy with minor

modifications to help in the design of hosts with improved

recombinant protein expression capability. Just like the

pathways in metabolite synthesis, recombinant protein ex-

pression also involves multiple steps viz. transcription,

translation, folding and export. However unlike a typical

metabolic pathway these steps are intricately linked to the

cellular machinery with multiple host factors determining

the flux through each step of the pathway. Hence the cel-

lular physiology and its dynamics have a critical role in de-

termining the overall flux through this pathway. Some

important points that can be flagged by this approach are

summarized as follows; traditional genetic engineering

methods have mostly focused on improving the first step

of this pathway i.e. transcription and hence the gains from

improved vector design have tended to plateau over time.

With strong promoters, the bottleneck in this pathway

shifts to the translational step which needs to be up regu-

lated to match the rates of transcription. Otherwise much

of the gains of high rates of mRNA synthesis are offset by

higher rates of mRNA degradation [8-11]. The supply of
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precursors which are critical to this pathway are the en-

ergy molecules like ATP, amino acids and nucleotides

which can become the rate limiting factors in protein bio-

synthesis. Most importantly recombinant protein expres-

sion triggers a cellular stress response which feedback

inhibits both growth and product formation, by lowering

substrate uptake rates, down-regulating the ribosomal ma-

chinery and biosynthesis of ATP (Figure 2). This has a

critical impact on the sustainability of the flux through

this pathway and typically specific product formation rates

decline sharply within a few hours post induction. Since

host cell protein synthesis utilizes the same cellular ma-

chinery it can be treated as a competing pathway. Thus

one way to increase recombinant protein synthesis would

be to uncouple growth from product formation, thus

allowing the diversion of metabolic fluxes toward product

formation. Finally an efficient export mechanism needs

to be in place, otherwise there is a theoretical upper

limit to which the recombinant protein can accumulate

inside the cells. Moreover extracellular expression would

significantly simplify downstream processing steps. The

challenges associated with designing such host platforms

using both rational as well as high throughput strategies is

the primary focus of this review.

Improving transcriptional efficiency

The first step in the pathway for recombinant protein

biosynthesis has possibly received the largest attention

in terms of improved vector design. A very wide range

of vectors are available both for E.coli and other mi-

crobes with specific features tailored for different applica-

tions [12-14]. The rate of mRNA synthesis is determined

by both gene copy number and promoter strength, how-

ever with strong promoters like the T7 and T5, plasmid

Figure 1 Metabolic engineering strategies to enhance the flux through a pathway. The various strategies used to improve the flux from a
cellular intermediate to the desired product is shown. This includes enhancing pathways leading to the formation of intermediates (shown in
yellow) and pathways which are rate limiting (B to C). Additionally branched chain pathways and feed back controls need to be blocked.

Figure 2 Simplified schematic of the cellular stress response on various factors affecting recombinant protein synthesis. The down-regulated
pathways are shown in green (substrate uptake, ribosomes, translation rates, tRNA and ATP) and up regulated pathways (Proteases, acetate formation
and stress response) are shown in red.
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copy number has a relatively small role in expression. Ra-

ther the use of low copy number, stable vectors allows for

lowered levels of ‘leaky’ expression which is important

while expressing toxic proteins. Promoter design has thus

focused more on titratable and tightly regulated systems

rather than strength alone [15-18]. Thus a slow and con-

trolled expression which leads to a properly folded protein

can also be an important goal as is obtained with titratable

promoters using low inducer concentrations [19,20]. Add-

itionally the use of fusion tags in vector constructs can

serve multiple purposes, like efficient purification, im-

proved solubility, increased mRNA stability and more effi-

cient translation [21-27]. To further simplify the process

of protein production useful features like auto inducible

systems [28-31] and self-cleavable tags have been incorpo-

rated in vector design [32-34].

