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SUMMARY

A decade of genome sequencing has transformed our understanding of how trypanosomatid parasites have evolved and
provided fresh impetus to explaining the origins of parasitism in theKinetoplastida. In this review, I will consider the many
ways in which genome sequences have influenced our view of genomic reduction in trypanosomatids; how species-specific
genes, and the genomic domains they occupy, have illuminated the innovations in trypanosomatid genomes; and how
comparative genomics has exposed the molecular mechanisms responsible for innovation and adaptation to a parasitic
lifestyle.
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INTRODUCTION

Trypanosomatids are unicellular flagellates and
obligate parasites that infect various animals and
plants. They include Trypanosoma and Leishmania,
species of which cause potent vector-borne diseases
in humans, livestock and wildlife; diseases that are
responsible for substantial mortality and morbidity
across the world. Trypanosoma cruzi causes Chagas
disease in South and Central America; Trypanosoma
brucei causes Human African Trypanosomiasis in
sub-Saharan Africa (and, along with related species, a
similar disease in livestock); while Leishmania spp.
cause various forms of leishmaniasis in humans.
Other species of Trypanosoma and Leishmania infect
a wide range of vertebrate hosts, and all are
transmitted by invertebrate vectors; predominantly
these are biting insects, although some aquatic
species are transmitted by leeches (Lom, 1979).
Phytomonas spp. are plant parasites transmitted by
phloem-sucking insects and are occasionally an
agricultural problem in South and Central America
(Camargo, 1999). Besides these dixenic (i.e. two-
host) parasites that cycle between insect/leech and
vertebrate/plant hosts, the trypanosomatids include
various other genera, such as Crithidia, Leptomonas,
Herpetomonas, Angomonas and Strigomonas that are
cosmopolitan, monoxenic (i.e. one host) parasites of
insects (Maslov et al. 2013). The diverse associations
of trypanosomatids indicate that the origin of
parasitism is singular and ancient (Simpson et al.
2006).

The order Trypanosomatidae is one part of the
phylum Kinetoplastida; most other Kinetoplastids
live freely or as commensals in marine, terrestrial and
aquatic environments. The current consensus on
Kinetoplastid phylogeny is summarized in Fig. 1;
trypanosomatids are monophyletic and the sister
clade to eubodonids (Callahan et al. 2002; Simpson
et al. 2004; Moreira et al. 2004; von der Heyden
et al. 2004; Deschamps et al. 2011). The closest
known relative among eubodonids is Bodo saltans,
a free-living bacteriovore of terrestrial and fresh-
water microbiota. Hence, the phylogeny indicates
that parasitism in trypanosomatids had a single
origin; although the position of the fish parasites
Cryptobia spp. and Ichthyobodo spp. show that
parasitism has appeared on other occasions within
the Kinetoplastida (Simpson et al. 2006; von der
Heyden et al. 2004). This is the context in which
I review the contribution of trypanosomatid genome
sequences to our understanding of how parasitism
evolved and subsequently diversified.

Since the publication of the ‘TriTryp’ genome
sequences for T. cruzi, T. brucei and Leishmania
major in 2005 (Berriman et al. 2005; El-Sayed et al.
2005a; Ivens et al. 2005), there has been much
comparative analysis of these seminal resources.
They have been complemented by transcriptomic
(Holzer et al. 2006; Leifso et al. 2007; Saxena et al.
2007; Rochette et al. 2008, 2009; Alcolea et al. 2009,
2010;Depledge et al. 2009; Jensen et al. 2009;Kabani
et al. 2009; Minning et al. 2009; Veitch et al. 2010;
Adaui et al. 2011) and proteomic analyses (Atwood
et al. 2005; Rosenzweig et al. 2008a,b; Alcolea et al.
2011; Eyford et al. 2011; Urbaniak et al. 2012; Butter
et al. 2013) of gene expression at various life-cycle
stages. Genome sequences for additional species of
Trypanosoma (Jackson et al. 2009, 2012), Leishmania
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Trypanosoma brucei   D  v �

Trypanosoma vivax  D  v �

Trypanosoma congolense D  v �

Trypanosoma cruzi  D  v �

Trypanosoma theileri D  v  �

Trypanosoma rangeli D  v �

Trypanosoma grayi  D  v �

Angomonas deanei  M  i �

Strigomonas culicis   M  i �

Leptomonas pyrrhicoris M  i �

Leishmania panamensis D  v �

Leishmania australensis D  v �

Leishmania tarentolae D  v �

Leishmania braziliensis D  v �

Leishmania donovani D  v �

Leishmania mexicana D  v �

Leishmania major  D  v �

Leishmania infantum D  v �

Crithidia fasciculata  M  i �

Bodo saltans   FL   �

Cryptobia 
(Trypanoplasma) borreli D  v �

Ichthyobodo necator  D  v �

Phytomonas serpens  D  p �

Paratrypanosoma 
confusum   M  i �
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Fig. 1. Kinetoplastid phylogeny. A cladogram depicting the current consensus on Kinetoplastid phylogenetic
relationships (adapted from von der Heyden et al. 2004; Simpson et al. 2004, 2006; Deschamps et al. 2011; Flegontov
et al. 2013). Each bodonid order is shown as a grey triangle, representing an indeterminate, but large, number of species.
The status of genome sequencing projects for each named species is indicated by filled circles (black: finished; dark grey:
unfinished draft; light grey: sequencing in progress). The life cycle of each species is indicated (D: dixenic; M:
monoxenic; FL: free-living), as well as the host type(s) (v: vertebrate; i: insect; p: plant). ESBC: ‘Endosymbiont-bearing
clade’.
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(Peacock et al. 2007; Downing et al. 2011; Rogers
et al. 2011; Raymond et al. 2012; Real et al. 2013) and
Phytomonas (Porcel et al. 2014) have been produced,
with several more in progress (see Fig. 1).

