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Figure 1 | Phylogenetic reconstruction and karyotype evolution support a distinct phylogenetic placement of A. alpina. a, Consensus network of the 

Brassicaceae phylogeny based on 1,787 single-copy clusters of orthologous genes. Its topology did not unambiguously place the Arabis species with Lineage 

II as proposed earlier. (Lineage I species (red); Lineage II species (blue); Arabis species (green)). b, Karyotype evolution at the base of Brassicaceae 

evolution. Reconstruction of the chromosome evolution from the Ancestral Crucifer Karyotype (ACK) to the A. alpina karyotype (KAA) suggested nine 

chromosomal rearrangements, which are different from the rearrangements that occurred in the evolution from the ACK to the Proto-Calepineae Karyotype 

(PCK), which is ancestral to Lineage II. c, Brassicaceae genome compositions. TEs, transposable elements 

H3K4me3, H3K27me3 and H3K27me1 assayed by ChIP-seq, and 

DNA methylation assayed by immunoprecipitation of methylated 

DNA coupled with high-throughput sequencing17 (Supplementary 

Note). H3K27me1 and DNA methylation mark epigenetically 

silenced TEs, whereas H3K27me3 is a repressive mark specifically 

associated with genes and H3K4me3 is associated with regions 

that are actively transcribed18. As in A. thaliana18, DNA methylation 

and H3K27me1 modification were mostly associated with TEs in 

A. alpina and A. lyrata, whereas H3K4me3 and H3K27me3 were 

preferentially associated with genes (Fig. 2b and Supplementary 

Fig. 11). In A. alpina, however, we found a three times larger pro­

portion of TEs marked with H3K4me3 as in the other two species. 

Gypsies showed by far the largest fraction of elements marked with 

H3K4me3, whereas all other superfamilies did not show such a 

pronounced increase (Fig. 2b and Supplementary Figs 10, 11). 

Even though Gypsies within genes were more likely to be marked 

with H3K4me3 and were consistently older in all three species 

(Fig. 2c), A. alpina showed only a slightly increased fraction 

(7.8%) of Gypsies in genes compared with A. thaliana (5.7%) and 

much less than A. lyrata (15.1%), implying that elevated levels of 

H3K4me3 marking among Gypsies were not dominated by epige-

netic states of genes. Moreover, H3K4me3-marked Gypsy elements 

outside of genes were drastically younger than those without this 

mark in A. thaliana and A. lyrata but not in A. alpina, suggesting 

that many of these elements might have retained the ability to be 

transcribed over time. In fact, when analysing the 1.5% of the 

RNA-sequencing (seq) reads that were not assigned to genes9,19, 

we found that the Gypsy superfamily was more expressed than 

any of the other superfamilies in A. alpina, in contrast to A. thaliana 

in which Copia showed the highest fraction of RNA-seq reads 

(Fig. 2d, Supplementary Fig. 12 and Supplementary Note). 

Moreover, transposable elements with the H3K4me3 mark were sig­

nificantly enriched for expressed TEs compared with TEs without 

this mark across all large superfamilies, even though this effect 

was less pronounced for Gypsies (Fig. 2e). 

Two Gypsy families, ATGPI and ATLANTYS2, accounted for 

more than a fifth of all Gypsy elements in A. alpina (Fig. 2f and 

Supplementary Note). These two families showed an even more 

drastic increase in elements marked with H3K4me3, which was 

not apparent in any of the other A. alpina TE families, and together 

with their increased copy number and age distribution this suggests 

that the observed burst of transposition was mostly driven by this 

small group of TEs. 

In A. alpina, A. thaliana and A. lyrata, TE density increases 

towards the centromeres1,2 (Fig. 3a and Supplementary Figs 13 

and 14). Typically these repeat-rich regions overlap with hetero-

chromatic pericentromeres. Here we defined pericentromeres 

as regions with high amounts of H3K27me1 surrounding the 

centromeres (Supplementary Table 6 and Supplementary Note). 