Removing translational bottlenecks

Translation has been identified as the rate controlling

step in recombinant protein synthesis for most high ex-

pression systems (Figure 3). Many factors have a role in

controlling translational efficiency including, the first

few codons of the mRNA to be translated (translation

initiation) and the mRNA secondary structure. The ribo-

somal binding site (RBS) secondary structure is highly

important for efficient initiation of translation. Recombin-

ant protein translation in E.coli may be inhibited by pres-

ence of secondary structures in the RBS as well as 5’UTR

region. Computational tools like ‘ExEnSo’ (Expression

Enhancer Software) offer a platform where heterologous

gene sequences can be designed on the basis of highest

free energy so as to avoid translation inhibition due to

mRNA secondary structures. The software also creates a

5’ primer on the basis of the ‘optimized’ sequence which

can be used in PCR experiments to amplify the cod-

ing sequence of heterologous gene [35]. Similarly a

predictive method for designing synthetic ribosome

binding sites has been developed which enables a ra-

tional control over the protein expression level. This

work combines a biophysical model of translation ini-

tiation with an optimization algorithm to predict the

sequence of a synthetic RBS sequence that provides a

target translation initiation rate [36]. Another work

involving a random combinatorial DNA sequence li-

brary has revealed that not only the SD sequence but

the entire UTR sequence, seems to play an important role

in the translational process [37] implying that the rate of

translation can also be rate-limiting. Translation rate cal-

culators have been designed to estimate protein transla-

tion rates based on the sequence of the mRNA and have

Figure 3 Cellular factors controlling the rate of translation. These factors which directly effect translation efficiency are a) mRNA RBS secondary
structure affecting the Translation Initiation Rates (TIR) and the UTR sequences, b) Degradation of ribosomes due to substrate non-availability and
RNase over expression, c) Availability of charged tRNA which depends on ATP supply and codon bias. Additionally global regulator like FIS also control
translation and stability.
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been shown to give good estimates of the actual level of

protein expression [38].

The increase in utilization of the protein synthetic ma-

chinery upon induction leads to a degradation of the

ribosomal machinery, as a feedback stress response to

over expression [39,40] that ultimately leading to a loss

in the protein synthesis capacity. This decreased capacity

of cells to synthesize proteins, as part of the stringent re-

sponse, highlights the major challenges regarding the

sustainability of recombinant protein production. It has

been shown that whereas E.coli ribosomes are stable

during exponential growth and in the stationary phase,

degradation occurs between the transition stages and is

independent from the triggering effect of the alarmone

ppGpp(p) [41]. Degradation of stable RNA is also associ-

ated with conditions of starvation. Thus, depletion of

any one of a number of nutrients including phosphate

[42], nitrogen [43], carbon [44], or evenMg+2 [45] leads

to a dramatic loss of RNA. RNase expression is also trig-

gered during the stress response and can contribute to

degradation of stable RNA [46].

Rate of translation may also slow down due to non-

availability of aminoacylated transfer RNA (tRNA). The

availability of charged aminoacylated transfer RNA fur-

ther depends on codon composition of the transcript.

The rationale behind codon usage optimization is to

modify the rare codons in the target gene to mirror the

codon usage of the host [47,48]. It is also known that

the availability of tRNA varies significantly under differ-

ent growth and stress conditions, which facilitates cellu-

lar adaptation to translational dynamics across the genome.

Experimental measurements of tRNA concentrations and

their charged fractions under stressful conditions have

shown that tRNA availability can vary significantly between

conditions and over time [49,50]. A computational work-

flow for estimating codon translation rates based on tRNA

availability has been developed. This could be particularly

important when considering the over expression of a re-

combinant protein, where a specific codon composition

might lead to the depletion of certain charged tRNA

pools [51] or under amino acid limited growth condi-

tions that have been shown to lead to specific charging

patterns [52,53]. This deficiency may lead to amino acid

mis-incorporation and/or truncation of the polypeptide,

thus affecting the heterologous protein expression

levels and/or its activity [54]. OPTIMIZER, JCAT, Syn-

thetic Gene Designer, DNAWorks, GeneDesign, Codon

optimizer, GeMS are some of the online tools available

to optimize codon usage (reviewed in [55]).

