
UCSF
UC San Francisco Previously Published Works

Title
Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple 
sclerosis.

Permalink
https://escholarship.org/uc/item/5wz869x8

Journal
Nature, 464(7293)

ISSN
0028-0836

Authors
Baranzini, Sergio E
Mudge, Joann
van Velkinburgh, Jennifer C
et al.

Publication Date
2010-04-01

DOI
10.1038/nature08990
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5wz869x8
https://escholarship.org/uc/item/5wz869x8#author
https://escholarship.org
http://www.cdlib.org/


Genome, epigenome and RNA sequences of monozygotic twins 
discordant for multiple sclerosis

Sergio E. Baranzini1, Joann Mudge2, Jennifer C. van Velkinburgh2, Pouya Khankhanian1, 
Irina Khrebtukova3, Neil A. Miller2, Lu Zhang3, Andrew D. Farmer2, Callum J. Bell2, Ryan W. 
Kim2, Greg D. May2, Jimmy E. Woodward2, Stacy J. Caillier1, Joseph P. McElroy1, Refujia 
Gomez1, Marcelo J. Pando4, Leonda E. Clendenen2, Elena E. Ganusova2, Faye D. 
Schilkey2, Thiru Ramaraj2, Omar A. Khan5, Jim J. Huntley3, Shujun Luo3, Pui-yan Kwok6,7, 
Thomas D. Wu8, Gary P. Schroth3, Jorge R. Oksenberg1,7, Stephen L. Hauser1,7, and 
Stephen F. Kingsmore2

1Department of Neurology, University of California at San Francisco, San Francisco, CA 94143, 
USA

2National Center for Genome Resources, Santa Fe, NM 87505, USA

3Illumina Inc., Hayward, CA 94545, USA

4Stanford Medical School Blood Center, Palo Alto, CA 94303, USA

5Department of Neurology, Wayne State Medical School, Detroit, MI 48201, USA

6Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 
94143, USA

7Institute for Human Genetics, University of California at San Francisco, San Francisco, CA 
94143, USA

8Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA

Abstract

Monozygotic (MZ) or “identical” twins have been widely studied to dissect the relative 

contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an 

autoimmune demyelinating disease and common cause of neurodegeneration and disability in 

young adults, disease discordance in MZ twins has been interpreted to indicate environmental 

importance in its pathogenesis1–8. However, genetic and epigenetic differences between MZ 
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twins have been described, challenging the accepted experimental paradigm in disambiguating 

effects of nature and nurture.9–12 Here, we report the genome sequences of one MS-discordant 

MZ twin pair and messenger RNA (mRNA) transcriptome and epigenome sequences of CD4+ 

lymphocytes from three MS-discordant, MZ twin pairs. No reproducible differences were detected 

between co-twins among ~3.6 million single nucleotide polymorphisms (SNPs) or ~0.2 million 

insertion-deletion polymorphisms (indels). Nor were any reproducible differences observed 

between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, 

copy number variations, mRNA and genomic SNP and indel genotypes, or expression of ~19,000 

genes in CD4+ T cells. Only two to 176 differences in methylation of ~2 million CpG 

dinucleotides were detected between siblings of the three twin pairs, in contrast to ~800 

methylation differences between T cells of unrelated individuals and several thousand differences 

between tissues or normal and cancerous tissues. In the first systematic effort to estimate sequence 

variation among MZ co-twins, we did not find evidence for genetic, epigenetic or transcriptome 

differences that explained disease discordance. These are the first female, twin and autoimmune 

disease individual genome sequences reported.

We sought to assess the magnitude of genetic, epigenetic and transcriptomic differences in 

CD4+ lymphocytes from MS-affected and unaffected MZ twin sibships (Supp. Fig. 1). 

CD4+ T cells are involved in the pathophysiology of MS (MIM 126200)1. mRNA, genomic 

DNA (gDNA) and reduced-representation, bisulphite-treated gDNA were prepared from 

negatively isolated, CD4+ T lymphocytes from three pairs of adult, MZ twins who were 

discordant for MS (‘001, affected; ‘101, unaffected). Affected individuals fulfilled 

McDonald criteria for MS diagnosis13. Lack of sibling affectation was assessed through 

clinical evaluation, and, for twin 041896-101, confirmed by magnetic resonance brain 

imaging, and cerebrospinal studies. MZ twin pair 041896 was female, of Ashkenazi Jewish 

origin and beyond the susceptibility age-range for MS at time of study (Supp. Table 1). 

Twin pair 230178 was female and African American, while twins 041907 were white males. 

Individual 041896-001 had onset of MS at age 30 years, and is currently in the secondary 

progressive phase; individuals 230178-001 and 041907-001 had MS onset at ages 38 and 13, 

respectively, and have relapsing-remitting disease. Molecular typing of HLA loci showed 

identical genotypes within the three twin pairs (Supp. Table 1). Only co-twins 041907 had 

DRB1*1501, the strongest genetic susceptibility factor for MS14.