Comparison of the Tritryp genomes showed that
both gene order and gene repertoire are broadly
conserved within chromosomal cores (El-Sayed
et al. 2005b). It is generally thought that the
considerable co-linearity displayed by trypanosoma-
tid genomes, despite their apparently ancient diver-
gences, reflects strong and fundamental selective
constraints on genome structure (Ghedin et al.
2004). Analysis of gene order conservation across
Eukaryotic genomes indicates that highly conserved
gene pairs are retained for both functional and
transcriptional regulation (Dávila-López et al.
2010). While there is little to suggest that the
conserved proximity of genes in trypanosomatids
reflects their shared or related functions, it has been
suggested that their polycistronic organization ne-
cessitates the co-directionality of replication and
transcription (Ghedin et al. 2004), and that this
structural peculiarity of trypanosomatids (the cause
of which remains unsolved), is responsible for the
strong purifying selection that maintains gene order.

Beyond the chromosomal cores, within sub-
telomeric regions for instance, there are numerous
species-specific features (El-Sayed et al. 2005b).
From the outset it was appreciated that these genes
are very often associated with disease mechanisms
(El-Sayed et al. 2005b) and are the basis for the
distinctive cell surface architectures displayed by
each parasite (Acosta-Serrano et al. 2007; Handman
et al. 2008). Thus, after 10 years of comparative and
experimental analysis of these genomes the principal
genomic features that distinguish the stem trypano-
somatid lineages, and which are most likely to have
been instrumental in the evolution of parasitism, are
apparent.

GENOMIC REDUCTION

Parasites were once thought to be ‘degenerate’; while
this view is no longer prevalent, it remains intuitive
that some characters vital to free-living organisms,
but no longer necessary for parasites within a host
environment, are lost when the selection pressure to
retain them is removed.Hence, we expect phenotypic
reduction, which is often observed of parasites, to be
reflected in genomic reduction. For example, the
genomes of both schistosomes and cestodes, which
are phenotypically reduced relative to free-living
platyhelminthes, lack elements of canonical metazoan
metabolism and developmental regulation (Berriman
et al. 2009; Tsai et al. 2013). Genome reduction
reaches its apogee in the microsporidian parasites,
which in some cases have reduced their genomes to
the physiological minimum required for life, and this
corresponds with their extreme host dependence

(Nakjang et al. 2013). At such extremes, we also
observe physical compaction of the genome, in addi-
tion to the loss of genes (Keeling and Slamovits,
2005).

Trypanosomatids do not appear to be reduced
physically; the size of their genomes (25–35mb in the
haploid state) and the gene density (2·8–4·6 Kb/gene)
is comparable with free-living unicellular eukaryotes,
for instance Saccharomyces cerevisiae (12·5 mb/
2·09 Kb/gene) and Dictyostelium discoideum
(33·8 mb/2·72 Kb/gene). However, trypanosomatid
genomes might still be functionally reduced, having
lost genes essential to free-living Kinetoplastids.

Before the advent of genome sequences, it was
known that trypanosomatids lacked certain common
metabolic capabilities. For example, they are auxo-
trophic for pteridine and folate, which are essential
co-factors in macromolecule biosynthesis, because
they lack the ability to synthesize tetrahydrobiopterin
(Beck and Ullman, 1990, Bello et al. 1994, Nare et al.
1997; Ouellette et al. 2002). Similarly, they must
scavenge haem from their hosts (or obtain it from
bacterial endosymbionts; Alves et al. 2011), because
they lack a native haem biosynthesis pathway (Chang
et al. 1975; Korený et al. 2010). Trypanosomatids
are also auxotrophic for purines (Marr et al. 1978;
Gutteridge and Gaborak, 1979), vital in the bio-
synthesis of nucleic acids and energy metabolism.
Other aspects of model eukaryotic physiology are also
absent, for example, a system of redox homoeostasis
based on catalase and glutathione reductase. Instead,
trypanosomatids rely on a unique thiol-based
redox metabolism based on trypanothione for the
deactivation of oxidizing agents (Oza et al. 2005;
Krauth-Siegel and Comini, 2008; Comini and Flohé,
2013). The initial Tritryp comparison showed that
trypanosomatids do not possess receptor-linked
tyrosine kinases (Parsons et al. 2005), canonical
mitochondrial import systems (Pusnik et al. 2009),
known telomere end binding proteins such as
POT1 (Lira et al. 2007), certain genes that regulate
autophagy (Herman et al. 2006) and others controll-
ing apoptosis (i.e. TNF-related family receptors,
Bcl-2 family members and caspases; Smirlis et al.
2010).

The question relating to these and any other
missing features is whether they represent evolution-
ary losses, or instead, reflect the branching position
of the Kinetoplastida in the eukaryotic phylogeny.
It may be that certain widely conserved genes are
absent from trypanosomatids because Kinetoplastids
separated from other eukaryotic lineages early in
evolutionary history and before those genes evolved.
Furthermore, it could be that we have systematically
underestimated genomic and physiological diversity
in eukaryotes, and the apparent deficiencies of
trypanosomatids reflect a biased perception based
on a narrow sampling of animal and plant genomes.
In short, the absence of ‘typical’ features from
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trypanosomatids need not represent evolutionary
loss. In fact, detailed comparisons in the years
following publication of the Tritryp genome se-
quences showed that, while trypanosomatids often
lack some conserved features and have numerous
clade-specific derivations, they are nevertheless com-
parable to free-living protists in the number and
diversity of protein kinases (Parsons et al. 2005; Bahia
et al. 2009), phosphatases (Brenchley et al. 2007),
GTPases and other genes involved in intracellular
trafficking (Field, 2005; Field et al. 2007) and DNA
helicases (Gargantini et al. 2012).
In summary, these genomes are not reduced in size

or substantially reduced in function. While trypano-
somatids employ unique solutions in redox homo-
eostasis, mitochondrial protein import and telomere
regulation, they nonetheless have a broadly typical
eukaryotic physiology. Where there are disparities,
it is not clear whether these genes were lost or never
existed and this will only become clear after we have
sampled the genomes of free-living Kinetoplastids
for comparison. Instead, there is abundant evidence
that trypanosomatid genomes have expanded during
their evolution both physically, through the evol-
ution of sub-telomeres and accessory chromosomes,
and functionally, with the acquisition of new genes
through duplication and horizontal gene transfer.