Likewise there are models like Ribosomal Flow Model

(RFM) which analyses translation process on the basis of

its physical and dynamical nature [56]. It considers the

effect of codon order on translation rates, the stochastic

nature of the translation process and the interactions

between ribosomes while predicting the translation elong-

ation step. This approach gives more accurate predictions

of translation rates, protein abundance and ribosome dens-

ities in comparison to contemporary approaches. Another

interesting feature that might be useful for recombinant

protein expression and folding is the Translational

pause at a rare codon. This provides a time delay to en-

able independent and sequential folding of the defined

portions of the nascent polypeptide emerging from the

ribosome [57].

Additionally there are regulatory genes that control

the rates of ribosome biosynthesis. CsrA, is a posttran-

scriptional global regulator that regulates mRNA stabil-

ity and translation, which in turn is regulated by two

sRNAs csrB and csrC [58-60]. The E.coli DNA binding

protein Fis is a transcriptional modulator involved in

the regulation of many cellular processes, including the

activation of rRNA synthesis. High-level expression of fis

in early, mid, or late log cultures has been shown to re-

sult in growth phase and medium-specific variations in

cell growth, rRNA synthesis, and ribosome content [61].

Improving energy availability

The synthesis of recombinant proteins is energy intensive

and interferes with the host physiology [62]. The high

energy demand during recombinant protein production

leads to an enhanced need for ATP generation at the cost

of biomass formation [63]. This increases maintenance en-

ergy requirements which manifests itself as an increased

metabolic burden on the cells [64]. In order to sustain this

energy demand, cells take up alternative pathways like

substrate level phosphorylation leading to acetate forma-

tion by carbon overflow metabolism. As a consequence of

reduced biomass formation, excess NADPH might be con-

verted to NADH via the soluble transhydrogenase, filling

the electron transport chain for additional ATP gener-

ation. This hypothesis is supported by a positive correl-

ation between ATP production and productivity, while an

inverse correlation exists between biomass yield and prod-

uctivity. Although the ATP generation rate increases with

increasing demand, the TCA cycle activity remains con-

stant, indicating a limited capacity of the TCA cycle to

overcome the postulated metabolic burden [65].

It has been shown that protein synthesis consumes ap-

proximately two-thirds of the total energy produced by a

rapidly growing E.coli cell [66]. Consequently, much ef-

fort has been focused on understanding the mechanisms

of ATP and GTP usage during protein synthesis. It was

thus observed that phosphoenolpyruvate carboxykinase

(PCK) when expressed in E.coli under glycolytic condi-

tions helped in increasing the intracellular ATP levels,

leading to enhanced protein production, of both the

model proteins GFP (intracellular) and Alakaline Phos-

phatase (extracellular) [67]. Polymerization of amino acids
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as well as aminoacyl-tRNA synthetase requires large por-

tion of ATP to mediate amino acid-charged tRNA synthesis

[68]. It is known that the concentration of aminoacylated-

tRNA (charged tRNA) molecules is higher in rapidly grow-

ing bacteria, and it has been postulated that the availability

of the charged tRNA is one of the check points that deter-

mines the rate of protein translation [69].

Cofactor regeneration

Cofactors play an important role in generation of cor-

rectly folded, stable and functional recombinant proteins

[70]. Any imbalance in cofactor consumption and regen-

eration can lead to a severe reduction of growth. Since

these are the driving forces behind most anabolic path-

ways as well as oxidative phosphorylation, it is necessary

to design strategies to enhance cofactor regeneration.

OptSwap is a computational method which predicts strain

designs by identifying optimal modifications of the cofac-

tor binding specificities of oxidoreductase and comple-

mentary reaction knockouts [71]. Another mathematical

framework, cofactor modification analysis (CMA), is a

well-established constraints-based flux analysis method

for the systematic identification of suitable cofactor specifi-

city engineering (CSE) targets while exploring global meta-

bolic effects [72]. Several genetic strategies employed for

cofactor engineering have been reviewed earlier [73-76].