Nucleic acid samples were sequenced by sequencing-by-synthesis with reversible-terminator 

chemistry15–18. mRNA was prepared from blood samples drawn on different days from 

twin pair 041896 to ascertain sampling variance. Fifty to 68 million, high-quality, 36–44 nt, 

singleton sequences from each of eight mRNA samples were aligned to the NCBI human 

genome reference and read-counts-per-gene were calculated18–20 (Supp. Table 2). 

Sequencing to this depth (median relative transcript coverage of 5.0-fold and 6.4-fold for 

041896-001 and 041896-101, respectively) allowed determination of diversity of the 

polyadenylated transcriptome in CD4+ lymphocytes: ~92% of 20,601 genes with exon 

annotations were expressed, as assessed both by aligned reads and the upper asymptote of 

the best-fit sigmoid curve (Supp. Table 2, Supp. Fig. 2). The distribution of transcript 

abundance was a left-skewed, bell-shaped curve with >7 log10 dynamic range (Supp. Fig. 2), 

in agreement with a previous study17. Digital gene expression values correlated well with 
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exon-resolution array hybridization results (Supp. Fig. 3), in agreement with another 

report21. Surprisingly, diagnosis or treatment of MS accounted for only 9.4% of variance in 

transcript abundance in T cells of MZ twins, compared with 57.3% attributable to twin pair-

to-twin pair differences, 23.6% to day-to-day variation (as assessed in twin pair 041896 

alone) and 3.5% to sequencing lane-to-lane variation, Supp. Figs. 4–7). The variance in 

transcript abundance attributable to MS was within the range of variances obtained by 

random permutation of MS diagnosis labels (Supp. Fig. 8, Supp. Table 3). Thus, robust gene 

expression differences were not observed between MS-affected and unaffected twins in 

CD4+ lymphocytes that were inexplicable by other variables.

One billion, high-quality, shotgun, whole genome sequences were generated from twins 

041896-001 and -101, corresponding to 21.7- and 22.5-fold aligned coverage, and 

representing 99.6% and 99.5% of the NCBI human reference genome, respectively (Suppl. 

Table 4). Comparisons of genome coverage of the twins with the AK1 genome, which was 

determined using identical procedures, revealed no individual coverage bias15 (Supp. Fig. 9 

and 10).

Viral infection has been suggested to contribute to the etiology of MS. Upon re-alignment of 

unaligned sequences to 2864 viral genomes, ~0.02% of DNA reads from twins 041896 and 

0.2% of RNA reads from the three twin pairs matched 310 viral genomes. A large majority 

of these alignments reflected simple sequence repeats or endogenous retroviral sequences. 

Upon reverse-transcription and PCR, no reproducible differences were found between 

sequences aligning to viral genomes in T cells from MS-affected and unaffected individuals.

Approximately 3.6 million SNPs and ~0.2 million indels were detected in subject 

041896-001 and -101 genomes, using optimized criteria, which are similar to values 

reported for male genomes (15 and references therein; Supp. Table 5). Indels varied in size 

from −31 to +8 nt, with an approximately normal frequency distribution. Of 13 common risk 

variants previously associated with MS susceptibility14, co-twins 041896 were homozygous 

for five, heterozygous for five, and three were absent. This genetic load is predicted to 

increase risk for development of MS ~8-fold under an additive model (Supp. Table 6). Co-

twins 230178 were homozygous for seven susceptibility loci and heterozygous for two, and 

co-twins 041907 were homozygous for eight risk alleles and heterozygous for two, 

conferring 14-fold and 43-fold increased risk, respectively (Supp. Table 6). These data 

should be interpreted cautiously since translation of genetic burden into risk for complex 

disorders is rudimentary. Clustering of 9.9 million SNPs in eight individual genome 

sequences showed close similarity of the twin 041896, female genomes and their separation 

from six male genomes (Supp. Fig. 11).

SNP genotype differences were sought between affected and unaffected twin siblings in 

genomic DNA and mRNA (Supp. Fig. 1). Firstly, stringent bioinformatic filters were trained 

both to call SNPs in aligned genome and mRNA sequences and to infer SNP genotypes, by 

comparing genotypes obtained from duplicate Affymetrix 6.0 SNP array hybridizations with 

those derived from genome and mRNA sequencing (Supp. Tables 7 and 8; Supp. Fig. 12)15. 