GENOMIC INNOVATION: SPECIES-SPECIFIC GENE

FAMILIES

Trypanosomatid cell surfaces include various poly-
morphic proteins combined with diverse glycolipid
conjugates (Ferguson, 1997). These structures are
enigmatic and their origins are mysterious because
they are not seen in other organisms; indeed,
the highly abundant cell-surface glycoproteins
of T. brucei, T. cruzi and L. major are mutually
exclusive, making it very hard to infer what the
ancestral cell surface looked like (El-Sayed et al.

2005b). The Tritryp genomes revealed the genes that
encode these surface features and their non-random
distribution in the genome, which has been reviewed
in detail elsewhere (Acosta-Serrano et al. 2007;
Handman et al. 2008; De Pablos and Osuna, 2012).
These cell surface proteins attract considerable
interest because they are implicated in disease,
virulence and mechanisms of pathogenesis (De
Pablos and Osuna, 2012). Species-specific genes
provide the clearest insight into genomic innovations
associated with parasitism and the multi-copy gene
families that encode these cell surface proteins
dominate such species-specific genes in comparative
analyses (El-Sayed et al. 2005b).
The life cycles of the Tritryp species and the points

at which species-specific cell surface proteins are
expressed are shown in Fig. 2. Species-specific genes
in T. cruzi are dominated by gene families that
encode the mucin-based surface coat during its
trypomastigote stage (Cerqueira et al. 2008;
Nakayasu et al. 2009; De Pablos and Osuna, 2012);
primarily mucins (TcMUC; Acosta-Serrano et al.
2001; Buscaglia et al. 2006) and trans-sialidases (TS;
Kim et al. 2005; Montagna et al. 2006; Freitas et al.
2011; Oppezzo et al. 2011; Ammar et al. 2013;
Oliveira et al. 2014), but also a ‘dispersed gene
family’ (DGF-1; El-Sayed et al. 2005b; Kawashita
et al. 2009; Lander et al. 2010), the mucin-associated
surface protein family (MASP; El-Sayed et al. 2005b;
Bartholomeu et al. 2009; dos Santos et al. 2012), and
the T. cruzi Trypomastigote Alanine, Serine and
Valine-rich proteins (TcTASV; García et al. 2010;
Bernabó et al. 2013). Gene families specifically
expressed in the other life stages include amastin in
the intracellular amastigote stage, and T. cruzi Small
MUcin-like Genes (TcSMUG; Urban et al. 2011)
in the replicative epimastigote. In addition to these
developmentally regulated, surface-expressed gene
families, expansions of Retrotransposon Hotspot
(RHS) genes and Elongation Factor 1 gamma

BARP

VSG

BARP-like

Procyclin E
pi

m
as

tig
ot

e

Tr
yp

om
as

tig
ot

e

Amastigote

Metacyclic

TcMUC

MASP

TS

TcTASV

MSP

TcSMUG

Metacyclic
promastigote

Am
as

tig
ot

ePSA

MSP

LPG/GIPL

δ-amastin

Le
pt

om
on

ad
 

pr
om

as
tig

ot
e

MSP

MSP

MSP MSP

T. brucei T. cruziL. major

PSA
LPG/GIPL

VSG

Epimastigote

P
ro

cy
cl

ic

Metacyclic

Blo
od

st
re

am
 

fo
rm

EF1γ

Migrates
posteriorlyMigrates

anteriorly

Migrates
anteriorly

Insect 
midgut

Vertebrate
bloodstream

Insect 
midgut

Insect 
foregut

Vertebrate
bloodstream

Macrophage

Insect 
midgut

Insect 
hindgut

Vertebrate
bloodstream

Diverse
tissues

Insect 
mouthparts

δ-amastin

Fig. 2. Trypanosomatid life cycles. Each circle represents the movement of parasites between insect (black) and
vertebrate (white) hosts, showing the transition of parasite life stages, the position of each stage within the hosts and the
timing of expression of cell surface-expressed protein families mentioned in the text. Note that for T. brucei and
L. major, the parasites move anteriorly from the insect gut as they develop, while T. cruzi migrates posteriorly as it
prepares for transmission into the vertebrate.

S43Genome evolution in trypanosomatids

https://doi.org/10.1017/S0031182014000894 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182014000894


(EF1γ) genes are prominent innovations of the
T. cruzi genome.

In T. brucei, species-specific genes are dominated
by those encoding the Variant Surface Glycoproteins
(VSG) that form the surface glycocalyx of all
salivarian trypanosomes during their bloodstream
stage in the mammal host (Hutchinson et al. 2007;
Marcello and Barry, 2007; Jackson et al. 2012;
Weirather et al. 2012; Hall et al. 2013). Other
species-specific genes like the Invariant Surface
Glycoprotein (ISG) genes (Jackson et al. 1993;
Ziegelbauer and Overath, 1993) and Expression-
Site Associated Genes (ESAGs; Pays et al. 2001; see
below) are also preferentially expressed in the blood-
stream stage. In the insect host, species-specific genes
are dominated by procyclin, encoding the major
surface glycoprotein of the procyclic stage while in
the insect midgut (Roditi et al. 1998; Berriman et al.
2005), and the Brucei Alanine-Rich Protein (BARP)
that, along with related forms, is specifically ex-
pressed by the epimastigote and metacyclic stages
while in the insect mouthparts (Urwyler et al. 2007;
Jackson et al. 2013).