Facilitating protein folding and export

A major effort in recent years has focused on improved

protein folding in vivo using chaperone co-expression

[40,77-79]. These molecular chaperones essentially be-

long to Hsp70 chaperone family. Thus DnaK which is an

Hsp70 homolog binds to unfolded hydrophobic stretches

and helps protein folding while chaperones like GroEL

encapsulates the nascent polypeptide and prevents inter

molecular interactions [80]. A major issue is matching

the availability of chaperones with the rates of produc-

tion of the nascent polypeptide to prevent misfolding.

This is a problem when high level expression systems

are used. The only way to circumvent this is to have

lower but sustained rates of protein expression leading

to a slow buildup of the recombinant protein. Another

important aspect is providing an oxidizing environment

for correct disulfide bond formation in the cytoplasm or

catalyzing bond formation of the oxidized protein in the

periplasm [81]. This has been attempted by introducing

genes for formation of disulfide bonds. Thus strains cap-

able of producing properly folded proteins, even those

with multiple disulphide bonds, are now available [82-87].

An E.coli strain has recently been designed for protein

transport which oxidizes disulfide bonds in the cytoplasm

and then efficiently exports these disulfide containing pro-

teins using a signal peptide. These test proteins include al-

kaline phosphatase (PhoA), a phytase containing four

disulfide bonds (AppA), an anti-interleukin 1bscFv and

human growth hormone [88].

The more challenging task is protein export not just

to the periplasm but to the extracellular medium. This

would not only greatly simplify purification but also re-

move the upper bound on the accumulation of proteins

in the culture. There are five pathways for protein secre-

tion in E.coli Type I, II, III, IV and V. However, only the

first and second secretion pathways are commonly used

in recombinant protein secretion. Type I pathway dir-

ectly targets proteins from cytoplasm to extracellular

medium [89,90]. Studies have shown that the Type II

Sec dependent pathway gets overloaded leading to an ac-

cumulation of unfolded proteins [91-95]. Plasmid based

over expression of SecY, SecE and SecG proteins, which

are the major interacting partners of SecA, resulted in a

strong enhancement of a) translocation ATPase activity,

b) preprotein translocation, c) capacity for SecA binding,

and d) formation of the membrane-inserted form of

SecA [96] (Figure 4). There are reports of a few proteins

which get naturally secreted into the medium [97-99].

Others like GFP which do not get secreted through the

Sec dependent pathway have been successfully exported

via a modified TAT dependent secretion pathway [100].

In another work synthetically designed lipase ABC trans-

porter domains (LARDs) from P.fluorescens lipase were

attached to GFP and epidermal growth factor (EGF).

The fused proteins were successfully secreted with the

ABC transporter and showed lipase activity as an intact

fused form in the supernatant [101]. These examples

highlight some of the important developments in this

area which has the potential of making E.coli into a truly

secretory protein expression system.

Feedback inhibition of product formation

It is well known that growth rates decline post induction

in most cultures. It was earlier postulated that this was

due to the ‘metabolic burden’ associated with the diver-

sion of metabolic fluxes towards recombinant protein

synthesis [102]. However a careful analysis of experi-

mental data shows that this rate of decline of growth

post induction, in the absence of substrate limitation is an

intrinsic property of the cell and specific to the protein be-

ing expressed [103]. Thus some proteins like γ –interferon

[104], α-interferon [105] even when they are expressed at

high levels do not adversely affect growth while others like

insulin [106], GMCSF [107,108], streptokinase [109], lead

to a complete growth stoppage post–induction. Interest-

ingly this retardation is also dependent on whether a pro-

tein is expressed as inclusion bodies or as a soluble protein

like GMCSF and streptokinase [110-112]. Therefore at-

tempts to explain growth retardation in terms of the amino

acid composition of the expressed protein has limited pre-

dictive value [51,113,114] though clearly different amino
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acids impose different metabolic requirements on the cell.

Clearly a static “diversion of fluxes” model is inadequate to

explain this growth retardation rather a complex cellular

dynamics controls both the growth and product formation

kinetics.