These filters excluded low coverage or repetitive genomic sequences (<11; –fold or >44-fold 

coverage, respectively), yielding high positive predictive values (PPV) to enable meaningful 
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co-twin comparisons. Secondly, these filters were used to determine SNP genotypes in 

aligned genomic sequences of twin pair 041896 and in aligned mRNA sequences of the 

three twin pairs. Thirdly, identities and differences in inferred SNP genotypes were sought 

between affected and unaffected twin siblings. Co-twin genotype differences were 

categorized either as changes from homozygous reference allele to heterozygote, or 

heterozygote to homozygous variant (Table 1). Of 1,089,550 SNP genotypes inferred in 

genomes 041896 using these filters, 3,241 (0.3%) differed between twins (Table 1). Of over 

730,000 genomic SNP genotypes determined by duplicate array hybridizations, 126 

(0.02%), 153(0.02%), and 120 (0.02%) differed between siblings in the three twin pairs, 

respectively, which was considerably less than ~8,500 SNPs that were discordant between 

repeated hybridizations of individual DNA samples (Supp. Table 9). mRNA sequencing 

covered ~65.6 Mb of annotated exons to a depth of ~5-fold. Three hundred and twenty two 

(0.6%), 1,017 and 380 SNP genotypes inferred in mRNA sequences differed between 

siblings of twin pairs 041896, 230178 and 041907, respectively (Table 1). Finally, 

replication of co-twin SNP genotype identities and differences was sought. No differences in 

SNP genotypes inferred by one approach were recapitulated by a second method. In 

contrast, >98% of SNPs that were identical in twin siblings and genotyped by two methods 

(array hybridization, mRNA sequencing or genomic DNA sequencing) were replicated 

(Table 1). Furthermore, Sanger resequencing revealed identical genotypes in twin pair 

041896 for a set of 15 SNP differences well supported by at least one method.

The SNP genotyping filters were also used to infer indel genotypes in genome and mRNA 

sequences of the twins: 91.9% of indels detected in both genome and mRNA sequences had 

identical genotypes (Table 1). Of 26,908 indel genotypes inferred in the genomes of twins 

041896, 213 (0.8%) differed between siblings. Of 1,322, 1,073 and 407 indel genotypes 

inferred in mRNA sequences from twins 041896, 230178 and 041907, 8, 39 and 10 differed 

between twin siblings, respectively (Table 1). No indel genotype differences identified by 

one approach were recapitulated by a second method. In summary, siblings in three MZ twin 

pairs exhibited no replicable nucleotide variation differences in non-repetitive sequences, as 

assessed by genome and mRNA sequencing and SNP array hybridization. Much longer 

reads and lower error rates will be required to evaluate variation differences in repetitive 

sequences comprehensively. Detection of no replicable SNP genotype differences between 

siblings of any of the three twin pairs in peripheral CD4+ T cells accords with estimated 

rates of somatic mutation of 8.4 × 10−9 to 4.6 × 10−10 per nt per generation in human 

tumors, Saccharomyces cerevisiae and Drosophila melanogaster22–24.

Expression quantitative trait loci (eQTL) are emerging as a molecular mechanism for 

common SNPs that are significant in genome-wide association studies of disease25. In light 

of an absence of significant MS-associated genotypic or mRNA expression differences 

between twins, we sought allele specific differences in mRNA expression. For heterozygous 

coding SNPs (cSNPs), the expression of both alleles in CD4+ lymphocytes was measured to 

address deviation from the 1:1 expected ratio (allelic imbalance). 268 heterozygous cSNPs 

exhibited allelic imbalance in cis at 188 loci in twin 041896 transcriptomes, as determined 

by significant deviation of aligned genomic and mRNA read counts (Supp. Table 10). Single 

base mismatches do not cause systematic bias in GSNAP alignments. Two imprinted genes 
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showed altered allelic expression in both co-twins (ZNF331 and GNAS) as did three genes 

that exhibit altered allelic expression in human cerebellar cortex (ABLIM1, UBE2I and 

KIAA1267, Kingsmore et al., unpublished) and two that previously have shown altered 

allelic expression in CD4+ lymphocytes (the MS-associated gene CD6 and acid trehalase-

like 1 [ATHL1])14,26. We used quantitative PCR to validate each of the three possible 

outcomes: a) where both twins showed an expected 1:1 ratio of allelic expression; b) where 

both twins show skewed expression of an allele in the same direction and magnitude, 

indicative of cis-acting eQTL or imprinting, and; c) where the direction or magnitude of the 

imbalance differed between the twins (Supp. Fig. 13). Interestingly, 115 (43%) cSNPs 

differed between twins (i.e. differential allelic expression; Fig. 1, Supp. Table 10). These 

results suggest that some gene expression differences between twins represent chromatid-

specific alterations in transcription. Variance in allelic expression between samples mirrored 

that observed in overall mRNA levels, with twin pair-to-twin pair accounting for 51.2%, 

day-to-day variation for 27.7% and MS diagnosis for 8.0% of variance. No cSNPs showing 

allelic imbalance were shared among the three twin pairs. Interestingly, however, cSNPs that 

show allelic imbalance were significantly closer to transcription factor binding sites than 

random SNPs, providing a novel, potential mechanism of action.