Pericentromeres in A. alpina were drastically larger (average 

length: 14.9 Mb in A. alpina, 3.9 Mb in A. thaliana1, 10.3 Mb in 

A. lyrata2) and included many more genes than the other two 

species (Fig. 3b). Gypsy elements are significantly enriched 

among the repeats in pericentromeres (U-test, P-value < 2e–16) 

and account for many of the size differences of pericentromeres 

(Fig. 3c). In A. thaliana and A. lyrata H3K4me3 markings are 
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Figure 2 | Genome size variation and differences in transposable element content. a, transposable element age spectra based on similarity between 

transposable element copies and consensus sequence. A. alpina shows a unique increase in middle-aged Gypsy elements. b, Fraction of genes and 

transposable elements marked with H3K4me3. The three largest superfamilies are shown separately. c, Age distribution of Gypsies inside and outside of genes 

separated by their different H3K4me3 markings. d, Expression of individual transposable element superfamilies in A. alpina. e, Fraction of expressed 

transposable elements with and without H3K4me3 markings. f, Size of the ten largest transposable element families in A. alpina along with their family-wide 

fraction of H3K4me3 marks within all three species. 

strongly correlated with gene density throughout the chromosomes. 

In A. alpina, however, this correlation was weak and even entirely 

missing in pericentromeres, where H3K4me3 was slightly correlated 

with Gypsy element density instead, suggesting that Gypsies are 

epigenetically active even in the heterochromatic pericentromere in 

A. alpina (Fig. 3a and Supplementary Figs 15–17). 

Genome size differences between Brassicaceae species have pre­

viously been attributed to pericentromere expansion6,20, but the 

causes and functional consequences have remained unclear. 

Centromeres in many species suppress crossover recombination 

during meiosis, a phenomenon that usually extends into hetero-

chromatic regions near the centromere21. Crossover frequencies 

along seven investigated chromosomes of A. alpina revealed for 

each chromosome a region with suppressed crossovers 

(Supplementary Tables 7, 8 and Supplementary Note). These 

regions co-localize with large parts of the pericentromeres implying 

that the extent of non-recombining DNA in A. alpina is greatly 

increased compared with A. thaliana and A. lyrata. 

Earlier analyses reported differences in gene content in pericen-

tromeres of Brassicaceae20, but were complicated by the lack of 

whole-genome sequences. Reconstruction of ancestral chromosomal 

rearrangements of A. alpina revealed a single homologous 

paleocentromere (chromosome 2) with A. lyrata2 (Supplementary 

Figs 2 and 3). The assembly of the long arm of chromosome 2 

shows a clear transition between gene- and repeat-rich regions in 

both species (Fig. 3d). Near the transition zone, there are 207 

single-copy orthologues that reside in the repeat-dense regions in 

A. alpina, but outside the pericentromere in gene-rich regions in 

A. lyrata. Comparing two sparse genetic maps of these species 

suggested that the repeat-rich region in A. alpina shows more 

strongly suppressed recombination than the orthologous regions 

in A. lyrata (Fig. 3d and Supplementary Note)22. This implies that 

upon expansion of the repeat-rich pericentromeric regions in 

A. alpina, genes in formerly gene-rich regions became incorporated 

into the pericentromere, with the consequence that large clusters of 

genes experience very little meiotic recombination in A. alpina. 

Although we cannot fully exclude the possibility of accelerated 

loss of transposable elements and pericentromere shrinkage in 

A. lyrata, we found no evidence for large numbers of solo 

LTRs that would indicate continuing loss through unequal homolo­

gous deletions in this particular genomic region (Fig. 3d and 

Supplementary Note). 

Increased transposable element activity and gain of H3K4me3 

has been linked to reduction in DNA methylation at transposable 

elements in A. thaliana23. To further examine DNA methylation 

in A. alpina, we performed whole-genome bisulphite sequencing24 

using leaf material and compared it with analogous data previously 

generated for A. thaliana25 (Supplementary Note). Though this 

revealed similar amounts of methylated cytosines in A. alpina 

(19%) and A. thaliana (16%)25 and similar methylation profiles 

along genes and transposable elements in both species24 

(Supplementary Fig. 18), the position-wise frequency of CG 

methylation was strikingly different. Whereas most methylated 

CGs showed 80–100% methylation in A. thaliana, these levels 

tended to be much lower in A. alpina irrespective of sequence 

annotation (Fig. 4a,b and Supplementary Fig. 19). In contrast, the 

distribution of methylation levels at CHG sites was only slightly 

shifted towards lower values in A. alpina, and was very similar for 

CHH sites. In A. thaliana, CG and CHG methylation typically 

occurs on both Cs of the opposite strands of these palindromes, 
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Figure 3 | Differences in the distribution of genes, transposable elements and chromatin marks between A. thaliana, A. lyrata and A. alpina. a, Gene, 

transposable element and histone mark density, along orthologous chromosomes (missing sequence marked in grey). b, Genomic fraction and gene space 

in chromosome arms and pericentromeres. c, Genome coverage of the three largest transposable element superfamilies. d, Comparison of A. alpina and 