This phenomenon of growth retardation is better

understood by analyzing the cellular stress response to

recombinant protein expression, which characteristically

depends on the nature of protein, the form of expression

(whether soluble or inclusion bodies) and the level of ex-

pression (whether from a strong or weak promoter)

[115,116]. Moreover environmental factors such as the

medium composition (presence or absence of complex

nitrogen sources) [19,84,117,118] and the specific growth

rate may also effect the nature of this response [119,120].

Studies have shown that this stress response mimics the

features of the heat shock response, the oxidative stress re-

sponse and the stringent response [39,114,121]. There are

a set of common genes which get up or down-regulated

due to this response which belong to the substrate uptake,

amino acid and ribosomal biosynthesis genes and those

involved in energy metabolism [39,121]. Others which are

specific to the form of expression, like IB expression are

clpBP, dnaJK, groLS, grpE, hslRUV, htpGX, ibpAB, lon,

rlmE, rpoD, yrfI [122-124]. It is difficult to model this

stress response using systems biology tools like Flux Bal-

ance Analysis (FBA) to predict the changes in fluxes of

various pathways [125,126]. This is primarily because the

commonly used metabolic model of E.coli with the largest

set of pathways covers only ~30% of genes which are actu-

ally present in the organism [127,128]. Most of the differ-

entially expressed genes are not part of this metabolic

network and this unavailability prevents their expression

mapping and FBA analysis using the model. Thus the stress

response is better modeled as the triggering of key regula-

tory genes which in turn trigger a cascade of other down-

stream genes [121]. Efforts have been made to develop

regulatory models which can analyze the complex interplay

of the regulatory and metabolic networks [129-132]. These

models could be applied in the analysis of the stress re-

sponse due to recombinant protein over expression and

provide us with leads for designing improved expression

platforms. However there are as of now very few pub-

lished reports on attempting to modulate this stress

response by gene knock-ins or knock-outs. One would

expect that knock-out of non-essential genes which get

up-regulated due to the stress response or conversely sup-

plementing gene expression of the down-regulated genes

may help alleviate this stress and have a beneficial effect on

recombinant protein expression [133,134].

The use of metabolic engineering strategies to remove

the bottlenecks in recombinant protein production iden-

tified by analyzing this stress response has helped in im-

proving the supply of precursors like NADPH, modification

of global stress regulators and increasing the flux of the

down regulated metabolic pathways including that of

Figure 4 Various pathways for protein translocation (Type I and II). The type II Sec-dependent pathway is the most commonly used and
gets overloaded leading to accumation of mis folded proteins in the cytoplasm. However the TAT dependent pathway is used for export of
folded proteins and thus requires proper folding in the cytoplasm itself.
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substrate uptake [135-140]. Thus increasing glycerol uptake

by over expressing the glpK gene, lead to a 35% higher

rhIFN-β expression as compared to control cultures [133].

The issue of acetate formation has been solved by knock-

ing out genes (ackA, pta, ppc and poxB) in the acetate

biosynthesis pathway leading to improve the recom-

binant protein production [135,138,140]. Supplementa-

tion of down regulated genes either through plasmid

based expression or chromosomal integration have been

successfully tried, e.g. Expression of the zwf gene coding

for glucose-6-phopshate dehydrogenase in the Pentose

Phosphate pathway helps to provide building blocks like

nucleotides and NADPH and thus improves recombinant

protein expression [139]. Knock out of ppGpp as well as

the deletion of the global regulator rpoS (which is trig-

gered by ppGpp) has been shown to enhance the recom-

binant protein expression [141-144]. The metabolic

engineering strategies to improve the E.coli phenotype for

recombinant protein production has also been reviewed

earlier [145].

Uncoupling growth from product formation

The growth associated nature of recombinant protein

production means that high specific growth rates need

to be maintained in order to get high specific product

formation rates. Since product concentration in a bio-

reactor is determined both by biomass concentration

and specific product yield, we have the twin require-

ments of growing cells to high cell densities while simul-

taneously maintaining high specific growth rates. Together

these requirements usually lead to oxygen or heat transfer

limitations in the bioreactor especially during scale up.

Hence the ability to produce product at high rates using

slow growing or non-growing cells could greatly simplify

the bioprocess strategy for high level product formation.