Structural variants were identified in the six genomes by hybridization of duplicate arrays. 

In contrast to a recent report, we found no copy number variants or allelic gains / losses that 

differed between siblings in any twin pair12. Twins 041896 displayed 143 structural variants 

comprising 89 Mb, twins 230178 exhibited 13 variants comprising 3 Mb and twins 041907 

had 58 variants encompassing 33 Mb (Supp. Fig. 1, 14, 15, Suppl. Table 11). Of note, seven 

structural variants were common to all three twin pairs, and changed the copy number of 

two genes (Late Cornified Envelope-3B (LCE3B) and T Cell Receptor Gamma Chain 

Alternate Reading Frame Protein (TARP)) and one pseudogene (A Disintegrin And 

Metalloprotease-6 (ADAM6), Supp. Table 12). LCE3B was not expressed in T cell mRNA 

samples from these patients. TARP was expressed at a level of 12.9 ± 6.1 reads/million 

(mean ± standard deviation) and did not show altered expression in MS. These genes have 

not previously been associated with MS.

An additional axis of heritable genetic information in human genomic DNA is cytosine 

methylation, which serves several functions including regulation of gene expression, 

silencing of retrotransposons, genomic imprinting and X-chromosome inactivation and has 

been implicated in several diseases27,28. We sought to compare genome-scale DNA 

methylation profiles between twin siblings at nucleotide resolution. We aligned 50 – 90 

million, high-quality, 50 nt, reduced representation bisulphite sequences (RRBS) from ten 

samples – the three pairs of twin T lymphocytes, normal lung and lung cancer, and normal 

breast and breast cancer16 (Supp. Table 13). For twins 041896, these corresponded to 45.5- 

and 32.7-fold coverage of 1.4 million uniquely aligning, non-repetitive MspI fragments, and 

2,146,620 and 2,033,078 CpG dinucleotides from -001 and -101 genomes, respectively 

(Table 2). Bisulphite conversion of non-CpG cytosines was >99%. Almost identical 

numbers of CpG sites were identified in the forward and reverse strands, as expected (Supp. 

Table 14). As reported for mouse, methylation levels of CpG dinucleotides in human T cells 

displayed a bimodal distribution, with most being unmethylated or methylated (>95% of 
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reads in either state) [Fig. 2a, Supp. Fig. 16]16. Approximately one quarter of CpGs were 

methylated. Over 90% of CpG sites were common to siblings within each twin pair (Table 

2). CpGs aggregated into clusters (corresponding to CpG islands16) at a ratio of 1.58 – 1.74 

CpGs per cluster. Over 92% of CpG clusters were common to siblings within each twin pair 

(Table 2 and Supp. Table 14). Highly congruent results were obtained with two alignment 

algorithms (Suppl. Table 14; Suppl. Figs. 17 and 18) and two reference genome datasets. Of 

~2 million CpGs represented by ≥10 high-quality reads in twins 041896, only two showed a 

switch between siblings from ≤20% methylated to ≥80% by ELAND and four by GSNAP, 

none of which was supported by both methods (Fig. 2b, Table 2). Likewise, 10 of 1.7 

million CpG sites in twins 230178 and 176 of 1.7 million CpG sites in twins 041907 showed 

a switch in methylation by ELAND (Fig. 2c,d, Supp.Table 15). Two CpG methylation 

switches between affected and unaffected siblings were common to twin pairs 230178 and 

41907, albeit with opposite directions of change (>80% → <20% mCpG in 041907-001 and 

-101, respectively, whereas <20% → >80% mCpG in 230178-001 and -101, at a CpG site 

9912 nt 5’ of TMEM1 and 8536 and 10,659 nt 5’ of PEX14). To put these findings in 

context, we evaluated the magnitude of methylation changes in CD4+ T cells from unrelated 

individuals, between tissues and between normal and cancerous tissue. 586 – 827 inter-

individual <20% → >80% CpG methylation differences were observed (Fig. 2e,f); 4255 – 

7180 CpG methylation shifts were observed between T lymphocytes, lung and breast tissues 

(Table 2, Fig.2i,j). Breast and lung cancers revealed 1,557 and 16,509 CpG methylation 

shifts, when compared with normal breast and lung tissue, respectively (Fig. 2g,h, Table 2). 

A second pattern of change in CpG methylation was observed in comparison of male and 

female samples: 394 CpGs were <5% methylated in 041907-001 T lymphocytes (male) but 

20 – 50% methylated in 041896-001 (female). Likewise, 406 CpG sites were <5% 

methylated in 041907-101 (male) and 20 – 50% methylated in 041896-101 (female). Of 

these, 385 and 389, respectively, mapped to Chromosome X, consistent with female X 

inactivation (Fig. 2e). Similarly, a very large number of CpG sites that were <10% 

methylated in normal lung were 20–70% methylated in lung cancer (Fig. 2h). A previous 

study has shown epigenetic differences between dizygotic twins to be qualitatively greater 

than between MZ twins29. Here we show the magnitude of epigenetic differences between 

MZ twin sibling CD4+ lymphocytes to be at least an order of magnitude less than those 

between individuals and ~3 orders less than those observed between tissues and in malignant 

transformation.