The cell surface of Leishmania is dominated by
non-protein lipophosphoglycan (LPG) and glycoi-
nositolphospholipid (GIPL) molecules (de Assis
et al. 2012). The LPG/GIPL coat is complemented
by species-specific, multi-copy proteins such as
δ-amastin, which is specifically expressed during
the intracellular amastigote stage (Rochette et al.
2005). While its function is unknown, the evolution
of δ-amastin is thought to be an adaptation for
infection of, or survival within, macrophages since it
is absent from monoxenic species (Crithidia and
Leptomonas spp.) lacking a vertebrate stage (Jackson,
2010) and less abundant in Leishmania species that
do not routinely infect macrophages (Raymond
et al. 2012). Furthermore, a parallel expansion of
δ-amastin has occurred in T. cruzi, which also has
an amastigote stage, and this is associated with viru-
lence (Kangussu-Marcolino et al. 2013). Another
Leishmania-specific family, tuzin (Ivens et al. 2005),
is linked to δ-amastin loci physically and phylogen-
etically (Jackson, 2010); hence, tuzin might be
involved in the same adaptation. In the insect life
stage, the promastigote surface antigen (PSA or gp46)
is preferentially expressed in metacyclic promasti-
gotes (Handman et al. 1995) and is encoded by a
diverse gene family in human-infecting species
(Devault and Bañuls, 2008). Also specifically ex-
pressed in metacyclics are the HASP (Hydrophilic
Acylated Surface Protein) and SHERP (Small
Hydrophilic ER-associated Protein) gene families
(Depledge et al. 2010; Sádlová et al. 2010).

While the precise functions of these enigmatic gene
families are unknown, several contribute to parasite
fitness. This may be because they initiate infection,
for instance, the TcMUC and TS proteins interact to
transfer host sialic acid residues to parasite mucins,

which is essential for attachment and invasion by
T. cruzi trypomastigotes (Acosta-Serrano et al. 2001;
Oliveira et al. 2014). Other cell surface protein
families are essential for parasite development and
transmission through the insect host; for example,
HASP and SHERP are required for L. major to form
infective metacyclics while in the insect foregut
(Sádlová et al. 2010). However, given their promi-
nent roles at the cell surface, most of these species-
specific proteins are likely to have immunological
roles. These may be in suppressing innate responses,
for example by degrading antimicrobial peptides
or other effectors of complement-mediated lysis, as
has been shown for PSA (Lincoln et al. 2004), or in
manipulating cell-mediated immune responses. For
instance, TcMUC represses T-cell expansion and
cytokine production (Nunes et al. 2013). Salivarian
trypanosomes employ VSG in antigenic variation,
and have evolved sophisticated mechanisms for
regulating VSG expression (see below). The abun-
dance and variety of TcMUC, TS and MASP genes
has led some to suggest that a subtler form of
antigenic variation operates in T. cruzi as well
(Buscaglia et al. 2004, 2006; dos Santos et al. 2012).

GENOMIC INNOVATION: CONTINGENCY ZONES

Trypanosomatids have substantially modified the
genome to accommodate these abundant families of
cell-surface effectors, by creating genomic sub-
domains segregated from the core genome by
distance, but also by sequence composition and
epigenetic modification (Figueiredo et al. 2009;
Rudenko, 2010). We can call these sub-domains
‘contingency zones’ because they provide the en-
vironment for flexible expression of what are known
as contingency genes (Deitsch et al. 1997). In this
trypanosomatids are not alone; diverse parasites
possess polymorphic effector protein families that
display specialized expression profiles across a wide
range of physiological conditions (Deitsch et al. 1997;
Kissinger and DeBarry, 2011). It has often been
observed that contingency genes aggregate towards
the telomeres, a position that promotes both the
specific regulation of their expression and their
diversification through recombination and gene
duplication (Barry et al. 2003; Kissinger and
DeBarry, 2011). Thus, both T. brucei and T. cruzi
have expanded sub-telomeric regions to contain and
regulate their diverse contingency genes (Berriman
et al. 2005; El-sayed et al. 2005a,b; Moraes Barros
et al. 2012). It is likely that the strand-switch regions
that occur between polycistrons on trypanosomatid
chromosomes also serve as incubators of novelty,
since they often harbour species-specific genes
(Peacock et al. 2007; Jackson et al. 2009).

Perhaps the best example of structural innovation
in trypanosomatid genomes is the VSG expression
site (ES) inT. brucei. African trypanosomes evade the
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humoral immune response by periodically switching
the VSG monolayer that masks their cell surfaces.
This demands that only a single VSG is expressed at
a time, while all others are silenced (i.e. monoallelic
expression). The function of the ES is to ensure
monoallelic expression by providing a dedicated
locus for VSG transcription. Thus, the active VSG
is transcribed solely from one of several, alternative
ESs and antigenic switching occurs when a different
VSG from among the many hundreds of silent, sub-
telomeric loci, replaces the ES copy through ectopic
gene conversion, or by activating an alternative
ES (Horn and McCulloch, 2010; Rudenko, 2011).
Analysis of ES sequences from several T. brucei
strains has identified a canonical ES structure
(Graham et al. 1999; Berriman et al. 2002; Hertz-
Fowler et al. 2008), which includes not only the VSG
and repeat sequences required to promote recombi-
nation with sub-telomeric VSG loci, but also the
ESAGs (reviewed in Pays et al. 2001;McCulloch and
Horn, 2009). The functions of most ESAGs are
unclear; however, all are transcribed preferentially in
the bloodstream stage (Jensen et al. 2009; Siegel et al.
2010; Veitch et al. 2010) and it is known that they are
T. brucei-specific innovations, often derived from
conserved gene families with pre-existing cell surface
roles (Barker et al. 2008; Barnwell et al. 2010; Salmon
et al. 2012; Jackson et al. 2013). Hence, it may be that
they support antigenic variation or that the specific
regulatory environment of the ES has been exploited
secondarily to up-regulate proteins with established
and diverse roles during the bloodstream stage.