Secondary metabolites are a very good example of how the

non-growth associated nature of product formation kinet-

ics allows the easy separation of growth and product for-

mation phases in a bioreactor. In the case of recombinant

protein synthesis, we need to ensure that the resting cells

are metabolically active in terms of substrate uptake and

energy metabolism as well as transcription and translation.

One interesting development in this regard was the Qui-

escent cell expression system where growth and product

formation kinetics were decoupled [146]. Growth stop-

page was achieved by over expressing a small RNA ‘Rcd’

which blocks cell division. However recombinant protein

expression is unimpaired, and since the translational ma-

chinery is not required for biosynthesis, these cells have a

significantly higher productivity compared to normally

growing cells [147]. Further studies on the mechanism of

Rcd showed that it binds to tryptophanase leading to the

overproduction of indole [148]. Thus an exogenous supply

of indole was also able to block cell division without

affecting recombinant protein expression. However indole

targets multiple sites in the cell [149-151] and may not be

a preferred option for recombinant protein expression.

Therefore targets downstream of indole which specifically

blocks cell growth without affecting metabolic activity

needs to be identified in order to achieve improved

quiescence.

Tools for host cell engineering

This section deals with the vast array of techniques that

have now become available, greatly simplifying the task

of host modification to obtain the desirable phenotype

by rational or high throughput approaches.

Single gene modification strategies

While the use of plasmid based methods for supple-

menting gene expression may be useful in ‘proof of

principle’ studies, they have severe limitations. There is

an upper limit to the number of target genes that can be

supplemented; also the level of supplementation may be

far higher than desired, leading to an unnecessary meta-

bolic burden on the cells. Thus chromosomal engineer-

ing which leads to the construction of plasmid-less,

marker-less strains has the advantage of extending the

practical exploitation of the modified hosts in industry

[152]. Also promoter engineering allows us to fine tune

the expression of genes to desired levels [153,154]. One

of the earliest strategies to design Single-gene knockouts

was using the λ RED-ET system. Here the gene to be

knocked out is replaced with an antibiotic resistance

gene, usually kanamycin or chloramphenicol. If required,

the selection marker can be removed by expressing the

Cre or FLP recombinases that acts on the FRT or loxP

site that is present in the flanking region of the selection

marker or antibiotic cassette [155-161]. Another com-

monly used method for Single-gene knockouts is the

P1-mediated transduction [162-166]. This method has

gained popularity because of the availability of the Keio

library of single gene knock-outs of non-essential genes

in BW25113 which can be easily transferred into almost

any E.coli strain [167]. Many researches prefer to use the

vector plasmid pKO3 which integrates into the chromo-

some by homologous recombination creating tandem

duplication at the non-permissive temperature. When

shifted to the permissive temperature, the presence of

the pSC101 replication origin in the vector ensures that

it is excised from the chromosome. The presence of the

sacB gene from B.subtilis in the vector allows us to

screen for the loss of the vector sequence by growing

the cells in the presence of sucrose [168].

The main limitation of these techniques is that they

can be applied for single gene modifications and if mul-

tiple knock-ins and knock-outs have to be done, then
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these have to be done sequentially in a time consuming

manner.

High throughput genome engineering methods

High throughput methods have been developed for gen-

ome engineering like Multiplex automated genome en-

gineering (MAGE), Trackable multiplex recombineering

(TRMR) and use of small regulatory RNAs [169-172].

These methods can create simultaneous random com-

binatorial modifications in the E.coli genome. Till now

these approaches have mainly been used for evolutionary

studies and pathway optimizations in E.coli. The same

strategy can be applied for improving recombinant protein

expression. As MAGE, works through oligonucleotide-

mediated allelic replacement in an iterative manner it is

capable of introducing multiple modifications in different

locations of genome. Therefore several oligomers can be

designed to perform multiple modifications iteratively,

which can help in identifying the combinations which lead

to the desired phenotype including that of enhanced pro-

tein capability (Figure 5). Recently, a group led by Y.S.