In summary, the recent GWAS-identification of novel risk loci is opening a broad window 

into genetic intricacies underpinning complex diseases. Although genetic knowledge 

remains incomplete, a new generation of sequencing and analytical tools may prove to hold 

great potential, as shown herein. Likewise, a discordant MZ twins study controls for many 

genetic and non-genetic confounders, enhancing the tractability of mechanisms in complex 

disorders. We sought genetic, epigenetic or transcriptomic differences between CD4+ T cells 

of twin siblings that might explain MS-discordance. While MS is a neurologic disease, T 

cells are fundamentally involved in its pathophysiology1. However, no reproducible 

differences in SNPs, indels, CNVs, gene expression levels or sequences aligning to viral 

genomes were detected between CD4+ T cells of co-twins. To provide analytical rigor, SNP 

and indel differences were sought using at least two different approaches and CNV 
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experiments were performed in duplicate. However, analysis of nucleotide variants was 

limited in scope by exclusion of low coverage regions and repetitive sequences (since the 

latter cannot be reliably interrogated by alignment of short reads or array hybridization), by 

moderate sensitivity for detection of structural variants of size 50 – 1500 nt (which fall 

between the resolution of sequencing and array hybridization), and limited feasibility to 

detect possible somatic mosaicism. A previous study has shown differences in selection of 

T-cell receptors after antigen stimulation between MZ twins discordant for MS30. 

Quantitative analysis of T-cell repertoire or immunoglobulin locus recombination was not 

possible at ~22X depth of aligned coverage. Progress in single molecule sequencing 

technologies with longer reads and deeper coverage should overcome many of these 

limitations in the future, as would examination of additional cellular compartments of innate 

and adaptive immunity. Additionally, deep RRBS revealed very few changes in CpG 

methylation between CD4+ T cells of twin siblings and no differences common to two or 

more twin pairs. It should be noted, however, that RRBS was limited to the investigation of 

dramatic shifts in CpG methylation in a relatively broad population of T cells. Other 

epigenetic mechanisms, differences within lymphocyte subsets, mono-allelic differences or 

other tissues were not examined. These caveats aside, however, MZ twins lacked genetic, 

epigenetic or transcriptomic differences in T cells to explain MS-discordance. A number of 

tantalizing, novel, differences were detected that will require replication and additional 

studies: 43% of eQTLs had a different direction or magnitude of imbalance in twin siblings. 

In summary, a singular genetic, epigenetic or transcriptomic mechanism underpinning MS-

discordance in MZ-twins was not detected in a study of unprecedented resolution. While 

disease discordant MZ twins appear to provide a framework for analysis of complex 

disorders that has fewer variables, additional stratification and/or concomitant measurement 

of multiple data types may be necessary to yield molecular mechanisms underpinning 

disease.

METHODS SUMMARY

The study was approved by the UCSF Institutional Review Board. Informed, written consent 

was obtained from all individuals. CD4+ lymphocytes were isolated from peripheral blood 

and nucleic acids extracted with standard methods. Two samples were obtained on different 

days from twins 041896 and single samples from the others. HLA typing was by 

AlleleSEQR (Atria Genetics) and Assign SBT software (Conexio Genomics). Genome-wide 

genotypes and CNVs were detected with Affymetrix 6.0 arrays in duplicate. Log-R ratios 

were generated with Affymetrix Genotyping Console 3.0.2 and analyzed with Nexus 

software (BioDiscovery Inc., El Segundo, CA). Short- and long-insert, paired-end libraries 

were generated from gDNA, mRNA and reduced-representation, bisulphite-treated gDNA as 

described15–18. Paired-end and singleton, 36–130 nt reads were generated using Illumina 

GAIIx instruments. Sequences were aligned principally to NCBI reference genome build 

36.3, with GSNAP and tolerance of 5% mismatches15. SNPs, indels and gene expression 

were analyzed with Alpheus using filters trained with array results15,18–20: Genomic SNP 

calling filters were >20% and >4 uniquely aligning reads with average quality score (Q) ≥20 

(Supp. Table 7). mRNA SNP calling filters were Q ≥20, presence in ≥20% and ≥2 reads and 

≥1 uniquely aligning read. Nucleotides with coverage 11–44X and Q ≥20 were genotyped 
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according to frequency cutoffs in Supp. Table 8; Genotype differences were called where 

frequencies differed by >50%. eQTLs were detected by allelic mRNA read counts differing 

from equality with χ2 p-values of <10−7. Gene expression was assessed by log2-transformed 

aligned read counts. Putative SNP differences were validated by Sanger sequencing and 

putative gene expression differences using Affymetrix Human Exon 1.0 ST arrays. Putative 

eQTLs and virus alignments were validated by quantitative PCR (with allele specificity for 

the former). Statistical analysis used JMP-Genomics (SAS Institute, Cary, NC) or R (http://

www.R-project.org).