GENOMIC INNOVATION: THE MAJOR SURFACE

PROTEASES

Alongside the many species-specific cell surface
proteins, there is one family conserved in all
trypansomatid genomes that must have experienced
substantial evolution since the origin of parasitism.
The Major Surface Protease (MSP) gene family
encode a range ofmetalloproteases that are implicated
in various aspects of pathogenesis and virulence in
Leishmania (Yao, 2010). MSP subverts the normal
host defensive mechanisms by degrading compo-
nents of immune cell signalling pathways (Gomez
et al. 2009; Hallé et al. 2009; Contreras et al. 2010),
and suppresses other aspects of innate immunity
(Kulkarni et al. 2006; Lieke et al. 2008). In
Trypanosoma, MSP is equally abundant in gene
copy number and protein abundance but its function
is less well understood; it is known to remove the
VSG coat from the T. brucei surface during differ-
entiation into the procyclic form (PCF) (Grandgenett
et al. 2007) and is thought to have a role in cell
invasion by T. cruzi (Cuevas et al. 2003; Kulkarni
et al. 2009). As it is present in all trypanosomatids,
we can infer the diversification of MSP from its

phylogeny, and this too indicates that MSP has been
instrumental in parasite adaptation.
The MSP phylogeny is described in Fig. 3. It

shows how, beginning from a much smaller gene
repertoire,MSP has differentiated into distinct clades
in both Leishmania and Trypanosoma (Victoir et al.
2005; Ma et al. 2011); each clade is associated with a
conserved locus, and we know that some of these
distinct lineages are developmentally regulated (Yao,
2010). For instance, MSP-A and MSP-C are up-
regulated in bloodstream form (BSF)T. brucei, while
MSP-B is predominantly seen in the procyclic form
(LaCount et al. 2003; Urbaniak et al. 2012). Hence,
the trypanosomatids have elaborated their MSP
repertoire by creating new loci at least in part to
regulate function during the life cycle. Moreover,
these different forms have been duplicated to create
multiple isoforms, often in species-specific ways; for
instance, MSP-C is polymorphic in Trypanosoma
vivax while single copy in other salivarian species,
and the single-copyMSP gene found on chromosome
28 in Leishmania has been greatly expanded in
Phytomonas. However, the phylogeny also demon-
strates that MSP in Leishmania and Trypanosoma
cluster by genus, and therefore, there is no ortholo-
gous MSP shared by all. Thus, MSP repertoires in
Leishmania and Trypanosoma have evolved indepen-
dently, and their similarities in genomic structure,
developmental regulation and pathogenesis represent
parallel evolution, reflecting a common need for
diverse surface proteases throughout trypanosomatid
diversification.

DEVELOPMENTAL REGULATION OF GENE

EXPRESSION

Trypanosomatids display morphological plasticity
that is often associated with developmental transition
through a complex life cycle. This is important
for the origins of parasitism but not an issue that
comparative genomics can illuminate dramatically,
without including a comparator lacking develop-
mental complexity. The recent discovery of
Paratrypanosoma confusum parasitizing the gut of a
Culex pipiens mosquito strengthens the argument
that the ancestral trypanosomatid was a monoxenic
insect parasite, since P. confusum is a robust out-
group to all other trypanosomatids (Flegontov et al.
2013). As long as P. confusum has no second host, this
shows that a dixenic life cycle has evolved on three
separate occasions in Trypanosoma, Leishmania and
Phytomonas. Trypanosomatids are capable of as-
suming multiple developmental forms and transition
between forms coincides with passing between
distinct environments, whether they are in different
hosts or a single host, for example from the hindgut
to the foregut of an insect. Experimental approaches
are beginning to reveal the non-coding sequences
(Bringaud et al. 2007; Holzer et al. 2008; Smith et al.
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2009; Li et al. 2012; Pastro et al. 2013) and RNA-
binding proteins (reviewed in Kolev et al. 2014) that
interact to regulate gene expression, as well as genes
specifically required for differentiation from one life
stage to another (Goldenberg and Avila, 2011; Kolev
et al. 2012; Rico et al. 2013). Comparison of life-
stage-specific transcriptomes (Holzer et al. 2006;
Leifso et al. 2007; Saxena et al. 2007; Rochette et al.
2008, 2009; Alcolea et al. 2009, 2010; Depledge et al.
2009; Jensen et al. 2009; Kabani et al. 2009; Minning
et al. 2009; Veitch et al. 2010; Adaui et al. 2011;) and
proteomes (Atwood et al. 2005; Rosenzweig et al.
2008a,b; Alcolea et al. 2011; Urbaniak et al. 2012;
Gunasekera et al. 2012; Butter et al. 2013) in various
species have estimated the proportion of genes
showing preferential expression in the insect or
vertebrate stages to be between 2 and 44%; the
breadth of these values reflects the diverse conditions
and approaches employed. However, it is clear that a
significant minority of genes are developmentally
regulated. We can predict that this regulation is
achieved with layers of interaction between genomic
loci, mRNA, non-coding RNA and DNA and
RNA-binding proteins. Hence, to understand the
origins of complex life cycles we will need to
compare the interaction networks of free-living,
monoxenic and dixenic Kinetoplastids, and in this
P. confusum and the free-living Bodo saltans will be
instrumental.