A. lyrata chromosome 2 sharing the same ancestral centromere. Grey lines connect single-gene orthologues. Orthologues that reside in pericentromeric 

regions in A. alpina, but are outside these regions in A. lyrata, are indicated by dark grey lines. Locations of solo-LTRs indicated by grey crosses. (Gene and 

transposable element densities as in a, crossover frequency (red), pericentromeres (dark brown)). 

indicative of methylation copying via the maintenance machinery 

during replication24,26. Surprisingly, the two strands are essentially 

uncorrelated in their methylation levels at CG sites, and much 

more weakly correlated at CHG sites in A. alpina throughout the 

entire genome, suggesting that methylation maintenance is much 

less pervasive (Fig. 4c and Supplementary Fig. 20). 

Given these fundamental differences, we suspected that the DNA 

methylation maintenance machinery might function differently in 

A. alpina. To explore this possibility, we examined the 

Brassicaceae genomes for intact homologues of the five major 

gene families involved in DNA methylation26 (Fig. 4d). At least 

one homologue of each family was found and showed expression 

in A. alpina (Supplementary Table 9). The phylogenies of DDM1, 

required for CG methylation maintenance, CMT3, required for 

CHG methylation maintenance and DRM2, involved in de novo 

methylation in all contexts, broadly recapitulated the family phylo-

geny (Fig. 4e–g). In contrast, the homologues of MET1 and VIM1, 

which in addition to DDM1 are essential for CG methylation main­

tenance in A. thaliana26, clustered in a species- and lineage-specific 

manner (Fig. 4h,i). This implies that all species outside the 

Arabidopsis lineage lacked clear orthologues for MET1 and VIM1 

genes, which was also apparent from the lack of synteny of these 

genes with any of their homologues outside this lineage. 

Moreover, the ratio of mutation rates at nonsynonymous (N) and 
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Figure 4 | Species-specific differences in DNA methylation. a, Position-wise DNA methylation frequencies. b, DNA methylation frequencies in A. alpina 

separated by genomic regions. c, Correlation of methylation frequency on Watson and Crick strand at symmetrical CG and CHG sites (Aa, A. alpina; At, 

A. thaliana). d, Gene family sizes of DNA methylation genes. e–i, Gene family phylogenies (Aa, A. alpina; Al, A. lyrata, At, A. thaliana; Br, B. rapa; Cp, 

C. papaya, Cr, C. rubella; Es, E. salsugineum, Sp, S. parvula; Lineage I species (red); Lineage II species (blue); A. alpina (green)). j , dN/dS values for orthologous 

genes pairs between A. alpina and A. thaliana (light blue) and dN/dS values of each methylation gene family (coloured dots). 

synonymous (S) sites dN/dS calculated for each gene family revealed 

values highly similar to a genome-wide background distribution, 

except for MET1 family members with consistently enriched 

values, suggesting that less purifying selection pressure acts on 

MET1 (Fig. 4j). 

Although MET1 and VIM1 homologues are present in A. alpina, 

it remains possible that the lineage-specific evolution of these genes 

might relate to the differences in CG methylation maintenance, as 

homologues of the main methylation genes are present in other 

species with strong differences in DNA methylation27. However, 

more complex changes in other methylation pathways might need 

to be considered to reveal the basis of DNA methylation differences 

between A. alpina and A. thaliana. As the absence of symmetrical 

CG methylation levels did not correlate with an overall lower 

amount of at least partially methylated cytosines, de novo DNA 

methylation probably compensates for the lack of DNA methylation 

maintenance28 underlining the high importance of de novo DNA 

methylation in A. alpina. 

Even though co-occurrence of expanded transposable element 

content and DNA methylation maintenance deficiency in A. alpina 

does not necessarily imply a causal relationship, it nevertheless 

remains an attractive possibility that apparent methylation deficiency 
might have contributed to the elevated numbers of Gypsy elements, 
possibly due to reduced silencing of specific transposable element 
families, as was shown for DNA methylation maintenance deficient 
mutants in A. thaliana29,30. 

Data availability 
All data from this study have been deposited at the NCBI Sequence 

Read Archive (SRA) under BioProject PRJNA241291. The whole 

genome assembly of A. alpina has been deposited at DDBJ/ 

EMBL/GenBank under the accession JNGA00000000. The version 

described in this manuscript is version JNGA01000000. 
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