Methods

Array-based Genotyping and CNV Detection

Genome-wide genotypes (>900,000 SNPs) and CNVs (~1.8 million probes) were detected 

with Affymetrix 6.0 arrays (Santa Clara, CA). Genomic DNA from each individual was 

tested on duplicate arrays. Log-R ratios (normalized probe intensities) were generated with 

Affymetrix Genotyping Console 3.0.2 and analyzed with Nexus software (BioDiscovery 

Inc., El Segundo, CA), which identifies CNVs with a circular binary algorithm using 

intensity data from all probes, and allele ratios from SNP probes.

Alignment of mRNA and gDNA Sequences to Reference Databases

mRNA-Seq and whole genome shotgun sequences were aligned to the NCBI reference 

genome (build 36.3) with GSNAP and tolerance of 5% mismatches15,20 (Supp. Table 2 and 

4). For definition of exon boundaries, annotations from RefSeq Transcript (downloaded 

9/2/2008) and from 5,224 non-redundant UCSC transcripts (downloaded 4/13/2009) were 

appended to Build 36.3 of the reference human genome. Long (75 – 130 nucleotides) 

genomic reads were found to align poorly using these criteria, due to low terminal quality 

scores and higher rates of mismatch. Therefore, unaligned long, genomic, paired reads were 

further aligned to the NCBI reference genome with GSNAP by trimming to paired 75 

nucleotides (nt) and tolerance of ≤10 mismatches.

mRNA-Seq and whole genome shotgun reads not mapping to the human genome were 

aligned to 2,864 NCBI viral genome sequences (release 35) with GSNAP and tolerance of 

5% mismatches. Alignments were visualized using Alpheus20 and CMTV31. High 

likelihood true alignments were identified on the basis of:

1. Significant read coverage of the viral genome;

2. Elimination of reads composed primarily of simple sequence repeats;

3. Unique read alignments;

4. Paired read alignments with correct orientation and distance separating read pairs;

5. Alignments of non-clonal reads to contiguous stretches of viral genome sequence.

Putative, novel viral sequences with average quality scores (Q) ≥20 were assembled by 

ABySS32 or by reference-guided assembly with AMOScmp-shortReads-

alignmentTrimmed33. Default parameters were used. Contigs were aligned to the NCBI nr 

database using BLASTN 2.2.21.
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mRNA-Seq Based Measurement of Gene Expression Changes

Upon alignment of mRNA-Seq reads, read counts were calculated per gene for each lane of 

sequence and log2 transformed. Distribution analysis (Supp. Fig. 4) and Mahalanobis 

differences (Supp. Fig. 6) were assessed for log-transformed read counts from each lane of 

mRNA-Seq and outlier lanes were removed. Principal component analysis (Supp. Fig. 6) 

and variance decomposition of principal components was undertaken for log-transformed 

read counts from each lane to assess sources of variability in gene expression (Supp. Fig. 7). 

Since Diagnosis (MS-affected versus non-affected) accounted for 9.4% of variance, all 

possible permutations of lanes of sequence were examined to determine whether Diagnosis-

associated variance was greater than a random permutation (experimental design file in 

Supp. Table 3). Principal component analysis and variance decomposition of principal 

components were repeated with log-transformed read counts from each lane for each 

permutation to assess permuted diagnosis-associated variance in gene expression (Supp. Fig. 

8). Since true Diagnosis-associated variance was not greater than permuted variance, genes 

differing between MS-affected and unaffected individuals were not assessed by weighted 

ANOVA.

Eland Alignment of RRBS

Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-

methylcytosine residues unaffected. Thus, alignments of 50 bp, singleton, reduced 

representation bisulphate sequences (RRBS) to the human genome are complicated by the 

simplification of the genetic code from four to three bases, except at methylcytosine (mC) 

locations. Eland-extended performs alignments of the first 32 nt of a read with up to two 

substitutions, and then extends the alignment with unlimited mismatches. Alignment of 3-

base reads (following conversion of residual cytosines to thymidines in the RRBS reads) to a 

3-base genome (following conversion of all cytosines to thymidines) with Eland-extended 

resulted in many non-unique alignments. In order to circumvent this problem, we made use 

of the fact that all RRBS start at an MspI site (which comprise the majority of CpG residues 

and large majority of CpG islands16). Thus, 3-base reads were aligned to a 3-base version of 

~3.7% of the human genome, comprising 2.3 million MspI fragments of up to 50 nt in 

length, derived from the NCBI human genome sequence, version 36.3, totaling 113 Mb in 

length (Supp. Table 16). The fragments were of two types: 133,609 fragments of 30 – 50 bp 

that were flanked by MspI sites on both ends and 2.2 million 50 bp fragments with a 5’ 

flanking MspI site (representing genomic MspI fragments of greater than 50 bp in length). 