MECHANISMS OF GENOMIC EVOLUTION: GENE

DUPLICATION

Besides the genomic innovations themselves, com-
parative analysis also reveals the molecular mechan-
isms that create them. These evolutionary events
range in size from single amino acid substitutions to
chromosomal duplications, and include both coding
and non-coding regions, but it is gene duplication
above all that creates the raw material for evolution-
ary novelty (Ohno, 1970). After duplication, paralogs
may acquire new functions (neofunctionalization),
segregate existing functions (subfunctionalization) or
lose function under mutation pressure (pseudogen-
ization) (Lynch and Conery, 2000). Since develop-
mental regulation of gene expression is widespread, it
is unsurprising that many gene duplicates are
distinguished in the timing or location of their
expression. For example, TcMCA5 is an epimasti-
gote-specific metacaspase implicated in programmed
cell death of T. cruzi that has evolved from a
constitutively expressed metacaspase gene family
(Kosec et al. 2006). In Leishmania, Zinoviev et al.
(2012) identified two functionally redundant RNA
helicases that have evolved purely to perform the
same role in insect and vertebrate stages respectively.
By contrast, TcPRACA and TcPRACB are two
paralogous proline racemases involved in immune-
suppression by T. cruzi (Reina-San-Martín et al.

2000); here, function is segregated by location,
TcPRACB being expressed intracellularly and
TcPRACA secreted (Chamond et al. 2005).
Of course, the derivation of many gene duplicates

may be multifactorial; in the example of proline
racemases, secretion of TcPRACAmay coincide with
a new role in the differentiation of infective meta-
cyclics (Chamond et al. 2005). Thus, it is difficult
to unambiguously distinguish neofunctionalization
from the segregation of the same function by time,
space or substrate. However, the transferrin receptor
(TFR) in T. brucei, which is required for salvaging
haem from the host and is homologous to the VSG
(Salmon et al. 1997), is one example. Recently, it was
confirmed that the TFR had evolved from an a-type
VSG in the ancestor of T. brucei and Trypanosoma
congolense, and that, despite their homology, TFR
and VSG genes do not recombine, supporting a
functionally distinct role from the variant antigen
repertoire (Jackson et al. 2012, 2013). As suggested
above, the conspicuous abundance and diversity of
certain T. cruzi gene families, such as TS, EF1γ and
MSP, could indicate that these genes have second-
arily evolved a novel role in immune evasion as a
consequence of being at the cell surface for their pre-
existing functions, i.e. to transfer sialic acid to
TcMUC in the case of TS (Oliveira et al. 2014).
Furthermore, many TS, EF1γ and MSP genes in
T. cruzi are not predicted to encode proteins capable
of their putative functions (El-Sayed et al. 2005).
At first sight, this would appear to indicate frequent
pseudogenization, yet a population of pseudogenes
acquiring substitutions under neutral conditions
would be expected to display a spectrum of muta-
tional decay that is not seen (El-Sayed et al. 2005).
This suggests that these genes may remain under
purifying selection for another role, which could
represent neofunctionalization.
The evolution of gene duplicates is particularly

obvious in the abundant tandem gene arrays of
trypanosomatid genomes. Tandem duplication is
very common in trypanosomatids, perhaps as a
means of increasing transcript abundance for highly
expressed genes in the presence of polycistronic
transcription. Comparative analysis of homologous
arrays shows that tandem duplicates can evolve
new functions, despite the propensity for concerted
evolution of tandemly arrayed genes (Jackson,
2007a), and that this follows a consistent pattern of
structural segregation. Figure 4 shows two examples
of functional divergence within tandem gene arrays.
The expression profiles of adenylate cyclase gene
paralogues from the rac array of Leishmania spp.
correspond with their position in the array. The
3′-most gene (rac-A) and the gene positioned
upstream of rac-A in the array (rac-B1) are expressed
specifically in the promastigote (Sanchez et al. 1995;
Akopyants et al. 2004), while transcripts for the
remaining copies are more abundant in the
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amastigote (Akopyants et al. 2004). Interestingly,
rac-A and rac-B1 may have differentiated in a
complementary fashion, since rac-B1 negatively
regulates the activity of rac-A in the promastigote
(Sanchez et al. 1995). In Trypanosoma, the 5′-most
copy of a cation transporter gene array is preferen-
tially expressed in the PCF (Jensen et al. 2009;
Urbaniak et al. 2012) (indeed, it is essential to its
growth; Alsford et al. 2011), while transcripts for all
downstream copies are up-regulated in the blood-
stream stage (Jensen et al. 2009; Veitch et al. 2010).

The phylogenies of these gene duplicates show that
those gene copies that are functionally differentiated
retain orthology across species (i.e. they cluster
together despite being in different genomes), while
undifferentiated copies cluster by species. This shows
that gene duplicates that have diverged in their
structures and expression for a novel function are
preserved by selection over the course of trypanoso-
matid evolution, despite the pressure exerted by
allelic gene conversion in these situations. In fact,

when tandem gene duplicates differentiate, this
often occurs at either end of the array (Jackson,
2007a), even occurring in otherwise invariant arrays
that are exposed to frequent gene conversion; for
example, differentiation of the terminal 3′UTR in
the β-tubulin array in Leishmania spp. has created a
promastigote-specific β-tubulin isoform (Jackson
et al. 2006).