Ryu, has modified MAGE so that it is not restricted to

EcNR2 strains of E.coli [160]. This is important since it is

well known that there is a wide variation in the expression

levels obtained with different E.coli strains [173]. Also

strains carrying different modifications and having the de-

sired phenotype can be combined in a step wise fashion

using Conjugative assembly genome engineering (CAGE)

[174,175]. This approach can be used to look for synergy

between various modifications. The major drawback with

MAGE is that it also accumulates unwanted off-target

mutations [175] and thus a method for genome engineer-

ing at multiple locations with greater precision needs to

be developed [176]. Another method for rapid modifica-

tion of many genes in E.coli is TRMR. This technique uses

a large number of synDNAs with multiple desirable

sequence features, to modulate the expression levels of

genes. The synDNA contains different RBS which replaces

the native RBS and a Molecular barcode is used to track

the allele in mixed populations [177]. Another novel ap-

proach for high throughput metabolic engineering is the

use of a transcriptional vector to express small chro-

mosomal DNA fragments of E.coli itself. Since some frag-

ments get inserted in the opposite orientation, they act as

an anti-sense RNA and create a library of down-regulated

pathways which can be screened for improved recombin-

ant protein expression [178]. This has been extended to

the use of synthetic Small regulatory RNAs (sRNAs)

which helps in the modulation of gene expression [169].

This method is useful when we need to down regulate

Figure 5 Overall Strategy for host cell engineering using rational and high throughput methods. Leads obtained from analysis of cellular
physiology and Omics studies can be used to identify system level bottlenecks. These can be addressed by both single gene modifications or
high throughput methods to generate improved platforms for expression. These are initially tested in microbioreactor format to select the best
clones for further scale-up.
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gene expression rather than completely knocking-out the

gene, making it an indispensable tool for studying the ef-

fect of essential genes on cellular phenotype.

High throughput screening strategies

The screening of a large number of gene knock-in and

knock-outs to select the desirable phenotype of improved

expression capability is time consuming. The simplest ap-

proach to screen a very large number of clones is to use

FACS based screening for cells expressing fluorescence

tagged proteins like GFP [179,180]. Thus libraries with

engineered genomes can be screened for the highest pro-

ducers by using appropriate sorting protocols [181,182].

However such modified hosts may not necessarily over

express other proteins, given the very specific nature of

host-protein interactions. Another strategy would be the

selection of quiescent phenotype, in order to uncouple

growth and product formation. For this one can screen

for a growth stoppage phenotype which typically leads to

elongated cell morphologies due to stoppage of cell div-

ision [183]. Simultaneously or later these cells can be

checked for recombinant protein expression capability after

growth arrest. Such techniques can be coupled with auto-

mated devices where cultures can grow in 96 well plate for-

mats. Such technologies have proven to work well in clone

screening and help in quickly identifying the best per-

formers from a large number of clones e.g. BioLector from

m2p Labs [184,185], Bioscreen C from Oy Growth Curves

Ab Ltd [186-190], Clone Screener from Biospectra AG and

the Ambr reactor from TAPBiosystems. Apart from growth

profiling, these systems can also do online monitoring of

fluorescence, pH, dissolved oxygen and NADH [185] and

are reviewed in [191-195].

Conclusion

The complex linkages between cellular physiology and

the multiple steps in recombinant protein synthesis

makes the task of removing bottlenecks in this pathway

a difficult exercise. However we now have a wealth of in-

formation from transcriptomic, proteomic and metabo-

lomic studies on the cellular factors affecting this pathway

as well the changes in flux to this pathway due to the cel-

lular stress response. The data has been useful in rational

design of host cells with better expression capabilities.

Also the use of high throughput screening methods have

allowed us to, reverse engineer these desired phenotypes,

adding vastly to the repertoire of beneficial knock-ins and

knock-outs. With the development of tools for genome

scale engineering to generate multiple knock-ins and

knock-outs we can now study the synergistic response of

these changes which were earlier limited to one or two

modifications. These could lead to major improvements

in the design of host platform for high level recombinant

protein expression.
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