Only unique alignments with Phred-like scores >4 (greater than 50% likelihood of being 

correct alignments) and only those starting with a 5’ thymidine (base 1 of a converted MspI 

fragment) were retained (Supp. Table 13). Alignments to fragments of less than 50 nt 

terminated at the end of the fragment. Eland does not align to MspI fragments of less than 30 

nt in length. Following alignment of converted reads, thymidine residues were corrected to 

their original sequence in the RRBS and reference, and C-to-T transitions were identified. 

Percent methylation for CpG sites was scored by the ratio of C/(C+T) calls for each C that 

was followed by a G. Percent conversion of C to T when followed by another base was used 

for estimation of bisulfite conversion rate, and was > 99.8%.
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RRBS Alignment with GSNAP

RRBS were also aligned with GSNAP to the NCBI human genome reference sequence, 

version 36.3, allowing 5% mismatches and without penalizing C-to-T transitions (Supp. 

Table 13). Since GSNAP reports only the best alignments (those with the fewest 

mismatches) using the entire 50 nt alignment, unique alignments were possible using the 

entire genome without penalizing C-to-T transitions. % methylation was assessed for CpG 

sites with at least 10-fold coverage, based on all alignments (i.e. not restricted to unique). 

Only CpG sites within MspI fragments were considered. For identification of differences 

between subjects from “largely methylated” to “largely unmethylated”, we sought positions 

where there was at least 80% cytosine in one subject and less than 20% cytosine in the other.

GSNAP is a short-read alignment program based on GMAP that employs a hash table and a 

compressed version of the reference genome, which is constructed once for that genome34. 

The reference may include arbitrary contigs (up to 4 billion), so that one may also align to a 

reference transcriptome, with redundancy allowed among the contigs. The hash table 

contains the locations of a given 12-mer in the genome, subject to sampling. The sampling 

step occurs during pre-processing of the genome, so that genomic locations are stored only 

for every third 12-mer in the genome. Sampling is needed to reduce the memory footprint of 

the program below 4 gigabytes for a human-sized genome. GSNAP can handle short reads 

of > 24 or more nt, with each read in the input potentially having a varying length. There is 

theoretically no upper bound on the length of the query sequence, except that this bound is 

compiled into GSNAP by default at 200 nt; longer sequences can be handled simply by 

changing this constant at compile time.

GSNAP has specialized algorithms for identifying exact mappings, one-mismatch mappings, 

multiple-mismatch mappings, and indel mappings (including a user-specified number of 

mismatches). Exact mappings are identified by taking the intersection of genomic positions 

over a spanning set of 12-mers in the query sequence. The spanning set must contain 12-

mers in the same phase modulo 3, to account for the sampling used in pre-processing the 

genome, so the program must test each of the three possible phases. For spanning set 

members that overhang the ends of the query sequence by 1 or 2 nt, the relevant genomic 

positions can be obtained by substituting 1 or 2 wildcard nt, respectively, and taking the 

union of genomic locations in the hash table.

Candidates for one-mismatch mappings are similarly identified by computing an incomplete 

intersection, in which one 12-mer in the spanning set does not contain the given genomic 

location. These candidate genomic mappings are then compared against a compressed 

version of the genome to verify that only one mismatch was present.

Candidates for multiple-mismatch mappings are determined by processing a sorted list of 

genomic locations from all 12-mers in the query sequence. This sorted list is computed 

efficiently using a heap-based priority queue. For each candidate genomic location, a floor 

on the number of mismatches can be computed from the pattern of query positions of the 12-

mers that match the genomic location. Candidates with a sufficiently low floor (based either 

on a user-specified limit or on the best mapping determined so far) are then compared 

against the compressed genome to determine the actual number of mismatches.
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For identifying indel mappings, GSNAP accumulates partial genomic alignments during the 

multiple-mismatch algorithm, where a partial alignment can be supported by a single 12-mer 

in the query sequence. These partial alignments are then scanned in genomic order to 

identify pairs that are sufficiently close to constitute a candidate indel, where the default 

distances are 30 nt for an insertion and 12 nt for a deletion. These candidate pairs are then 

compared against the compressed genome to determine the number of mismatches. To 

identify indels occurring at either end of the query sequence, the program computes floors 

that exclude the 12-mers on either end. Candidates with a sufficiently low floor are then 

compared against the compressed genome to identify a possible indel at the end and to count 

the actual number of mismatches.