Duplication events do not only affect individual
genes. A 0·5 mb segmental duplication in T. brucei
was identified that has created duplicons shared by
chromosomes 4 and 8 (Jackson, 2007b). Originally,
this region contained approximately 158 genes but
subsequent deletions from either duplicon have
returned many loci to their original copy number.
However, 74 loci have been retained as paralogues in
both duplicons. Comparison of their coding and
flanking sequences indicated that substantial diver-
gence had occurred and this was assumed to reflect
functional divergence (Jackson, 2007b). They include
CAP5.5, a cysteine peptidase essential for cell
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morphogenesis, which has been shown to have two
paralogues expressed specifically in the insect and
vertebrate stages respectively (Hertz-Fowler et al.
2001; Olego-Fernandez et al. 2009). Figure 5 shows
how recent proteomic evidence now confirms that
several of the paralogues retained after segmental
duplication have evolved stage-specific expression
profiles, indicating subfunctionalization by life stage.
Gene expression in trypanosomatids is largely regu-
lated by sequences within the 3′ untranslated region
(UTR) of transcripts (Vanhamme and Pays, 1995;
Haile and Papadopoulou, 2007). Accordingly, it is
the paralogous pairs with no sequence identity in
their 3′ UTRs that have the greatest differences
(loci #13, 36, 39, 49 and 71 in Fig. 5), while those
paralogues with similar 3′ UTR sequences display
similar abundance in both cases (loci #23, 24, 62 and
65 in Fig. 5).

MECHANISMS OF GENOMIC EVOLUTION:

HORIZONTAL GENE TRANSFER

Horizontal gene transfer (HGT) is another mechan-
ism by which many eukaryotic genomes have
acquired new functionality. Berriman et al. (2005)
identified 49 putative HGT from bacteria and other

eukaryotes in trypanosomatid genomes. Confirming
HGT rests on sound phylogenetic reconstruction;
the most convincing cases are those where the
donated gene is closely related to donor genes in
unrelated genomes, and nested among these in a
phylogeny. Some putative HGT in trypanosomatids
achieve this, notably the haem-biosynthesis pathway,
absent from Trypanosoma but partially restored in
Leishmania and related genera throughHGT of three
genes (hemF, hemG and hemH encoding copropor-
phyrinogen oxidase, protoporphyrinogen oxidase
and ferrochelatase, respectively) from gamma-
proteobacteria. In phylogenies, HemF-H are nested
among bacterial homologues and apart from related
eukaryotic genes (Ivens et al. 2005, Korený et al.
2010). In salivarian trypanosomes, a phospholipase
A1 (PLA1) gene is thought to have been acquired
from proteobacteria (Richmond and Smith, 2007).
In support of this, the PLA1 gene is absent from all
other Kinetoplastids (indeed most other eukaryotes)
and it nests among proteobacterial sequences in
sequence comparisons. Moreover, the PLA1 locus
(Tb927.1.4830) occurs precisely at the boundary
between chromosomal core and sub-telomere in
African trypanosome genomes, suggesting perhaps
that it was recently transposed.

Locus Iden�fer: Descrip�on Sequence iden�ty#: Fold-change PCF/BSF:

Chr4 Chr8 CDS 3'UTR Chr4 Chr8

6 Tb927.4.5340 Tb927.8.6980 hypothe�cal protein 0.824 0.523 5.62 0.66*

12 Tb927.4.5220 Tb927.8.7190 chromosome segrega�on protein-like 0.402 0.09 0.85 3.81**

13 Tb927.4.5190 Tb927.8.7290 hypothe�cal protein 0.751 0.418 17.54 0.05**

18 Tb927.4.5120 Tb927.8.7260 kinetoplast-associated protein 0.368 0.365 1.90 1.21*

23 Tb927.4.5010 Tb927.8.7410 calre�culin 0.987 0.714 0.29 0.41*

24 Tb927.4.5000 Tb927.8.7420 C2 calcium/lipid-binding region protein 0.995 0.966 0.55 0.60*

32 Tb927.4.4910 Tb927.8.7530 3,2-trans-enoyl-CoA isomerase 0.717 0.185 1.17 11.96*

36 Tb927.4.4870 Tb927.8.7600 amino acid transporter 0.702 0.182 0.15 10.76*

39 Tb927.4.4740 Tb927.8.7730 dihydroceramide synthase 0.730 0.207 0.41 24.53**

49 Tb927.4.4470 Tb927.8.7860 adenylate cyclase 0.592 0.131 0.12 0.06**

52 Tb927.4.4370 Tb927.8.8000 hypothe�cal protein 0.701 0.278 2.88 0.08**

53 Tb927.4.4360 Tb927.8.8020 monoglyceride lipase 0.783 0.199 1.01 0.81*

54 Tb927.4.4350 Tb927.8.8030 cell-surface protein 0.541 0.15 5.61 0.10*

56 Tb927.4.4310 Tb927.8.8050 spectrin repeat protein 0.274 0.204 1.06 0.74*

62 Tb927.4.4160 Tb927.8.8170 CheY-like domain protein 0.773 0.901 2.34 2.53*

65 Tb927.4.4130 Tb927.8.8280 prefoldin domain protein 0.948 0.658 0.96 1.03**

68 Tb927.4.4040 Tb927.8.8280 hypothe�cal protein 0.436 0.209 1.06 0.06

71 Tb927.4.3950 Tb927.8.8330 cytoskeleton-associated protein CAP5.5 0.748 0.258 18.8 0.05*

Fig. 5. Peptide abundance in procyclic form (PCF) and bloodstream form (BSF) T. brucei for selected paralogues
resulting from a segmental duplication. 74 loci are present in two forms in T. brucei due to a segmental duplication.
The loci listed here are those detected in proteomic analyses. Locus number and sequence identity values refer to the
segmental duplication described in Jackson (2007b). Fold change in peptide abundance between PCF and BSF cells
taken from * Urbaniak et al. (2012) or ** Butter et al. (2013). Preferential expression in PCF and BSF is indicated by
blue and red shading respectively. Constitutive expression is indicated by orange shading.
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Other good examples of HGT include a cytosolic
dihydroorotate dehydrogenase in the pyrimidine bio-
synthetic pathway,which is unique toKinetoplastids,
and replaces the mitochondrial dihydroorotate de-
hydrogenase that is typical of euglenids and other
eukaryotes. In phylogenies, the cytosolic genes are
nested among bacterial taxa, while the mitochondrial
genes form a eukaryotic clade (Annoura et al. 2005).
Likewise, ornithine decarboxylase genes from sali-
varian trypanosomes do not cluster with homologues
from other trypanosomatids, but instead they are
nested amongmetazoan genes and are the sister taxon
to ornithine decarboxylase from vertebrates (Steglich
and Schaeffer, 2006). In fact, ornithine decarboxylase
is known to be absent from T. cruzi (Carrillo et al.
1999), indicating that this HGT from vertebrates has
restored function in African trypanosomes that was
lost after the origin of Trypanosoma. However, since
the African trypanosome genes are not nested within
the vertebrate clade, we can rule out any recent
transfer from contemporary hosts and suggest instead
a more distant transfer from an ancient chordate.

In other cases of putative HGT the donated gene is
not nested among would-be donors, just closest to
them in phylogenies. Here, it is possible that the
punctate distribution is due to lineage sorting, i.e.
patchy inheritance of an ancestral lineage by daughter
lineages. When, as is common, eukaryotic diversity is
inadequately sampled, it is difficult to distinguish
HGT and lineage sorting. For example, trypanoso-
matid genomes possess four superoxide dismutase
genes required for antioxidant defence (soda, sodb1,
sodb2 and sodc), which localize to distinct cellular
compartments (Dufernez et al. 2006). The four sod
genes do not cluster together; soda/sodc cluster most
closely to Trichomonas vaginalis, while sodb1/sodb2
cluster with diverse eukaryotes (Dufernez et al.
2006). This suggests sorting of ancestral sod lineages
but not necessarily HGT. Similarly, two metallo-
carboxypeptidases (TcMCP-1 and TcMCP-2) in
T. cruzi are found only in Kinetoplastids and
prokaryotes, but homologues from the two taxa are
sister clades, rather than nested (Niemirowicz et al.
2007). While the original study recognized the
possibility of both HGT and lineage sorting, they
rejected the latter due to the number of deletions this
would require. These losses may not be necessary,
however, if eukaryotic diversity were exhaustively
sampled. Finally, an uncharacterized protein,
META1, is up-regulated in Leishmania metacyclics
and is homologous to a bacterial heat-inducible
protein, itself similar to a component of the type III
secretion system in Shigella (Puri et al. 2011).
META1 is hypothesized to have evolved via HGT
and may be involved in secretory processes in
Leishmania since mutagenesis of select hydrophobic
residues in META1 affects the secretion of the
secreted acid phosphatase (Puri et al. 2011).
However, META1 is not nested among bacterial

sequences and, at this stage, the HGT hypothesis
rests on it remaining absent from all other eukaryotes.

Although poor sampling continues to limit our
ability to distinguish HGT and lineage sorting
(Opperdoes and Michels, 2007), HGT has clearly
contributed to trypanosomatid genomes; for exam-
ple, substantial integration of genes from a bacterial
endosymbiont has recently been demonstrated in
Angomonas deanei (Alves et al. 2011). The role of
HGT in the origins of parasitism will be clarified
through comparison of trypanosomatids with free-
living Kinetoplastids and other neglected unicellular
eukaryotes, to reject the lineage sorting hypothesis
and to confirm that the HGT is uniquely associated
with parasites, such as hemF-H or PLA1, and not
Kinetoplastids generally.

CONCLUSION

The genetic content of trypanosomatid genomes
indicates that they have been elaborated relative to
their common ancestor in terms of both physical
structure and physiological capacity. Species-specific
gene families, instrumental in cell surface architec-
ture, are central to this history of innovation, and
implicitly linked to the origins of complex life cycles
and disease. By definition, these unique innovations
are mutually exclusive, yet there are themes that cut
across species. These gene families are functionally
differentiated to perform multiple roles in different
host environments through the parasite life cycle.
They are positioned in sub-telomeres, tandem gene
arrays or other contingency zones that perhaps
promote regulatory flexibility and sequence diversity.
Their sequences are diverse and often contain low
complexity repeats that may promote greater diver-
sity through recombination. In their phylogenies,
these gene families display rapid turnover – the gain
and loss of lineages – that hint at the importance
of host-parasite interactions in genomic evolution.
These themes, which would, in fact, apply to
parasites of all kinds, suggest how each trypanoso-
matid lineage has used similar molecular mechanisms
to meet the demands of transmission and survival.
There are issues in comparative analysis we have not
addressed, like protein-protein interactions, the
regulatory roles of non-coding regions and regulatory
proteins, genomic plasticity or indeed the *50% of
trypanosomatid genes that have no known function.
There are also some genes, such as the TcMUC
family in T. cruzi, procyclin in T. brucei and
T. congolense, and the HASP and SHERP families
in L. major, that defy any explanation using a
comparative approach, and which may have evolved
de novo from non-coding regions. Yet, we have
learned enough from the structure and content of
trypanosomatid genomes to conclude that becoming
parasitic was more an innovative and elaborative
process, than one of loss and reduction. With the
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addition of free-living Kinetoplastids to our com-
parative analyses, the mechanisms by which these
enigmatic genomic adaptations for parasitism came
about will be revealed.
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