Although GSNAP allows repetitive regions of the genome to be masked before building the 

genomic data structure, in typical usage (as herein) the genome is not pre-masked. 

Therefore, GSNAP is able to align sequences to redundant regions in the genome, including 

repetitive regions, and report all such alignments. In default mode (as herein), the program 

reports only the best alignments, those with the fewest mismatches, although the program 

also can be run to identify and report suboptimal alignments. GSNAP differs from ELAND 

in that it processes the reference genome first, constructs a hash table of the genome, and 

then aligns the short reads to the genome. In contrast, ELAND processes the short reads 

first, constructs a hash table of the short reads, and then scans the genome to find matches.

Identification of Optimal Bioinformatic Filters for SNP Detection and Genotyping

SNP detection in Illumina GAII sequences is complicated by relatively high sequencing 

error rates, particularly at nucleotides 50 – 130 using the chemistry and base calling software 

available during the first half of 2009. SNP genotyping in Illumina GAII sequences is 

complicated by a continuous, albeit trimodal, distribution of frequencies of SNP- and 

reference sequence-containing reads at a given location (Supp. Figure 12). In order to 

translate SNP- and reference sequence-containing read frequencies into genotypes and to 

understand the sensitivity and specificity of SNP detection and genotyping, comparisons 

between array-based SNP genotypes and sequencing results were performed extensively. 

Unambiguous SNP genotypes from duplicate array hybridizations (with SNP calls and 

concordant genotypes in both replicates) were assessed to be true. Subsets of SNPs common 

to Affymetrix 6.0 arrays and sequence datasets were identified. Optimal SNP genotyping 

filters (those with maximal positive predictive value (PPV) and near-optimal sensitivity) for 

each sequence dataset were identified by determining the number of true positives, false 

positives and false negatives and determining the PPV and sensitivity of all combinations of 

the following criteria: number of reads calling the SNP, number of uniquely aligning reads 

calling the SNP, % reads calling the SNP, average quality score (Q), and minimum quality 

score. To detect changes in SNP genotype, each possible genotype in a diploid genome was 

modeled (homozygous reference allele, heterozygote, and homozygous variant allele) and 

the optimal change in allele frequency was determined. Resultant filters are shown in Supp. 

Tables 7 and 8. These methods represent a refinement of those used previously15, and 

which were extensively validated by Sanger resequencing and genotyping arrays.

Baranzini et al. Page 11

Nature. Author manuscript; available in PMC 2010 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identification of Allele-Specific Expression

Allele-specific expression in mRNA sequences was identified by methods similar to those 

described25. Frequencies of frequencies of SNP- and reference sequence-containing reads at 

a given heterozygous location in mRNA sequences are continuous, albeit unimodal (Supp. 

Figure 12), reflecting both random reference and variant-containing read sequencing, effects 

of clonal reads and allele-specific expression. Unambiguous heterozygous SNP locations in 

each individual were determined based on duplicate array hybridizations (with SNP calls 

and concordant genotypes in both replicates) and by the SNP calling criteria developed 

above. Allele-specific expression effects were assessed by application of genome-wide p 

values to significance testing of deviation from 50:50 read frequencies. Artifactual allele-

specific expression associated with enrichment of clonal reads was evaluated for many, 

putative allele-specific expression SNPs by visualization of start and stop sites of reads 

using Alpheus. Artifactual allele-specific expression associated with bias in GSNAP 

alignment of reads containing or lacking specific SNPs was evaluated as discussed above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of genomic locations of heterozygous cSNPs exhibiting imbalanced allelic 
expression in mRNA of twins 041896-001 (a) and -101 (b)
Allelic imbalance was detected in cSNPs called by ≥10 gDNA reads with Q ≥20 and where 

20–80% of uniquely aligning gDNA reads called the SNP, together with detection in ≥10 

mRNA reads with Q ≥20. 268 of 14,461 heterozygous cSNPs (1.9%) showed significant 

allelic imbalance in expression (p < 10−7), of which 153 (57%) were of the same magnitude 

and direction in both subjects.
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Figure 2. Comparisons of methylation of genomic CpG sites in CD4+ lymphocytes and breast 
and lung tissue samples
a, Frequency distribution of CpG site methylation in 041896-001 (blue) and -101 (red) using 

ELAND-extended. b-j, Pairwise comparisons of CpG site methylation using ELAND-

extended in CD4+ lymphocytes from MZ twin siblings 041896-001 and -101 (b), 

230178-001 and -101 (c) and 041907-001 and -101 (d); inter-individual differences between 

CD4+ lymphocytes from 041896-001 and 041907-001 (e) and 041896-001 and 230178-101 

(f); neoplastic differences between breast tissue and breast cancer (g) and between normal 
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lung tissue and lung cancer (h); and between-tissue differences between CD4+ lymphocytes 

and breast tissue (i) and lung tissue (j).
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